Acetyl Hexapeptide-8 in Cosmeceuticals—A Review of Skin Permeability and Efficacy
Abstract
1. Introduction
2. Overview of Biomimetic Peptides in Cosmeceuticals
2.1. Biomimetic Peptides’ Properties
Botox-like Peptide | Mechanism of Action |
---|---|
Argireline® (Lipotec LTD, Barcelona, Spain), Acetyl Hexapeptide-8 (AH-8), or Acetyl Hexapeptide-3 | A synthetic peptide developed as a topical mimic of botulinum toxin [16]. It inhibits neurotransmitter release by disrupting the formation and stabilization of the SNARE complex, which is essential for the docking of acetylcholine-releasing vesicles. Modeled after the N-terminus of the SNAP-25 protein, acetyl hexapeptide-8 competes with SNAP-25 for binding to vesicle-associated membrane protein (VAMP). This destabilizes the formation of the three-component soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, thereby inhibiting neuronal exocytosis. The lack of acetylcholine release during exocytosis prevents muscle contractions, which blocks the formation of expression wrinkles. Consequently, acetyl hexapeptide-8 inhibits acetylcholine release and reduces facial muscle contractions, effectively decreasing the appearance of expression lines [14,17,18]. |
Syn-Ake (Pentapharm, Basel, Switzerland) diacetyl tripeptide-3 or dipeptide diamino butyroyl benzylamide diacetate | A peptide fragment modeled after Waglerin-1, a protein derived from the venom of Wagler’s pit viper (Tropidolaemus wagleri). It mimics the action of Waglerin-1, which has been shown to block nicotinic acetylcholine receptors at the neuromuscular junction. By inhibiting these receptors, Syn-Ake effectively reduces muscle movements, such as facial expressions, which are responsible for dynamic wrinkles [9]. |
Leuphasyl (Lipotec S.A., Barcelona, Spain), Pentapeptide-18 | Designed to modulate calcium channels by mimicking the action of enkephalins. It blocks the calcium channels in neurons in a similar manner to enkephalins, thereby inhibiting the release of acetylcholine. This mechanism disrupts neuromuscular transmission, which helps reduce muscle contractions and, consequently, minimizes the formation of expression lines and wrinkles [17]. |
Vialox® (Cellular Skin, Rx, Sacramento, CA, USA), Pentapeptyd-3, | Designed to act similarly to tubocurarine, the primary active compound in curare. This peptide functions as a competitive antagonist at the postsynaptic acetylcholine receptor. By inhibiting the binding of acetylcholine to its receptor, Vialox prevents muscle contraction, which helps reduce the formation of wrinkles and fine lines [16]. |
2.2. Mechanism of Action of Botox-like Peptides, Using Acetylhexapeptide-8 as an Example
- Do acetylhexapeptide-8 molecules have the ability to penetrate the skin and reach the muscles, their intended target?
- Does the concentration achieved in the muscle result in the inhibition of acetylcholine release?
- Will the substance, when applied to the skin, produce an anti-wrinkle effects through the inhibition of muscle contractions?
- Could the anti-wrinkle effects be induced through a different mechanism within the skin?
2.3. Permeation of Acetyl Hexapeptide-8—In Vitro Studies
3. Effect of Acetyl Hexapeptide-8 on the Skin
3.1. Skin as a Delivery Barrier
3.2. Effectiveness of Acetyl Hexapeptide-8 in Wrinkle Reduction
3.3. Effect of Acetyl Hexapeptide-8 on the Appearance of Scars
3.4. Application of Acetyl Hexapeptide-8 in Acne Vulgaris Therapy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kohl, E.; Steinbauer, J.; Landthaler, M.; Szeimies, R.M. Skin Ageing. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Ramos-e-Silva, M.; Celem, L.R.; Ramos-e-Silva, S.; Fucci-da-Costa, A.P. Anti-Aging Cosmetics: Facts and Controversies. Clin. Dermatol. 2013, 31, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kim, Y.K.; Seo, J.Y.; Choi, C.W.; Hwang, J.S.; Lee, B.G.; Chang, I.S.; Chung, J.H. Loss of Elastic Fibers Causes Skin Wrinkles in Sun-Damaged Human Skin. J. Dermatol. Sci. 2008, 50, 99–107. [Google Scholar] [CrossRef]
- Gorzelanny, C.; Mess, C.; Schneider, S.W.; Huck, V.; Brandner, J.M. Skin Barriers in Dermal Drug Delivery: Which Barriers Have to Be Overcome and How Can We Measure Them? Pharmaceutics 2020, 12, 684. [Google Scholar] [CrossRef]
- Tsakovska, I.; Pajeva, I.; Al Sharif, M.; Alov, P.; Fioravanzo, E.; Kovarich, S.; Worth, A.P.; Richarz, A.-N.; Yang, C.; Mostrag-Szlichtyng, A.; et al. Quantitative Structure-Skin Permeability Relationships. Toxicology 2017, 387, 27–42. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, Z.; Liu, W.; Wu, X.; He, H.; Lu, Y.; Wu, W.; Qi, J. Novel Pharmaceutical Strategies for Enhancing Skin Penetration of Biomacromolecules. Pharmaceuticals 2022, 15, 877. [Google Scholar] [CrossRef]
- Kang, L.; Han, T.; Cong, H.; Yu, B.; Shen, Y. Recent Research Progress of Biologically Active Peptides. BioFactors 2022, 48, 575–596. [Google Scholar] [CrossRef]
- Mine, Y.; Munir, H.; Nakanishi, Y.; Sugiyama, D. Biomimetic Peptides for the Treatment of Cancer. Anticancer Res. 2016, 36, 3565–3570. [Google Scholar] [PubMed]
- Zhang, L.; Falla, T.J. Cosmeceuticals and Peptides. Clin. Dermatol. 2009, 27, 485–494. [Google Scholar] [CrossRef]
- Pai, V.V.; Bhandari, P.; Shukla, P. Topical Peptides as Cosmeceuticals. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 9–18. [Google Scholar] [CrossRef]
- Sommer, E.; Neubert, R.H.H.; Mentel, M.; Tuchscherer, B.; Mrestani, Y.; Wohlrab, J. Dermal Peptide Delivery Using Enhancer Molecules and Colloidal Carrier Systems. Part III: Tetrapeptide GEKG. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2018, 124, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.W. Botulinum Toxins. Introduction. Semin. Cutan. Med. Surg. 2001, 20, 69–70. [Google Scholar] [CrossRef] [PubMed]
- Wongrattanakamon, P.; Nimmanpipug, P.; Sirithunyalug, B.; Jiranusornkul, S. Molecular Modeling Elucidates the Cellular Mechanism of Synaptotagmin-SNARE Inhibition: A Novel Plausible Route to Anti-Wrinkle Activity of Botox-like Cosmetic Active Molecules. Mol. Cell. Biochem. 2018, 442, 97–109. [Google Scholar] [CrossRef]
- Fields, K.; Falla, T.J.; Rodan, K.; Bush, L. Bioactive Peptides: Signaling the Future. J. Cosmet. Dermatol. 2009, 8, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Olsson, S.E.; Sreepad, B.; Lee, T.; Fasih, M.; Fijany, A. Public Interest in Acetyl Hexapeptide-8: Longitudinal Analysis. JMIR Dermatol. 2024, 7, e54217. [Google Scholar] [CrossRef]
- Lupo, M.P.; Cole, A.L. Cosmeceutical Peptides. Dermatol. Ther. 2007, 20, 343–349. [Google Scholar] [CrossRef]
- Husein El Hadmed, H.; Castillo, R.F. Cosmeceuticals: Peptides, Proteins, and Growth Factors. J. Cosmet. Dermatol. 2016, 15, 514–519. [Google Scholar] [CrossRef]
- Fu, F.N.; Lomneth, R.B.; Cai, S.; Singh, B.R. Role of Zinc in the Structure and Toxic Activity of Botulinum Neurotoxin. Biochemistry 1998, 37, 5267–5278. [Google Scholar] [CrossRef]
- Chen, C.-F.; Liu, J.; Wang, S.-S.; Yao, Y.-F.; Yu, B.; Hu, X.-P. Mycobacterium Abscessus Infection after Facial Injection of Argireline: A Case Report. World J. Clin. Cases 2021, 9, 1996–2000. [Google Scholar] [CrossRef]
- Fang, R.; Sun, Q. Mycobacterium Abscessus Infections Following Injection of Botulinum Toxin. J. Cosmet. Dermatol. 2020, 19, 817–819. [Google Scholar] [CrossRef]
- United States Food and Drug Administration (FDA). Federal Food, Drug, and Cosmetic Act (FD&C Act), Section 201. 1938. Available online: https://www.fda.gov/regulatory-information/laws-enforced-fda/federal-food-drug-and-cosmetic-act-fdc-act (accessed on 14 April 2025).
- Hwang, W.; Kim, D.; Kwon, O.S.; Kim, Y.-S.; Ahn, B.; Kang, N.-G. Topical Application of Zanthoxylum Piperitum Extract Improves Lateral Canthal Rhytides by Inhibiting Muscle Contractions. Sci. Rep. 2020, 10, 21514. [Google Scholar] [CrossRef] [PubMed]
- Blanes-Mira, C.; Clemente, J.; Jodas, G.; Gil, A.; Fernández-Ballester, G.; Ponsati, B.; Gutierrez, L.; Pérez-Payá, E.; Ferrer-Montiel, A. A Synthetic Hexapeptide (Argireline) with Antiwrinkle Activity. Int. J. Cosmet. Sci. 2002, 24, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Kraeling, M.E.K.; Zhou, W.; Wang, P.; Ogunsola, O.A. In Vitro Skin Penetration of Acetyl Hexapeptide-8 from a Cosmetic Formulation. Cutan. Ocul. Toxicol. 2015, 34, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Hoppel, M.; Reznicek, G.; Kählig, H.; Kotisch, H.; Resch, G.P.; Valenta, C. Topical Delivery of Acetyl Hexapeptide-8 from Different Emulsions: Influence of Emulsion Composition and Internal Structure. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2015, 68, 27–35. [Google Scholar] [CrossRef]
- Kalluri, H.; Banga, A.K. Transdermal Delivery of Proteins. AAPS PharmSciTech 2011, 12, 431–441. [Google Scholar] [CrossRef]
- Ruiz, M.A.; Clares, B.; Morales, M.E.; Cazalla, S.; Gallardo, V. Preparation and Stability of Cosmetic Formulations with an Anti-Aging Peptide. J. Cosmet. Sci. 2007, 58, 157–171. [Google Scholar] [CrossRef]
- Hoppel, M.; Juric, S.; Reznicek, G.; Wirth, M.; Valenta, C. Multiple W/O/W Emulsions as Dermal Peptide Delivery Systems. J. Drug Deliv. Sci. Technol. 2015, 25, 16–22. [Google Scholar] [CrossRef]
- Zhang, S.; Qiu, Y.; Gao, Y. Enhanced Delivery of Hydrophilic Peptides in Vitro by Transdermal Microneedle Pretreatment. Acta Pharm. Sin. B 2014, 4, 100–104. [Google Scholar] [CrossRef]
- Zduńska, K.; Kołodziejczak, A.; Rotsztejn, H. Is Skin Microneedling a Good Alternative Method of Various Skin Defects Removal. Dermatol. Ther. 2018, 31, e12714. [Google Scholar] [CrossRef]
- Zasada, M.; Markiewicz, A.; Drożdż, Z.; Mosińska, P.; Erkiert-Polguj, A.; Budzisz, E. Preliminary Randomized Controlled Trial of Antiaging Effects of L-Ascorbic Acid Applied in Combination with No-Needle and Microneedle Mesotherapy. J. Cosmet. Dermatol. 2019, 18, 843–849. [Google Scholar] [CrossRef]
- Gorouhi, F.; Maibach, H.I. Role of Topical Peptides in Preventing or Treating Aged Skin. Int. J. Cosmet. Sci. 2009, 31, 327–345. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Xiao, X.S.; Pan, P.; Li, P.; Huo, J. The Anti Wrinkle Efficacy of Synthetic Hexapeptide (Argireline) in Chinese Subjects. J. Cosmet. Laser Ther. Off. Publ. Eur. Soc. Laser Dermatol. 2013, 14, 147–153. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Xiao, X.S.; Huo, J.; Zhang, W.D. The Anti-Wrinkle Efficacy of Argireline. J. Cosmet. Laser Ther. Off. Publ. Eur. Soc. Laser Dermatol. 2013, 15, 237–241. [Google Scholar] [CrossRef]
- Tadini, K.A.; Mercurio, D.G.; Campos, P.M.B.G.M. Acetyl Hexapeptide-3 in a Cosmetic Formulation Acts on Skin Mechanical Properties—Clinical Study. Braz. J. Pharm. Sci. 2015, 51, 901–909. [Google Scholar] [CrossRef]
- Raikou, V.; Varvaresou, A.; Panderi, I.; Papageorgiou, E. The Efficacy Study of the Combination of Tripeptide-10-Citrulline and Acetyl Hexapeptide-3. A Prospective, Randomized Controlled Study. J. Cosmet. Dermatol. 2017, 16, 271–278. [Google Scholar] [CrossRef]
- Fernández-Guarino, M.; Bacci, S.; Pérez González, L.A.; Bermejo-Martínez, M.; Cecilia-Matilla, A.; Hernández-Bule, M.L. The Role of Physical Therapies in Wound Healing and Assisted Scarring. Int. J. Mol. Sci. 2023, 24, 7487. [Google Scholar] [CrossRef] [PubMed]
- Olsson, M.; Enskär, K.; Steineck, G.; Wilderäng, U.; Jarfelt, M. Self-Perceived Physical Attractiveness in Relation to Scars Among Adolescent and Young Adult Cancer Survivors: A Population-Based Study. J. Adolesc. Young Adult Oncol. 2018, 7, 358–366. [Google Scholar] [CrossRef]
- Ghazawi, F.M.; Zargham, R.; Gilardino, M.S.; Sasseville, D.; Jafarian, F. Insights into the Pathophysiology of Hypertrophic Scars and Keloids: How Do They Differ? Adv. Ski. Wound Care 2018, 31, 582–595. [Google Scholar] [CrossRef]
- Fang, Q.-Q.; Chen, C.-Y.; Zhang, M.-X.; Huang, C.-L.; Wang, X.-W.; Xu, J.-H.; Wu, L.-H.; Zhang, L.-Y.; Tan, W.-Q. The Effectiveness of Topical Anti-Scarring Agents and a Novel Combined Process on Cutaneous Scar Management. Curr. Pharm. Des. 2017, 23, 2268–2275. [Google Scholar] [CrossRef]
- Eilers, R.E.J.; Ross, E.V.; Cohen, J.L.; Ortiz, A.E. A Combination Approach to Surgical Scars. Dermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. 2016, 42 (Suppl. S2), S150–S156. [Google Scholar] [CrossRef]
- Gauglitz, G.G.; Korting, H.C.; Pavicic, T.; Ruzicka, T.; Jeschke, M.G. Hypertrophic Scarring and Keloids: Pathomechanisms and Current and Emerging Treatment Strategies. Mol. Med. 2011, 17, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Mustoe, T.A.; Cooter, R.D.; Gold, M.H.; Hobbs, F.D.R.; Ramelet, A.-A.; Shakespeare, P.G.; Stella, M.; Téot, L.; Wood, F.M.; Ziegler, U.E. International Clinical Recommendations on Scar Management. Plast. Reconstr. Surg. 2002, 110, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Chambers, A. Treatment of Immature Scars with Botulinum Toxin. In Textbook on Scar Management: State of the Art Management and Emerging Technologies; Téot, L., Mustoe, T.A., Middelkoop, E., Gauglitz, G.G., Eds.; Springer: Cham, Switzerland, 2020; pp. 219–226. ISBN 978-3-030-44765-6. [Google Scholar]
- Palmieri, B.; Noviello, A.; Corazzari, V.; Garelli, A.; Vadala, M. Skin Scars and Wrinkles Temporary Camouflage in Dermatology and Oncoesthetics: Focus on Acetyl Hexapeptide-8. La Clin. Ter. 2020, 171, e539–e548. [Google Scholar] [CrossRef]
Group of Peptides | Mechanism of Action | Substances |
---|---|---|
Signal peptides | Bind to cell receptors to stimulate fibroblast division | Palmitoyl oligopeptide, palmitoyl pentapeptide-3 |
Enzyme-inhibiting peptides | Inhibit enzymatic activity, e.g., MMPs | Dipeptide-2, tripeptide-2 |
Transport peptides | Transport substances essential for skin metabolic processes | Copper tripeptide-1 |
Neurotransmitter inhibitors | Inhibit neurotransmitter transmission at synapses, relaxing muscles | Acetyl hexapeptide-8, pentapeptide-18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdrada-Nowak, J.; Surgiel-Gemza, A.; Szatkowska, M. Acetyl Hexapeptide-8 in Cosmeceuticals—A Review of Skin Permeability and Efficacy. Int. J. Mol. Sci. 2025, 26, 5722. https://doi.org/10.3390/ijms26125722
Zdrada-Nowak J, Surgiel-Gemza A, Szatkowska M. Acetyl Hexapeptide-8 in Cosmeceuticals—A Review of Skin Permeability and Efficacy. International Journal of Molecular Sciences. 2025; 26(12):5722. https://doi.org/10.3390/ijms26125722
Chicago/Turabian StyleZdrada-Nowak, Julita, Agnieszka Surgiel-Gemza, and Magdalena Szatkowska. 2025. "Acetyl Hexapeptide-8 in Cosmeceuticals—A Review of Skin Permeability and Efficacy" International Journal of Molecular Sciences 26, no. 12: 5722. https://doi.org/10.3390/ijms26125722
APA StyleZdrada-Nowak, J., Surgiel-Gemza, A., & Szatkowska, M. (2025). Acetyl Hexapeptide-8 in Cosmeceuticals—A Review of Skin Permeability and Efficacy. International Journal of Molecular Sciences, 26(12), 5722. https://doi.org/10.3390/ijms26125722