Biochemical Analysis of Wheat Milling By-Products for Their Valorization as Potential Food Ingredients
Abstract
1. Introduction
2. Results
2.1. Insoluble and Soluble Fibers in MBPs
2.2. Soluble-Conjugated and Insoluble-Bound Phenolic Acids in MBPs
2.3. Polyunsaturated, Monounsaturated or Saturated Fatty Acids in MBPs
2.4. Phytic Acid in MBPs
2.5. α-Amylase Activity and 7S Globulin in MBPs
2.6. Starch Content in MBPs
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Wheat Material
4.3. Quantification of Fibers, Fatty Acids, Starch and Phytic Acid
4.4. Extraction and HPLC-DAD Analysis of Phenolic Acids
4.5. α-Amylase Quantitation Assay
4.6. ELISA Quantification of 7S Globulins
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CB | coarse bran |
CW | coarse weatings |
DW | dry weight |
F | free |
FW | fine weatings |
IB | insoluble-bound |
LGF | low-grade flour |
LOX | lipoxygenase |
MBPs | milling by-products |
MUFA | monounsaturated fatty acids |
RT | room temperature |
SC | soluble-conjugated |
SCFA | short-chain fatty acids |
SFA | saturated fatty acids |
References
- EPRS. Food Security on the Agenda of the European Council Four Decades Of Debate and Discussion; EPRS: Brussels, Belgium, 2022. [Google Scholar]
- FAO. The State of Food Security and Nutrition in the World 2023. Urbanization, Agrifood Systems Transformation and Healthy Diets Across the Rural–Urban Continuum; FAO: Rome, Italy, 2023. [Google Scholar]
- EU. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A new Circular Economy Action Plan For a Cleaner and More Competitive Europe; EU: Brussels, Belgium, 2020. [Google Scholar]
- ONU. Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution Adopted by the General Assembly on 25 September 2015; UN: Geneva, Switzerland, 2015. [Google Scholar]
- Arruda, H.S.; Silva, E.K.; Araujo, N.M.P.; Pereira, G.A.; Pastore, G.M.; Marostica, M.R. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021, 26, 2632. [Google Scholar] [CrossRef] [PubMed]
- Ben-Othman, S.; Joudu, I.; Bhat, R. Bioactives from Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [PubMed]
- Chiocchio, I.; Mandrone, M.; Tomasi, P.; Marincich, L.; Poli, F. Plant Secondary Metabolites: An Opportunity for Circular Economy. Molecules 2021, 26, 495. [Google Scholar] [CrossRef]
- Lianza, M.; Marincich, L.; Antognoni, F. The Greening of Anthocyanins: Eco-Friendly Techniques for Their Recovery from Agri-Food By-Products. Antioxidants 2022, 11, 2169. [Google Scholar] [CrossRef]
- Lianza, M.; Antognoni, F. Green Method Comparison and Optimization of Anthocyanin Recovery from “Sangiovese” Grape Pomace: A Critical Evaluation of the Design of Experiments Approach. Molecules 2024, 29, 2679. [Google Scholar] [CrossRef]
- Machado, A.R.; Atatoprak, T.; Santos, J.; Alexandre, E.M.C.; Pintado, M.E.; Paiva, J.A.P.; Nunes, J. Potentialities of the Extraction Technologies and Use of Bioactive Compounds from Winery By-Products: A Review from a Circular Bioeconomy Perspective. Appl. Sci. 2023, 13, 7754. [Google Scholar] [CrossRef]
- Ratu, R.N.; Velescu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipsa, F.D.; Filipov, F.; Florea, A.M.; et al. Application of Agri-Food By-Products in the Food Industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef]
- Brouns, F.; Hemery, Y.; Price, R.; Anson, N.M. Wheat Aleurone: Separation, Composition, Health Aspects, and Potential Food Use. Crit. Rev. Food Sci. Nutr. 2012, 52, 553–568. [Google Scholar] [CrossRef]
- Chiș, M.S.; Fărcaș, A.C. Cereal By-Products Valorization in Bakery, Pastry, and Gastronomy Products Manufacturing; IntechOpen: London, UK, 2024. [Google Scholar]
- Hemdane, S.; Jacobs, P.J.; Dornez, E.; Verspreet, J.; Delcour, J.A.; Courtin, C.M. Wheat (Triticum aestivum L.) Bran in Bread Making: A Critical Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 28–42. [Google Scholar] [CrossRef]
- Hemdane, S.; Leys, S.; Jacobs, P.J.; Dornez, E.; Delcour, J.A.; Courtin, C.M. Wheat milling by-products and their impact on bread making. Food Chem. 2015, 187, 280–289. [Google Scholar] [CrossRef]
- Prueckler, M.; Siebenhandl-Ehn, S.; Apprich, S.; Hoeltinger, S.; Haas, C.; Schmid, E.; Kneifel, W. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT-Food Sci. Technol. 2014, 56, 211–221. [Google Scholar] [CrossRef]
- Hemery, Y.; Rouau, X.; Lullien-Pellerin, V.; Barron, C.; Abecassis, J. Dry processes to develop wheat fractions and products with enhanced nutritional quality. J. Cereal Sci. 2007, 46, 327–347. [Google Scholar] [CrossRef]
- Onipe, O.O.; Jideani, A.I.O.; Beswa, D. Composition and functionality of wheat bran and its application in some cereal food products. Int. J. Food Sci. Technol. 2015, 50, 2509–2518. [Google Scholar] [CrossRef]
- Apprich, S.; Tirpanalan, Ö.; Hell, J.; Reisinger, M.; Bohmdorfer, S.; Siebenhandl-Ehn, S.; Novalin, S.; Kneifel, W. Wheat bran-based biorefinery 2: Valorization of products. Lwt-Food Sci. Technol. 2014, 56, 222–231. [Google Scholar] [CrossRef]
- Williams, B.A.; Grant, L.J.; Gidley, M.J.; Mikkelsen, D. Gut Fermentation of Dietary Fibres: Physico-Chemistry of Plant Cell Walls and Implications for Health. Int. J. Mol. Sci. 2017, 18, 2203. [Google Scholar] [CrossRef]
- Sardari, R.R.R.; Sutiono, S.; Azeem, H.A.; Galbe, M.; Larsson, M.; Turner, C.; Karlsson, E.N. Evaluation of Sequential Processing for the Extraction of Starch, Lipids, and Proteins From Wheat Bran. Front. Bioeng. Biotechnol. 2019, 7, 413. [Google Scholar] [CrossRef] [PubMed]
- Deroover, L.; Tie, Y.; Verspreet, J.; Courtin, C.M.; Verbeke, K. Modifying wheat bran to improve its health benefits. Crit. Rev. Food Sci. Nutr. 2020, 60, 1104–1122. [Google Scholar] [CrossRef]
- Arte, E.; Huang, X.; Nordlund, E.; Katina, K. Biochemical characterization and technofunctional properties of bioprocessed wheat bran protein isolates. Food Chem. 2019, 289, 103–111. [Google Scholar] [CrossRef]
- Antoine, C.; Peyron, S.; Mabille, F.; Lapierre, C.; Bouchet, B.; Abecassis, J.; Rouau, X. Individual contribution of grain outer layers and their cell wall structure to the mechanical properties of wheat bran. J. Agric. Food Chem. 2003, 51, 2026–2033. [Google Scholar] [CrossRef]
- Lott, J.N.A.; Ockenden, I.; Raboy, V.; Batten, G.D. Phytic acid and phosphorus in crop seeds and fruits: A global estimate. Seed Sci. Res. 2000, 10, 11–33. [Google Scholar] [CrossRef]
- Pavlovich-Abril, A.; Rouzaud-Sandez, O.; Torres, P.; Robles-Sanchez, M. Cereal bran and wholegrain as a source of dietary fibre: Technological and health aspects. Int. J. Food Sci. Nutr. 2012, 63, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Moleón, J.; González-Correa, C.; Miñano, S.; Robles-Vera, I.; de la Visitación, N.; Barranco, A.M.; Gómez-Guzmán, M.; Sánchez, M.; Riesco, P.; Guerra-Hernández, E.; et al. Protective effect of microbiota-derived short chain fatty acids on vascular dysfunction in mice with systemic lupus erythematosus induced by toll like receptor 7 activation. Pharmacol. Res. 2023, 198, 106997. [Google Scholar] [CrossRef]
- Rakha, A.; Foucat, L.; Saulnier, L.; Bonnin, E. Behavior of endo-xylanases on wheat milling products in relation with variable solid loading conditions. Carbohydr. Polym. 2024, 334, 122029. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhong, L.L.; Jiang, G.S.; Liu, L.; Wang, P.; Zhong, Y.X.; Yue, Q.R.; Ouyang, L.; Zhang, A.Q.; Li, Z.K.; et al. Comparative study on bread quality and starch digestibility of normal and waxy wheat (Triticum aestivum L.) modified by maltohexaose producing α-amylases. Food Res. Int. 2022, 162, 112034. [Google Scholar] [CrossRef]
- Jacobs, P.J.; Bogaerts, S.; Hemdane, S.; Delcour, J.A.; Courtin, C.M. Impact of wheat bran hydration properties as affected by toasting and degree of milling on optimal dough development in bread making. J. Agric. Food Chem. 2016, 64, 3636–3644. [Google Scholar] [CrossRef] [PubMed]
- Fatima, I.; Gamage, I.; De Almeida, R.J.R.; Cabandugama, P.; Kamath, G. Current Understanding of Dietary Fiber and Its Role in Chronic Diseases. Mo. Med. 2023, 120, 381–388. [Google Scholar] [PubMed] [PubMed Central]
- Partula, V.; Deschasaux, M.; Druesne-Pecollo, N.; Latino-Martel, P.; Desmetz, E.; Chazelas, E.; Kesse-Guyot, E.; Julia, C.; Fezeu, L.K.; Galan, P.; et al. Associations between consumption of dietary fibers and the risk of cardiovascular diseases, cancers, type 2 diabetes, and mortality in the prospective NutriNet-Sante cohort. Am. J. Clin. Nutr. 2020, 112, 195–207. [Google Scholar] [CrossRef]
- Kabisch, S.; Weickert, M.O.; Pfeiffer, A.F.H. The role of cereal soluble fiber in the beneficial modulation of glycometabolic gastrointestinal hormones. Crit. Rev. Food Sci. Nutr. 2024, 64, 4331–4347. [Google Scholar] [CrossRef]
- Sztupecki, W.; Rhazi, L.; Depeint, F.; Aussenac, T. Functional and Nutritional Characteristics of Natural or Modified Wheat Bran Non-Starch Polysaccharides: A Literature Review. Foods 2023, 12, 2693. [Google Scholar] [CrossRef]
- Hegde, S.; Kavitha, S.; Varadaraj, M.C.; Muralikrishna, G. Degradation of cereal bran polysaccharide-phenolic acid complexes by Aspergillus niger CFR 1105. Food Chem. 2006, 96, 14–19. [Google Scholar] [CrossRef]
- Saura-Calixto, F. Antioxidant dietary fiber product: A new concept and a potential food ingredient. J. Agric. Food Chem. 1998, 46, 4303–4306. [Google Scholar] [CrossRef]
- Demuth, T.; Edwards, V.; Bircher, L.; Lacroix, C.; Nyström, L.; Geirnaert, A. Colon Fermentation of Soluble Arabinoxylan Is Modified Through Milling and Extrusion. Front. Nutr. 2021, 8, 707763. [Google Scholar] [CrossRef]
- Zhao, G.H.; Zhang, R.F.; Dong, L.H.; Huang, F.; Liu, L.; Deng, Y.Y.; Ma, Y.X.; Zhang, Y.; Wei, Z.C.; Xiao, J.; et al. A Comparison of the Chemical Composition, In Vitro Bioaccessibility and Antioxidant Activity of Phenolic Compounds from Rice Bran and Its Dietary Fibres. Molecules 2018, 23, 202. [Google Scholar] [CrossRef] [PubMed]
- Graf, E.; Eaton, J.W. Antioxidant Functions of Phytic Acid. Free Radic. Biol. Med. 1990, 8, 61–69. [Google Scholar] [CrossRef]
- Lolas, G.; Palamidis, N.; Markakis, P. The phytic acid-total phosphorus relationship in barley, oats, soybeans and wheat. Cereal Chem. 1976, 53, 867–871. [Google Scholar]
- Silva, E.O.; Bracarense, A.P.F.R.L. Phytic Acid: From Antinutritional to Multiple Protection Factor of Organic Systems. J. Food Sci. 2016, 81, R1357–R1362. [Google Scholar] [CrossRef]
- Gibson, R.S.; Perlas, L.; Hotz, C. Improving the bioavailability of nutrients in plant foods at the household level. P. Nutr. Soc. 2006, 65, 160–168. [Google Scholar] [CrossRef]
- Hurrell, R.F. Influence of vegetable protein sources on trace element and mineral bioavailability. J. Nutr. 2003, 133, 2973s–2977s. [Google Scholar] [CrossRef]
- Vucenik, I.; Shamsuddin, A.M. Protection against cancer by dietary IP6 and inositol. Nutr. Cancer-Int. J. 2006, 55, 109–125. [Google Scholar] [CrossRef]
- Bacic, I.; Druzijanic, N.; Karlo, R.; Skific, I.; Jagic, S. Efficacy of IP6 + inositol in the treatment of breast cancer patients receiving chemotherapy: Prospective, randomized, pilot clinical study. J. Exp. Clin. Cancer Res. 2010, 29, 12. [Google Scholar] [CrossRef] [PubMed]
- Druzijanic, N.; Juricic, J.; Perko, Z.; Kraljevic, D. Ip6+Inositol as Adjuvant to Chemotherapy of Colon Cancer: Our Clinical Experience. Anticancer. Res. 2004, 24, 3474–3475. [Google Scholar]
- Melis, S.; Delcour, J.A. Impact of wheat endogenous lipids on the quality of fresh bread: Key terms, concepts, and underlying mechanisms. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3715–3754. [Google Scholar] [CrossRef]
- Filip, E.; Woronko, K.; Stepien, E.; Czarniecka, N. An overview of factors affecting the functional quality of common wheat (Triticum aestivum L.). Int. J. Mol. Sci. 2023, 24, 7524. [Google Scholar] [CrossRef]
- Luning, P.; Roozen, J.; Moëst, R.; Posthumus, M. Volatile composition of white bread using enzyme active soya flour as improver. Food Chem. 1991, 41, 81–91. [Google Scholar] [CrossRef]
- Narisawa, T.; Nakajima, H.; Umino, M.; Kojima, T.; Asakura, T.; Yamada, M. Volatile compounds from Japanese noodles,“udon,” and their formation during noodle-making. J. Food Process. Technol. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, F.; Wu, P.; Zhang, N.; Cui, D. Molecular characterization of lipoxygenase genes on chromosome 4BS in Chinese bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2015, 128, 1467–1479. [Google Scholar] [CrossRef]
- El Houssni, I.; Zahidi, A.; Khedid, K.; Hassikou, R. Nutrient and anti-nutrient composition of durum, soft and red wheat landraces: Implications for nutrition and mineral bioavailability. J. Agric. Food Res. 2024, 15, 101078. [Google Scholar] [CrossRef]
- Dotimas, L.G.; Ojo, B.; Kaur, A.; Alake, S.; Dixon, M.; Rassi, G.D.E.; Ice, J.A.; Zhao, J.C.; Emerson, S.R.; Smith, B.J.; et al. Wheat germ supplementation has modest effects on gut health markers but improves glucose homeostasis markers in adults classified as overweight: A randomized controlled pilot study. Nutr. Res. 2024, 127, 13–26. [Google Scholar] [CrossRef]
- Arte, E.; Katina, K.; Holopainen-Mantila, U.; Nordlund, E. Effect of hydrolyzing enzymes on wheat bran cell wall integrity and protein solubility. Cereal Chem. 2016, 93, 162–171. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Guan, E.-Q.; Yang, Y.-L.; Liu, Y.-X.; Zhang, T.-J.; Bian, K. Impact of wheat globulin addition on dough rheological properties and quality of cooked noodles. Food Chem. 2021, 362, 130170. [Google Scholar] [CrossRef] [PubMed]
- Arendt, E.K.; Ryan, L.A.M.; Dal Bello, F. Impact of sourdough on the texture of bread. Food Microbiol. 2007, 24, 165–174. [Google Scholar] [CrossRef]
- Scarnato, L.; Serrazanetti, D.I.; Aloisi, I.; Montanari, C.; Del Duca, S.; Lanciotti, R. Combination of transglutaminase and sourdough on gluten-free flours to improve dough structure. Amino Acids 2016, 48, 2453–2465. [Google Scholar] [CrossRef] [PubMed]
- Scarnato, L.; Montanari, C.; Serrazanetti, D.I.; Aloisi, I.; Balestra, F.; Del Duca, S.; Lanciotti, R. New bread formulation with improved rheological properties and longer shelf-life by the combined use of transglutaminase and sourdough. Lwt-Food Sci. Technol. 2017, 81, 101–110. [Google Scholar] [CrossRef]
- Scarnato, L.; Gadermaier, G.; Volta, U.; De Giorgio, R.; Caio, G.; Lanciotti, R.; Del Duca, S. Immunoreactivity of Gluten-Sensitized Sera Toward Wheat, Rice, Corn, and Amaranth Flour Proteins Treated With Microbial Transglutaminase. Front. Microbiol. 2019, 10, 470. [Google Scholar] [CrossRef]
- Dai, Y.X.; Tyl, C. A review on mechanistic aspects of individual versus combined uses of enzymes as clean label-friendly dough conditioners in breads. J. Food Sci. 2021, 86, 1583–1598. [Google Scholar] [CrossRef] [PubMed]
- McCleary, B.V.; McNally, M.; Monaghan, D.; Mugford, D.C.; Black, C.; Broadbent, R.; Chin, M.; Cormack, M.; Fox, R.; Gaines, C.; et al. Measurement of α-amylase activity in white wheat flour, milled malt, and microbial enzyme preparations, using the ceralpha assay: Collaborative study. J. Aoac. Int. 2002, 85, 1096–1102. [Google Scholar] [CrossRef]
- Aljabi, H.R.; Pawelzik, E. Impact of Cultivar and Growing Conditions on Alpha-Amylase Properties in Wheat. Starch-Stärke 2021, 73, 2000032. [Google Scholar] [CrossRef]
- Xie, X.J.; Cui, S.W.; Li, W.; Tsao, R. Isolation and characterization of wheat bran starch. Food Res. Int. 2008, 41, 882–887. [Google Scholar] [CrossRef]
- Li, C.; Gong, B.; Hu, Y.M.; Liu, X.X.; Guan, X.; Zhang, B.J. Combined crystalline, lamellar and granular structural insights into in vitro digestion rate of native starches. Food Hydrocoll. 2020, 105, 105823. [Google Scholar] [CrossRef]
- Giuberti, G.; Gallo, A. Reducing the glycaemic index and increasing the slowly digestible starch content in gluten-free cereal-based foods: A review. Int. J. Food Sci. Technol. 2018, 53, 50–60. [Google Scholar] [CrossRef]
- He, T.; Zhang, X.; Zhao, L.; Zou, J.C.; Qiu, R.K.; Liu, X.W.; Hu, Z.Y.; Wang, K. Insoluble dietary fiber from wheat bran retards starch digestion by reducing the activity of alpha-amylase. Food Chem. 2023, 426, 136624. [Google Scholar] [CrossRef]
- Khalid, K.H.; Ohm, J.B.; Simsek, S. Whole wheat bread: Effect of bran fractions on dough and end-product quality. J. Cereal Sci. 2017, 78, 48–56. [Google Scholar] [CrossRef]
- AOAC. xiOfficial Methods of Analysis. In Official Methods of Analysis of AOAC INTERNATIONAL, 22nd ed.; Latimer, G.W., Jr., Latimer, G.W., Jr., Eds.; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- ISO 12966-1:2015-01; Vegetable and Animal Oils and Fats—Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guide to Modern Gas Chromatography of Fatty Acid Methyl Esters. ISO: Geneva, Switzerland, 2006.
- ISO 12966-2:2011; Animal and Vegetable Fats and Oils–Analysis by Gas Chromatography of Methyl Esters–Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO 12966-4:2015; Animal and Vegetable Fats and Oils. Gas. Chromatography of Fatty Acid Methyl Esters. Part. 4: Determination by Capillary Gas Chromatography. ISO: Geneva, Switzerland, 2015.
- Mattila, P.; Kumpulainen, J. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J. Agric. Food Chem. 2002, 50, 3660–3667. [Google Scholar] [CrossRef] [PubMed]
- Antognoni, F.; Potente, G.; Biondi, S.; Mandrioli, R.; Marincich, L.; Ruiz, K.B. Free and Conjugated Phenolic Profiles and Antioxidant Activity in Quinoa Seeds and Their Relationship with Genotype and Environment. Plants 2021, 10, 1046. [Google Scholar] [CrossRef]
- Loit, E.; Melnyk, C.W.; MacFarlane, A.J.; Scott, F.W.; Altosaar, I. Identification of three wheat globulin genes by screening a Triticum aestivum BAC genomic library with cDNA from a diabetes-associated globulin. BMC Plant Biol. 2009, 9, 93. [Google Scholar] [CrossRef] [PubMed]
- Paris, R.; Pagliarani, G.; Savazzini, F.; Aloisi, I.; Iorio, R.A.; Tartarini, S.; Ricci, G.; Del Duca, S. Comparative analysis of allergen genes and pro-inflammatory factors in pollen and fruit of apple varieties. Plant Sci. 2017, 264, 57–68. [Google Scholar] [CrossRef]
- RStudio Team. Integrated Development for R; RStudio Inc.: Boston, MA, USA, 2020; Volume 42, p. 14. [Google Scholar]
- Kabera, J.N.; Semana, E.; Mussa, A.R.; He, X. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol. 2014, 2, 377–392. [Google Scholar]
- Anil, M. Effects of Wheat Bran, Corn Bran, Rice Bran and Oat Bran Supplementation on the Properties of Pide. J. Food Process. Preserv. 2012, 36, 276–283. [Google Scholar] [CrossRef]
- Chen, J.S.; Fei, M.J.; Shi, C.L.; Tian, J.C.; Sun, C.L.; Zhang, H.; Ma, Z.; Dong, H.X. Effect of particle size and addition level of wheat bran on quality of dry white Chinese noodles. J. Cereal Sci. 2011, 53, 217–224. [Google Scholar] [CrossRef]
- Haque, M.A.; Shams-Ud-Din, M.; Haque, A. The effect of aqueous extracted wheat bran on the baking quality of biscuit. Int. J. Food Sci. Technol. 2002, 37, 453–462. [Google Scholar] [CrossRef]
- Sudha, M.L.; Vetrimani, R.; Leelavathi, K. Influence of fibre from different cereals on the rheological characteristics of wheat flour dough and on biscuit quality. Food Chem. 2007, 100, 1365–1370. [Google Scholar] [CrossRef]
- Wójtowicz, A.; Moscicki, L. Effect of wheat bran addition and screw speed on microstructure and textural characteristics of common wheat precooked pasta-like products. Pol. J. Food Nutr. Sci. 2011, 61, 101–107. [Google Scholar] [CrossRef]
- Guerrini, A.; Burlini, I.; Lorenzo, B.H.; Grandini, A.; Vertuani, S.; Tacchini, M.; Sacchetti, G. Antioxidant and antimicrobial extracts obtained from agricultural by-products: Strategies for a sustainable recovery and future perspectives. Food Bioprod. Process. 2020, 124, 397–407. [Google Scholar] [CrossRef]
- Bautista-Expósito, S.; Tomé-Sanchez, I.; Martín-Diana, A.B.; Frias, J.; Peñas, E.; Rico, D.; Casas, M.J.G.; Martínez-Villaluenga, C. Enzyme Selection and Hydrolysis under Optimal Conditions Improved Phenolic Acid Solubility, and Antioxidant and Anti-Inflammatory Activities of Wheat Bran. Antioxidants 2020, 9, 984. [Google Scholar] [CrossRef]
- Ferri, M.; Happel, A.; Zanaroli, G.; Bertolini, M.; Chiesa, S.; Commisso, M.; Guzzo, F.; Tassoni, A. Advances in combined enzymatic extraction of ferulic acid from wheat bran. New Biotechnol. 2020, 56, 38–45. [Google Scholar] [CrossRef]
Sample Code | Commercial Cultivar or Mixture | Commercial Cultivar/Mixture Composition | Origin |
---|---|---|---|
C1 | Axioma | Axioma | Germany |
C2 | Capo Austriaco | Capo Austriaco | Austria |
C3 | Rumeno | Rumeno | Romania |
C4 | Soisson | Soisson | Italy |
C5 | Manitoba | Manitoba | Canada |
M1 | Misto Rosso Baby Food | Adelante, Africa, Agadir, Akaman, Alcione, Andalusia, Amarok, Aubusson, Bandera, Bilancia, Califasur, Centauro, Guadalupe, Hyxo, Mirroir, Mogal, Moisson, Palesio, PR 22, Soisson, Solehio, Sorial, Zanzibar, Nogall, Ilaria, Basmati | Italy |
M2 | Misto Ungherese | Several commercial mixtures, with a prevalence of Euclide | Hungary |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suanno, C.; Marincich, L.; Corneti, S.; Aloisi, I.; Pincigher, L.; Papi, E.; Parrotta, L.; Antognoni, F.; Del Duca, S. Biochemical Analysis of Wheat Milling By-Products for Their Valorization as Potential Food Ingredients. Int. J. Mol. Sci. 2025, 26, 5830. https://doi.org/10.3390/ijms26125830
Suanno C, Marincich L, Corneti S, Aloisi I, Pincigher L, Papi E, Parrotta L, Antognoni F, Del Duca S. Biochemical Analysis of Wheat Milling By-Products for Their Valorization as Potential Food Ingredients. International Journal of Molecular Sciences. 2025; 26(12):5830. https://doi.org/10.3390/ijms26125830
Chicago/Turabian StyleSuanno, Chiara, Lorenzo Marincich, Simona Corneti, Iris Aloisi, Luca Pincigher, Elisa Papi, Luigi Parrotta, Fabiana Antognoni, and Stefano Del Duca. 2025. "Biochemical Analysis of Wheat Milling By-Products for Their Valorization as Potential Food Ingredients" International Journal of Molecular Sciences 26, no. 12: 5830. https://doi.org/10.3390/ijms26125830
APA StyleSuanno, C., Marincich, L., Corneti, S., Aloisi, I., Pincigher, L., Papi, E., Parrotta, L., Antognoni, F., & Del Duca, S. (2025). Biochemical Analysis of Wheat Milling By-Products for Their Valorization as Potential Food Ingredients. International Journal of Molecular Sciences, 26(12), 5830. https://doi.org/10.3390/ijms26125830