Fascial Pathophysiology in Hypermobility Spectrum Disorders and Hypermobile Ehlers–Danlos Syndrome: A Review of Emerging Evidence
Abstract
1. Introduction
1.1. Nosology of Hypermobility Disorders
1.2. Rationale for a Fascia-Centered, Molecular-Level Review
1.3. Aim and Scope of the Review
- Provide an overview of the clinical and molecular features of EDS and HSD, with particular focus on hEDS.
- Examine the role of fascia—particularly fibroblast dysregulation and ECM remodeling—in the pathogenesis of hypermobility syndromes.
- Explore converging molecular mechanisms, including abnormal myofibroblast persistence, matrix degradation, and low-grade inflammation, as drivers of systemic dysfunction.
- Highlight anatomical and clinical consequences of these molecular changes, and explore shared fascial features with related connective tissue disorders such as Dercum disease and lipedema.
- Identify current gaps in the literature and propose directions for future research, diagnostic refinement, and targeted therapeutic strategies.
2. Clinical and Molecular Landscape of HSD/hEDS
2.1. Diagnostic Criteria
2.2. Pathological Myofibroblast Transition in hEDS and HSD
2.3. ECM Remodeling and Dysregulation in hEDS and HSD
2.4. Immune–Fibroblast Crosstalk and Immune Dysregulation in hEDS and HSD
2.5. Molecular Triggers of Myofibroblast Differentiation: The Role of TGF-β, Autonomic Dysfunction, and Inflammation
3. Fascia Dysfunction: From Superficial Layers to Tendons
3.1. Structural Changes in Deep Fascia in hEDS and HSD
3.2. Superficial Fascia Involvement
3.3. Structural and Functional Changes in Tendons
4. Fascial Changes in hEDS/HSD Compared to Mimicking Conditions
4.1. Other Hereditary Connective Tissue Disorders
4.2. Autoimmune Conditions
4.3. Fibromylagia
5. Implications of Disease Progression, Aging, and the Fascial System in hEDS/HSD
6. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
hEDS | Hypermobile Ehlers–Danlos Syndrome |
EDS | Ehlers–Danlos Syndrome |
HSD | Hypermobility spectrum disorder |
ECM | Extracellular matrix |
References
- Malfait, F.; Francomano, C.; Byers, P.; Belmont, J.; Berglund, B.; Black, J.; Bloom, L.; Bowen, J.M.; Brady, A.F.; Burrows, N.P.; et al. The 2017 International Classification of the Ehlers-Danlos Syndromes. Am. J. Med. Genet. C Semin. Med. Genet. 2017, 175, 8–26. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Lenert, P. Joint Hypermobility Syndrome: Recognizing a Commonly Overlooked Cause of Chronic Pain. Am. J. Med. 2017, 130, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Serrano-Ardila, A.M. Comorbidities in Ehlers-Danlos Syndromes and Hypermobile Spectrum Disorders. Acta Ortopédica Mex. 2025. [Google Scholar]
- Kozyra, M.; Kostyun, R.; Strecker, S. The Prevalence of Multisystem Diagnoses among Young Patients with Hypermobile Ehlers–Danlos Syndrome and Hypermobility Spectrum Disorder: A Retrospective Analysis Using a Large Healthcare Claims Database. Medicine 2024, 103, e39212. [Google Scholar] [CrossRef]
- Kapferer-Seebacher, I.; Pepin, M.; Werner, R.; Aitman, T.J.; Nordgren, A.; Stoiber, H.; Thielens, N.; Gaboriaud, C.; Amberger, A.; Schossig, A.; et al. Periodontal Ehlers-Danlos Syndrome Is Caused by Mutations in C1R and C1S, Which Encode Subcomponents C1r and C1s of Complement. Am. J. Hum. Genet. 2016, 99, 1005–1014. [Google Scholar] [CrossRef]
- Hakim, A.J.; Tinkle, B.T.; Francomano, C.A. Ehlers-Danlos Syndromes, Hypermobility Spectrum Disorders, and Associated Co-morbidities: Reports from EDS ECHO. Am. J. Med. Genet. C Semin. Med. Genet. 2021, 187, 413–415. [Google Scholar] [CrossRef]
- Zoppi, N.; Chiarelli, N.; Binetti, S.; Ritelli, M.; Colombi, M. Dermal Fibroblast-to-Myofibroblast Transition Sustained by Avß3 Integrin-ILK-Snail1/Slug Signaling Is a Common Feature for Hypermobile Ehlers-Danlos Syndrome and Hypermobility Spectrum Disorders. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2018, 1864, 1010–1023. [Google Scholar] [CrossRef]
- Klingler, W.; Velders, M.; Hoppe, K.; Pedro, M.; Schleip, R. Clinical Relevance of Fascial Tissue and Dysfunctions. Curr. Pain Headache Rep. 2014, 18, 439. [Google Scholar] [CrossRef]
- Stecco, C.; Pratt, R.; Nemetz, L.D.; Schleip, R.; Stecco, A.; Theise, N.D. Towards a Comprehensive Definition of the Human Fascial System. J. Anat. 2025, 246, 1084–1098. [Google Scholar] [CrossRef]
- Aday, A.W.; Donahue, P.M.; Garza, M.; Crain, V.N.; Patel, N.J.; Beasley, J.A.; Herbst, K.L.; Beckman, J.A.; Taylor, S.L.; Pridmore, M.; et al. National Survey of Patient Symptoms and Therapies among 707 Women with a Lipedema Phenotype in the United States. Vasc. Med. 2023, 29, 36–41. [Google Scholar] [CrossRef]
- Beltran, K.; Herbst, K.L. Differentiating Lipedema and Dercum’s Disease. Int. J. Obes. 2017, 41, 240–245. [Google Scholar] [CrossRef]
- Torre, Y.S.-D.L.; Wadeea, R.; Rosas, V.; Herbst, K.L. Lipedema: Friend and Foe. Horm. Mol. Biol. Clin. Investig. 2018, 33, 20170076. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jahani, S.; Morel-Swols, D.; Kapely, A.; Rosen, A.; Forghani, I. Patient Experiences of Receiving a Diagnosis of Hypermobile Ehlers–Danlos Syndrome. Am. J. Med. Genet. A 2024, 194, e63613. [Google Scholar] [CrossRef]
- Atwell, K.; Michael, W.; Dubey, J.; James, S.; Martonffy, A.; Anderson, S.; Rudin, N.; Schrager, S. Diagnosis and Management of Hypermobility Spectrum Disorders in Primary Care. J. Am. Board Fam. Med. 2021, 34, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, K.R.; Gui, J.; Dinulos, M.B.P.; Chou, R.C. Ehlers-Danlos Syndrome Hypermobility Type Is Associated with Rheumatic Diseases. Sci. Rep. 2017, 7, 39636. [Google Scholar] [CrossRef] [PubMed]
- Matschke, V.; Jones, J.G.; Lemmey, A.B.; Maddison, P.J.; Thom, J.M. Patellar Tendon Properties and Lower Limb Function in Rheumatoid Arthritis and Ankylosing Spondylitis versus Healthy Controls: A Cross-Sectional Study. Sci. World J. 2013, 2013, 514743. [Google Scholar] [CrossRef]
- Spadaro, A.; Iagnocco, A.; Perrotta, F.M.; Modesti, M.; Scarno, A.; Valesini, G. Clinical and Ultrasonography Assessment of Peripheral Enthesitis in Ankylosing Spondylitis. Rheumatology 2011, 50, 2080–2086. [Google Scholar] [CrossRef]
- Chiarelli, N.; Carini, G.; Zoppi, N.; Dordoni, C.; Ritelli, M.; Venturini, M.; Castori, M.; Colombi, M. Transcriptome-Wide Expression Profiling in Skin Fibroblasts of Patients with Joint Hypermobility Syndrome/Ehlers-Danlos Syndrome Hypermobility Type. PLoS ONE 2016, 11, e0161347. [Google Scholar] [CrossRef]
- Zoppi, N.; Chiarelli, N.; Ritelli, M.; Colombi, M. Multifaced Roles of the Avβ3 Integrin in Ehlers–Danlos and Arterial Tortuosity Syndromes’ Dermal Fibroblasts. Int. J. Mol. Sci. 2018, 19, 982. [Google Scholar] [CrossRef]
- Langevin, H.M.; Fujita, T.; Bouffard, N.A.; Takano, T.; Koptiuch, C.; Badger, G.J.; Nedergaard, M. Fibroblast Cytoskeletal Remodeling Induced by Tissue Stretch Involves ATP Signaling. J. Cell. Physiol. 2013, 228, 1922–1926. [Google Scholar] [CrossRef]
- D’Urso, M.; Kurniawan, N.A. Mechanical and Physical Regulation of Fibroblast–Myofibroblast Transition: From Cellular Mechanoresponse to Tissue Pathology. Front. Bioeng. Biotechnol. 2020, 8, 609653. [Google Scholar] [CrossRef] [PubMed]
- Phan, Q.M.; Sinha, S.; Biernaskie, J.; Driskell, R.R. Single-cell Transcriptomic Analysis of Small and Large Wounds Reveals the Distinct Spatial Organization of Regenerative Fibroblasts. Exp. Dermatol. 2021, 30, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.; He, W.; Mu, X.; Wu, X.; Deng, J.; Nie, X. Fibroblasts: Immunomodulatory Factors in Refractory Diabetic Wound Healing. Front. Immunol. 2022, 13, 918223. [Google Scholar] [CrossRef]
- Van Linthout, S.; Miteva, K.; Tschope, C. Crosstalk between Fibroblasts and Inflammatory Cells. Cardiovasc. Res. 2014, 102, 258–269. [Google Scholar] [CrossRef]
- Shook, B.; Xiao, E.; Kumamoto, Y.; Iwasaki, A.; Horsley, V. CD301b+ Macrophages Are Essential for Effective Skin Wound Healing. J. Investig. Dermatol. 2016, 136, 1885–1891. [Google Scholar] [CrossRef]
- Bombardieri, M.; Kam, N.-W.; Brentano, F.; Choi, K.; Filer, A.; Kyburz, D.; McInnes, I.B.; Gay, S.; Buckley, C.; Pitzalis, C. A BAFF/APRIL-Dependent TLR3-Stimulated Pathway Enhances the Capacity of Rheumatoid Synovial Fibroblasts to Induce AID Expression and Ig Class-Switching in B Cells. Ann. Rheum. Dis. 2011, 70, 1857–1865. [Google Scholar] [CrossRef]
- Wetterslev, M.; Kristensen, J.H.; Rønnebech, J.; Bertelsen, T.; Laursen, H.; Schleip, R.; Remvig, L. Presence of Myofibroblasts in Fascia from Patients with Ehlers-Danlos Syndrome, Benign Joint Hypermobility Syndrome, Generalized Joint Hypermobility and Healthy Controls. In Proceedings of the 1st EDS International Symposium, Gent, Belgium, 8–11 September 2012. [Google Scholar]
- Darby, I.A.; Zakuan, N.; Billet, F.; Desmoulière, A. The Myofibroblast, a Key Cell in Normal and Pathological Tissue Repair. Cell. Mol. Life Sci. 2016, 73, 1145–1157. [Google Scholar] [CrossRef]
- Monaco, A.; Choi, D.; Uzun, S.; Maitland, A.; Riley, B. Association of Mast-Cell-Related Conditions with Hypermobile Syndromes: A Review of the Literature. Immunol. Res. 2022, 70, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Veschgini, M.; Suzuki, R.; Kling, S.; Petersen, H.O.; Bergheim, B.G.; Abuillan, W.; Linke, P.; Kaufmann, S.; Burghammer, M.; Engel, U.; et al. Wnt/β-Catenin Signaling Induces Axial Elasticity Patterns of Hydra Extracellular Matrix. iScience 2023, 26, 106416. [Google Scholar] [CrossRef]
- Pratt, R.L. Hyaluronan and the Fascial Frontier. Int. J. Mol. Sci. 2021, 22, 6845. [Google Scholar] [CrossRef]
- Tellman, T.V.; Dede, M.; Aggarwal, V.A.; Salmon, D.; Naba, A.; Farach-Carson, M.C. Systematic Analysis of Actively Transcribed Core Matrisome Genes Across Tissues and Cell Phenotypes. Matrix Biol. 2022, 111, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular Matrix Structure. Adv. Drug Deliv. Rev. 2016, 97, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Karamanos, N.K.; Theocharis, A.D.; Piperigkou, Z.; Manou, D.; Passi, A.; Skandalis, S.S.; Vynios, D.H.; Orian-Rousseau, V.; Ricard-Blum, S.; Schmelzer, C.E.H.; et al. A Guide to the Composition and Functions of the Extracellular Matrix. FEBS J. 2021, 288, 6850–6912. [Google Scholar] [CrossRef] [PubMed]
- Ritelli, M.; Chiarelli, N.; Cinquina, V.; Zoppi, N.; Bertini, V.; Venturini, M.; Colombi, M. RNA-Seq of Dermal Fibroblasts from Patients with Hypermobile Ehlers–Danlos Syndrome and Hypermobility Spectrum Disorders Supports Their Categorization as a Single Entity with Involvement of Extracellular Matrix Degrading and Proinflammatory Pathomechanisms. Cells 2022, 11, 4040. [Google Scholar] [CrossRef]
- Ritelli, M.; Chiarelli, N.; Cinquina, V.; Bertini, V.; Piantoni, S.; Caproli, A.; Della Pina, S.E.L.; Franceschini, F.; Zarattini, G.; Gandy, W.; et al. Bridging the Diagnostic Gap for Hypermobile Ehlers-Danlos Syndrome and Hypermobility Spectrum Disorders: Evidence of a Common Extracellular Matrix Fragmentation Pattern in Patient Plasma as a Potential Biomarker. Am. J. Med. Genet. 2024, 197 Pt A, e63857. [Google Scholar] [CrossRef]
- Halper, J. Basic Components of Connective Tissues and Extracellular Matrix: Fibronectin, Fibrinogen, Laminin, Elastin, Fibrillins, Fibulins, Matrilins, Tenascins and Thrombospondins. In Progress in Heritable Soft Connective Tissue Diseases; Halper, J., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2021; Volume 1348, pp. 105–126. ISBN 978-3-030-80613-2. [Google Scholar]
- Vega, M.E.; Schwarzbauer, J.E. Collaboration of Fibronectin Matrix with Other Extracellular Signals in Morphogenesis and Differentiation. Curr. Opin. Cell Biol. 2016, 42, 1–6. [Google Scholar] [CrossRef]
- Brock, I.; Prendergast, W.; Maitland, A. Mast Cell Activation Disease and Immunoglobulin Deficiency in Patients with Hypermobile Ehlers-Danlos Syndrome/Hypermobility Spectrum Disorder. Am. J. Med. Genet. C Semin. Med. Genet. 2021, 187, 473–481. [Google Scholar] [CrossRef]
- Frevert, C.W.; Felgenhauer, J.; Wygrecka, M.; Nastase, M.V.; Schaefer, L. Danger-Associated Molecular Patterns Derived From the Extracellular Matrix Provide Temporal Control of Innate Immunity. J. Histochem. Cytochem. 2018, 66, 213–227. [Google Scholar] [CrossRef]
- Huang, E.; Peng, N.; Xiao, F.; Hu, D.; Wang, X.; Lu, L. The Roles of Immune Cells in the Pathogenesis of Fibrosis. Int. J. Mol. Sci. 2020, 21, 5203. [Google Scholar] [CrossRef]
- Seneviratne, S.L.; Maitland, A.; Afrin, L. Mast Cell Disorders in Ehlers-Danlos Syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2017, 175, 226–236. [Google Scholar] [CrossRef]
- Schuster, R.; Rockel, J.S.; Kapoor, M.; Hinz, B. The Inflammatory Speech of Fibroblasts. Immunol. Rev. 2021, 302, 126–146. [Google Scholar] [CrossRef] [PubMed]
- Smolgovsky, S.; Theall, B.; Wagner, N.; Alcaide, P. Fibroblasts and Immune Cells: At the Crossroad of Organ Inflammation and Fibrosis. Am. J. Physiol.-Heart Circ. Physiol. 2024, 326, H303–H316. [Google Scholar] [CrossRef] [PubMed]
- Chiarelli, N.; Zoppi, N.; Ritelli, M.; Venturini, M.; Capitanio, D.; Gelfi, C.; Colombi, M. Biological Insights in the Pathogenesis of Hypermobile Ehlers-Danlos Syndrome from Proteome Profiling of Patients’ Dermal Myofibroblasts. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2021, 1867, 166051. [Google Scholar] [CrossRef] [PubMed]
- Pastwińska, J.; Żelechowska, P.; Walczak-Drzewiecka, A.; Brzezińska-Błaszczyk, E.; Dastych, J. The Art of Mast Cell Adhesion. Cells 2020, 9, 2664. [Google Scholar] [CrossRef] [PubMed]
- Hamminger, P.; Rica, R.; Ellmeier, W. Histone Deacetylases as Targets in Autoimmune and Autoinflammatory Diseases. In Advances in Immunology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 147, pp. 1–59. ISBN 978-0-12-820756-7. [Google Scholar]
- Zhou, P.; Xiang, C.; Wei, J. The Clinical Significance of Spondin 2 Eccentric Expression in Peripheral Blood Mononuclear Cells in Bronchial Asthma. J. Clin. Lab. Anal. 2021, 35, e23764. [Google Scholar] [CrossRef]
- Rodríguez, E.; Baurecht, H.; Herberich, E.; Wagenpfeil, S.; Brown, S.J.; Cordell, H.J.; Irvine, A.D.; Weidinger, S. Meta-Analysis of Filaggrin Polymorphisms in Eczema and Asthma: Robust Risk Factors in Atopic Disease. J. Allergy Clin. Immunol. 2009, 123, 1361–1370.e7. [Google Scholar] [CrossRef]
- Wågström, P.; Nilsdotter-Augustinsson, Å.; Nilsson, M.; Björkander, J.; Dahle, C.; Nyström, S. Fatigue Is Common in Immunoglobulin G Subclass Deficiency and Correlates with Inflammatory Response and Need for Immunoglobulin Replacement Therapy. Front. Immunol. 2022, 12, 797336. [Google Scholar] [CrossRef] [PubMed]
- Barton, J.C.; Barton, J.C.; Bertoli, L.F.; Acton, R.T. Factors Associated with IgG Levels in Adults with IgG Subclass Deficiency. BMC Immunol. 2021, 22, 53. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef]
- Watanabe, A.; Satoh, K.; Maniwa, T.; Matsumoto, K.-I. Proteomic Analysis for the Identification of Serum Diagnostic Markers for Joint Hypermobility Syndrome. Int. J. Mol. Med. 2016, 37, 461–467. [Google Scholar] [CrossRef]
- Coss, S.L.; Zhou, D.; Chua, G.T.; Aziz, R.A.; Hoffman, R.P.; Wu, Y.L.; Ardoin, S.P.; Atkinson, J.P.; Yu, C.-Y. The Complement System and Human Autoimmune Diseases. J. Autoimmun. 2023, 137, 102979. [Google Scholar] [CrossRef] [PubMed]
- De Bellis, A.; Bizzarro, A.; Pivonello, R.; Lombardi, G.; Bellastella, A. Prolactin and Autoimmunity. Pituitary 2005, 8, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Maya, T.; Fettig, V.; Mehta, L.; Gelb, B.D.; Kontorovich, A.R. Dysautonomia in Hypermobile Ehlers-Danlos Syndrome and Hypermobility Spectrum Disorders Is Associated with Exercise Intolerance and Cardiac Atrophy. Am. J. Med. Genet. A 2021, 185, 3754–3761. [Google Scholar] [CrossRef]
- Mense, S. Innervation of the Thoracolumbar Fascia. Eur. J. Transl. Myol. 2019, 29, 8297. [Google Scholar] [CrossRef]
- Fede, C.; Petrelli, L.; Pirri, C.; Neuhuber, W.; Tiengo, C.; Biz, C.; De Caro, R.; Schleip, R.; Stecco, C. Innervation of Human Superficial Fascia. Front. Neuroanat. 2022, 16, 981426. [Google Scholar] [CrossRef]
- Radovanovic, D.; Peikert, K.; Lindström, M.; Domellöf, F.P. Sympathetic Innervation of Human Muscle Spindles. J. Anat. 2015, 226, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Berglund, B.; Pettersson, C.; Pigg, M.; Kristiansson, P. Self-Reported Quality of Life, Anxiety and Depression in Individuals with Ehlers-Danlos Syndrome (EDS): A Questionnaire Study. BMC Musculoskelet. Disord. 2015, 16, 89. [Google Scholar] [CrossRef]
- Willich, L.; Bohner, L.; Köppe, J.; Jackowski, J.; Hanisch, M.; Oelerich, O. Prevalence and Quality of Temporomandibular Disorders, Chronic Pain and Psychological Distress in Patients with Classical and Hypermobile Ehlers-Danlos Syndrome: An Exploratory Study. Orphanet J. Rare Dis. 2023, 18, 294. [Google Scholar] [CrossRef]
- Meng, X.; Nikolic-Paterson, D.J.; Lan, H.Y. TGF-β: The Master Regulator of Fibrosis. Nat. Rev. Nephrol. 2016, 12, 325–338. [Google Scholar] [CrossRef]
- Zhang, H.; Caudle, Y.; Wheeler, C.; Zhou, Y.; Stuart, C.; Yao, B.; Yin, D. TGF-β1/Smad2/3/Foxp3 Signaling Is Required for Chronic Stress-Induced Immune Suppression. J. Neuroimmunol. 2018, 314, 30–41. [Google Scholar] [CrossRef]
- Alvares, G.A.; Quintana, D.S.; Hickie, I.B.; Guastella, A.J. Autonomic Nervous System Dysfunction in Psychiatric Disorders and the Impact of Psychotropic Medications: A Systematic Review and Meta-Analysis. J. Psychiatry Neurosci. 2016, 41, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Schleip, R.; Klingler, W. Active Contractile Properties of Fascia. Clin. Anat. 2019, 32, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Utreras, E.; Keller, J.; Terse, A.; Prochazkova, M.; Iadarola, M.J.; Kulkarni, A.B. Transforming Growth Factor-Β1 Regulates Cdk5 Activity in Primary Sensory Neurons. J. Biol. Chem. 2012, 287, 16917–16929. [Google Scholar] [CrossRef]
- Zhu, Y.; Colak, T.; Shenoy, M.; Liu, L.; Mehta, K.; Pai, R.; Zou, B.; Xie, X.S.; Pasricha, P.J. Transforming Growth Factor Beta Induces Sensory Neuronal Hyperexcitability, and Contributes to Pancreatic Pain and Hyperalgesia in Rats with Chronic Pancreatitis. Mol. Pain 2012, 8, 1744-8069-8-65. [Google Scholar] [CrossRef] [PubMed]
- Udugampolage, N.; Taurino, J.; Bassotti, A.; Pini, A.; Caruso, R.; Callus, E.; Magon, A.; Conte, G.; De Angeli, G.; Paglione, G.; et al. Exploring Fatigue in Marfan and Hypermobile Ehlers-Danlos Syndromes: An Analytical Cross-Sectional Study in Two Italian Healthcare Centres. BMJ Open 2025, 15, e087298. [Google Scholar] [CrossRef]
- Hakim, A.; De Wandele, I.; O’Callaghan, C.; Pocinki, A.; Rowe, P. Chronic Fatigue in Ehlers–Danlos Syndrome—Hypermobile Type. Am. J. Med. Genet. C Semin. Med. Genet. 2017, 175, 175–180. [Google Scholar] [CrossRef]
- Blundell, S.; Ray, K.K.; Buckland, M.; White, P.D. Chronic Fatigue Syndrome and Circulating Cytokines: A Systematic Review. Brain Behav. Immun. 2015, 50, 186–195. [Google Scholar] [CrossRef]
- Montoya, J.G.; Holmes, T.H.; Anderson, J.N.; Maecker, H.T.; Rosenberg-Hasson, Y.; Valencia, I.J.; Chu, L.; Younger, J.W.; Tato, C.M.; Davis, M.M. Cytokine Signature Associated with Disease Severity in Chronic Fatigue Syndrome Patients. Proc. Natl. Acad. Sci. USA 2017, 114, E7150–E7158. [Google Scholar] [CrossRef]
- Kciuk, O.; Li, Q.; Huszti, E.; McDermott, C.D. Pelvic Floor Symptoms in Cisgender Women with Ehlers–Danlos Syndrome: An International Survey Study. Int. Urogynecol. J. 2023, 34, 473–483. [Google Scholar] [CrossRef]
- Wang, T.J.; Stecco, A.; Schleip, R.; Stecco, C.; Pirri, C. Change in Gliding Properties of the Iliotibial Tract in Hypermobile Ehlers–Danlos Syndrome. J. Ultrasound 2023, 26, 809–813. [Google Scholar] [CrossRef]
- Wang, T.; Stecco, A. Fascial Thickness and Stiffness in Hypermobile Ehlers-Danlos Syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2021, 187, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Serrano, A. Fascial Changes in Ehlers-Danlos Syndromes With and Without Axial Spondyloarthropathy. In Proceedings of the Fascia Research Congress, New Olreans, LA, USA, 10–14 August 2025. [Google Scholar]
- Hughes, E.J.; McDermott, K.; Funk, M.F. Evaluation of Hyaluronan Content in Areas of Densification Compared to Adjacent Areas of Fascia. J. Bodyw. Mov. Ther. 2019, 23, 324–328. [Google Scholar] [CrossRef]
- Cowman, M.K.; Lee, H.-G.; Schwertfeger, K.L.; McCarthy, J.B.; Turley, E.A. The Content and Size of Hyaluronan in Biological Fluids and Tissues. Front. Immunol. 2015, 6, 261. [Google Scholar] [CrossRef] [PubMed]
- Clayton, H.A.; Jones, S.A.H.; Henriques, D.Y.P. Proprioceptive Precision Is Impaired in Ehlers–Danlos Syndrome. SpringerPlus 2015, 4, 323. [Google Scholar] [CrossRef] [PubMed]
- Scheper, M.; Rombaut, L.; de Vries, J.; De Wandele, I.; van der Esch, M.; Visser, B.; Malfait, F.; Calders, P.; Engelbert, R. The Association between Muscle Strength and Activity Limitations in Patients with the Hypermobility Type of Ehlers–Danlos Syndrome: The Impact of Proprioception. Disabil. Rehabil. 2017, 39, 1391–1397. [Google Scholar] [CrossRef]
- Fourie, W.J. Considering Wider Myofascial Involvement as a Possible Contributor to Upper Extremity Dysfunction Following Treatment for Primary Breast Cancer. J. Bodyw. Mov. Ther. 2008, 12, 349–355. [Google Scholar] [CrossRef]
- Menon, R.G.; Oswald, S.F.; Raghavan, P.; Regatte, R.R.; Stecco, A. T1ρ-Mapping for Musculoskeletal Pain Diagnosis: Case Series of Variation of Water Bound Glycosaminoglycans Quantification before and after Fascial Manipulation® in Subjects with Elbow Pain. Int. J. Environ. Res. Public Health 2020, 17, 708. [Google Scholar] [CrossRef]
- Stecco, A.; Meneghini, A.; Stern, R.; Stecco, C.; Imamura, M. Ultrasonography in Myofascial Neck Pain: Randomized Clinical Trial for Diagnosis and Follow-Up. Surg. Radiol. Anat. 2014, 36, 243–253. [Google Scholar] [CrossRef]
- Fabricant, P.D.; Bedi, A.; De La Torre, K.; Kelly, B.T. Clinical Outcomes After Arthroscopic Psoas Lengthening: The Effect of Femoral Version. Arthrosc. J. Arthrosc. Relat. Surg. 2012, 28, 965–971. [Google Scholar] [CrossRef]
- Prather, H.; Cheng, A.; Steger-May, K.; Maheshwari, V.; Van Dillen, L. Hip and Lumbar Spine Physical Examination Findings in People Presenting With Low Back Pain, With or Without Lower Extremity Pain. J. Orthop. Sports Phys. Ther. 2017, 47, 163–172. [Google Scholar] [CrossRef]
- Sadeghisani, M.; Manshadi, F.D.; Kalantari, K.K.; Rahimi, A.; Namnik, N.; Karimi, M.T.; Oskouei, A.E. Correlation between Hip Rotation Range-of-Motion Impairment and Low Back Pain. A Literature Review. Ortop. Traumatol. Rehabil. 2015, 17, 455–462. [Google Scholar] [CrossRef]
- Cramer, G.D.; Darby, S.A.; Cramer, G.D. Clinical Anatomy of the Spine, Spinal Cord, and ANS, 3rd ed.; Elsevier: St. Louis, Mo, USA, 2014; ISBN 978-0-323-07954-9. [Google Scholar]
- Xu, Z.; Mei, B.; Liu, M.; Tu, L.; Zhang, H.; Zhang, M. Fibrous Configuration of the Fascia Iliaca Compartment: An Epoxy Sheet Plastination and Confocal Microscopy Study. Sci. Rep. 2020, 10, 1548. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Fede, C.; Gaudreault, N.; Porzionato, A.; Macchi, V.; De Caro, R.; Stecco, C. Anatomical and Functional Relationships between External Abdominal Oblique Muscle and Posterior Layer of Thoracolumbar Fascia: Anatomical and Functional Relationships Between the External Abdominal Oblique Muscle. Clin. Anat. 2018, 31, 1092–1098. [Google Scholar] [CrossRef]
- Bénistan, K.; Martinez, V. Pain in Hypermobile Ehlers-Danlos Syndrome: New Insights Using New Criteria. Am. J. Med. Genet. A 2019, 179, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Dequeker, J. Benign Familial Hypermobility Syndrome and Trendelenburg Sign in a Painting “The Three Graces” by Peter Paul Rubens (1577–1640). Ann. Rheum. Dis. 2001, 60, 894–895. [Google Scholar] [CrossRef] [PubMed]
- Remvig, L.; Jensen, D.V.; Ward, R.C. Epidemiology of General Joint Hypermobility and Basis for the Proposed Criteria for Benign Joint Hypermobility Syndrome: Review of the Literature. J. Rheumatol. 2007, 34, 804–809. [Google Scholar]
- Martino, F.; Perestrelo, A.R.; Vinarský, V.; Pagliari, S.; Forte, G. Cellular Mechanotransduction: From Tension to Function. Front. Physiol. 2018, 9, 824. [Google Scholar] [CrossRef]
- Dienes, B.; Bazsó, T.; Szabó, L.; Csernoch, L. The Role of the Piezo1 Mechanosensitive Channel in the Musculoskeletal System. Int. J. Mol. Sci. 2023, 24, 6513. [Google Scholar] [CrossRef]
- Schleip, R.; Gabbiani, G.; Wilke, J.; Naylor, I.; Hinz, B.; Zorn, A.; Jäger, H.; Breul, R.; Schreiner, S.; Klingler, W. Fascia Is Able to Actively Contract and May Thereby Influence Musculoskeletal Dynamics: A Histochemical and Mechanographic Investigation. Front. Physiol. 2019, 10, 336. [Google Scholar] [CrossRef]
- Schleip, R.; Naylor, I.L.; Ursu, D.; Melzer, W.; Zorn, A.; Wilke, H.-J.; Lehmann-Horn, F.; Klingler, W. Passive Muscle Stiffness May Be Influenced by Active Contractility of Intramuscular Connective Tissue. Med. Hypotheses 2006, 66, 66–71. [Google Scholar] [CrossRef]
- Langevin, H.M.; Nedergaard, M.; Howe, A.K. Cellular Control of Connective Tissue Matrix Tension. J. Cell. Biochem. 2013, 114, 1714–1719. [Google Scholar] [CrossRef]
- Newell, E.; Driscoll, M. The Examination of Stress Shielding in a Finite Element Lumbar Spine Inclusive of the Thoracolumbar Fascia. Med. Biol. Eng. Comput. 2021, 59, 1621–1628. [Google Scholar] [CrossRef]
- Coussens, M.; Calders, P.; Lapauw, B.; Celie, B.; Banica, T.; De Wandele, I.; Pacey, V.; Malfait, F.; Rombaut, L. Does Muscle Strength Change Over Time in Patients With Hypermobile Ehlers-Danlos Syndrome/Hypermobility Spectrum Disorder? An Eight-Year Follow-Up Study. Arthritis Care Res. 2021, 73, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Barker, P.J.; Briggs, C.A.; Bogeski, G. Tensile Transmission Across the Lumbar Fasciae in Unembalmed Cadavers: Effects of Tension to Various Muscular Attachments. Spine 2004, 29, 129–138. [Google Scholar] [CrossRef]
- Huijing, P.A.; Van De Langenberg, R.W.; Meesters, J.J.; Baan, G.C. Extramuscular Myofascial Force Transmission Also Occurs between Synergistic Muscles and Antagonistic Muscles. J. Electromyogr. Kinesiol. 2007, 17, 680–689. [Google Scholar] [CrossRef] [PubMed]
- Huijing, P.A.; Baan, G.C. Myofascial Force Transmission: Muscle Relative Position and Length Determine Agonist and Synergist Muscle Force. J. Appl. Physiol. 2003, 94, 1092–1107. [Google Scholar] [CrossRef]
- Morlino, S.; Dordoni, C.; Sperduti, I.; Venturini, M.; Celletti, C.; Camerota, F.; Colombi, M.; Castori, M. Refining Patterns of Joint Hypermobility, Habitus, and Orthopedic Traits in Joint Hypermobility Syndrome and Ehlers-Danlos Syndrome, Hypermobility Type. Am. J. Med. Genet. A 2017, 173, 914–929. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Schubart, J.R.; Wagner, W.; Mills, S.E.; Joyce, R.; Francomano, C.A. The Intersection of Hypermobile Ehlers-Danlos Syndrome and Fascial Disorders: A Focus on Adipose Tissue Dysfunctions. In Proceedings of the Fascia Research Congress, New Olreans, LA, USA, 10–14 August 2025. [Google Scholar]
- AL-Ghadban, S.; Cromer, W.; Allen, M.; Ussery, C.; Badowski, M.; Harris, D.; Herbst, K.L. Dilated Blood and Lymphatic Microvessels, Angiogenesis, Increased Macrophages, and Adipocyte Hypertrophy in Lipedema Thigh Skin and Fat Tissue. J. Obes. 2019, 2019, 8747461. [Google Scholar] [CrossRef]
- Alsiri, N.; Al-Obaidi, S.; Asbeutah, A.; Almandeel, M.; Palmer, S. The Impact of Hypermobility Spectrum Disorders on Musculoskeletal Tissue Stiffness: An Exploration Using Strain Elastography. Clin. Rheumatol. 2019, 38, 85–95. [Google Scholar] [CrossRef]
- Rombaut, L.; Malfait, F.; De Wandele, I.; Mahieu, N.; Thijs, Y.; Segers, P.; De Paepe, A.; Calders, P. Muscle-Tendon Tissue Properties in the Hypermobility Type of Ehlers-Danlos Syndrome: Muscle Tension and Achilles Tendon Stiffness in EDS-HT Patients. Arthritis Care Res. 2012, 64, 766–772. [Google Scholar] [CrossRef]
- Wang, T.J.; Onishi, K. Resistance Exercises Are Associated with Decreased Tendon Elongation in Hypermobile Ehlers-Danlos Syndrome. In Proceedings of the Fascia Research Congress, New Olreans, LA, USA, 10–14 August 2025. [Google Scholar]
- Lazaro, R.M.; Souza, R.B.; Luke, A.C. Patellar Mobility and Lower Limb Kinematics during Functional Activities in Individuals with and without Patellar Tendinopathy. Knee 2021, 30, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Wiesinger, H.-P.; Seynnes, O.R.; Kösters, A.; Müller, E.; Rieder, F. Mechanical and Material Tendon Properties in Patients With Proximal Patellar Tendinopathy. Front. Physiol. 2020, 11, 704. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.K.; Nygaard, R.H.; Svensson, R.B.; Hove, H.D.; Magnusson, S.P.; Kjær, M.; Couppé, C. Biomechanical Properties of the Patellar Tendon in Children with Heritable Connective Tissue Disorders. Eur. J. Appl. Physiol. 2018, 118, 1301–1307. [Google Scholar] [CrossRef]
- Galli, M.; Cimolin, V.; Rigoldi, C.; Castori, M.; Celletti, C.; Albertini, G.; Camerota, F. Gait Strategy in Patients with Ehlers–Danlos Syndrome Hypermobility Type: A Kinematic and Kinetic Evaluation Using 3D Gait Analysis. Res. Dev. Disabil. 2011, 32, 1663–1668. [Google Scholar] [CrossRef]
- Ball, L.N.; Jacobs, M.V.; McLouth, C.J.; Clasey, J.; Francomano, C.; Sheppard, M.B.; Samaan, M.A. Assessment of Gait Mechanics and Muscle Strength in Hypermobile Ehlers Danlos Syndrome. Clin. Biomech. 2024, 113, 106210. [Google Scholar] [CrossRef]
- Alsiri, N.; Cramp, M.; Barnett, S.; Palmer, S. Gait Biomechanics in Joint Hypermobility Syndrome: A Spatiotemporal, Kinematic and Kinetic Analysis. Musculoskelet. Care 2020, 18, 301–314. [Google Scholar] [CrossRef]
- Roberts, T.J.; Marsh, R.L.; Weyand, P.G.; Taylor, C.R. Muscular Force in Running Turkeys: The Economy of Minimizing Work. Science 1997, 275, 1113–1115. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.; Schache, A.G.; Lin, Y.-C.; Pandy, M.G. Tendon Elastic Strain Energy in the Human Ankle Plantar-Flexors and Its Role with Increased Running Speed. J. Exp. Biol. 2014, 217, 3159–3168. [Google Scholar] [CrossRef]
- Kawakami, Y.; Fukunaga, T. New Insights into In Vivo Human Skeletal Muscle Function. Exerc. Sport Sci. Rev. 2006, 34, 16–21. [Google Scholar] [CrossRef]
- Roberts, T.J. Contribution of Elastic Tissues to the Mechanics and Energetics of Muscle Function during Movement. J. Exp. Biol. 2016, 219, 266–275. [Google Scholar] [CrossRef]
- Magnusson, S.P.; Langberg, H.; Kjaer, M. The Pathogenesis of Tendinopathy: Balancing the Response to Loading. Nat. Rev. Rheumatol. 2010, 6, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.L.; Rio, E.; Purdam, C.R.; Docking, S.I. Revisiting the Continuum Model of Tendon Pathology: What Is Its Merit in Clinical Practice and Research? Br. J. Sports Med. 2016, 50, 1187–1191. [Google Scholar] [CrossRef] [PubMed]
- Fredberg, U.; Stengaard-Pedersen, K. Chronic Tendinopathy Tissue Pathology, Pain Mechanisms, and Etiology with a Special Focus on Inflammation. Scand. J. Med. Sci. Sports 2008, 18, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Lavagnino, M.; Arnoczky, S.P.; Kepich, E.; Caballero, O.; Haut, R.C. A Finite Element Model Predicts the Mechanotransduction Response of Tendon Cells to Cyclic Tensile Loading. Biomech. Model. Mechanobiol. 2008, 7, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lin, Z.; Day, R.E.; Gardiner, B.; Landao-Bassonga, E.; Rubenson, J.; Kirk, T.B.; Smith, D.W.; Lloyd, D.G.; Hardisty, G.; et al. Programmable Mechanical Stimulation Influences Tendon Homeostasis in a Bioreactor System. Biotechnol. Bioeng. 2013, 110, 1495–1507. [Google Scholar] [CrossRef]
- Passini, F.S.; Jaeger, P.K.; Saab, A.S.; Hanlon, S.; Chittim, N.A.; Arlt, M.J.; Ferrari, K.D.; Haenni, D.; Caprara, S.; Bollhalder, M.; et al. Shear-Stress Sensing by PIEZO1 Regulates Tendon Stiffness in Rodents and Influences Jumping Performance in Humans. Nat. Biomed. Eng. 2021, 5, 1457–1471. [Google Scholar] [CrossRef]
- Nakamichi, R.; Ma, S.; Nonoyama, T.; Chiba, T.; Kurimoto, R.; Ohzono, H.; Olmer, M.; Shukunami, C.; Fuku, N.; Wang, G.; et al. The Mechanosensitive Ion Channel PIEZO1 Is Expressed in Tendons and Regulates Physical Performance. Sci. Transl. Med. 2022, 14, eabj5557. [Google Scholar] [CrossRef]
- Lichtwark, G.A.; Wilson, A.M. In Vivo Mechanical Properties of the Human Achilles Tendon during One-Legged Hopping. J. Exp. Biol. 2005, 208, 4715–4725. [Google Scholar] [CrossRef]
- Orselli, M.I.V.; Franz, J.R.; Thelen, D.G. The Effects of Achilles Tendon Compliance on Triceps Surae Mechanics and Energetics in Walking. J. Biomech. 2017, 60, 227–231. [Google Scholar] [CrossRef]
- Heinemeier, K.M.; Schjerling, P.; Heinemeier, J.; Magnusson, S.P.; Kjaer, M. Lack of Tissue Renewal in Human Adult Achilles Tendon Is Revealed by Nuclear Bomb 14C. FASEB J. 2013, 27, 2074–2079. [Google Scholar] [CrossRef]
- Arampatzis, A.; Karamanidis, K.; Albracht, K. Adaptational Responses of the Human Achilles Tendon by Modulation of the Applied Cyclic Strain Magnitude. J. Exp. Biol. 2007, 210, 2743–2753. [Google Scholar] [CrossRef] [PubMed]
- Bohm, S.; Mersmann, F.; Tettke, M.; Kraft, M.; Arampatzis, A. Human Achilles Tendon Plasticity in Response to Cyclic Strain: Effect of Rate and Duration. J. Exp. Biol. 2014, 217, 4010–4017. [Google Scholar] [CrossRef] [PubMed]
- Arampatzis, A.; Mersmann, F.; Bohm, S. Individualized Muscle-Tendon Assessment and Training. Front. Physiol. 2020, 11, 723. [Google Scholar] [CrossRef]
- Mersmann, F.; Pentidis, N.; Tsai, M.-S.; Schroll, A.; Arampatzis, A. Patellar Tendon Strain Associates to Tendon Structural Abnormalities in Adolescent Athletes. Front. Physiol. 2019, 10, 963. [Google Scholar] [CrossRef]
- Kulig, K.; Landel, R.; Chang, Y.-J.; Hannanvash, N.; Reischl, S.F.; Song, P.; Bashford, G.R. Patellar Tendon Morphology in Volleyball Athletes with and without Patellar Tendinopathy. Scand. J. Med. Sci. Sports 2013, 23, e81–e88. [Google Scholar] [CrossRef]
- Wren, T.A.L.; Lindsey, D.P.; Beaupré, G.S.; Carter, D.R. Effects of Creep and Cyclic Loading on the Mechanical Properties and Failure of Human Achilles Tendons. Ann. Biomed. Eng. 2003, 31, 710–717. [Google Scholar] [CrossRef]
- Castori, M.; Tinkle, B.; Levy, H.; Grahame, R.; Malfait, F.; Hakim, A. A Framework for the Classification of Joint Hypermobility and Related Conditions. Am. J. Med. Genet. C Semin. Med. Genet. 2017, 175, 148–157. [Google Scholar] [CrossRef]
- Chen, W.; Deng, Y.; Zhang, J.; Tang, K. Uniaxial Repetitive Mechanical Overloading Induces Influx of Extracellular Calcium and Cytoskeleton Disruption in Human Tenocytes. Cell Tissue Res. 2015, 359, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Millar, N.L.; Silbernagel, K.G.; Thorborg, K.; Kirwan, P.D.; Galatz, L.M.; Abrams, G.D.; Murrell, G.A.C.; McInnes, I.B.; Rodeo, S.A. Tendinopathy. Nat. Rev. Dis. Primers 2021, 7, 1. [Google Scholar] [CrossRef]
- Robbins, S.M.; Wolfe, R.; Chang, Y.-Y.; Lavoie, M.; Preston, E.; Hazel, E.M. Inter-Segmental Coordination Amplitude and Variability Differences during Gait in Patients with Ehlers-Danlos Syndrome and Healthy Adults. Clin. Biomech. 2022, 94, 105515. [Google Scholar] [CrossRef]
- Liaghat, B.; Skou, S.T.; Søndergaard, J.; Boyle, E.; Søgaard, K.; Juul-Kristensen, B. A Randomised Controlled Trial of Heavy Shoulder Strengthening Exercise in Patients with Hypermobility Spectrum Disorder or Hypermobile Ehlers-Danlos Syndrome and Long-Lasting Shoulder Complaints: Study Protocol for the Shoulder-MOBILEX Study. Trials 2020, 21, 992. [Google Scholar] [CrossRef]
- Hsiang, S.M.; Chang, C. The Effect of Gait Speed and Load Carrying on the Reliability of Ground Reaction Forces. Saf. Sci. 2002, 40, 639–657. [Google Scholar] [CrossRef]
- Minhas, D. Practical Management Strategies for Benign Hypermobility Syndromes. Curr. Opin. Rheumatol. 2021, 33, 249–254. [Google Scholar] [CrossRef]
- Burgess, K.E.; Connick, M.J.; Graham-Smith, P.; Pearson, S.J. Plyometric vs. Isometric Training Influences on Tendon Properties and Muscle Output. J. Strength Cond. Res. 2007, 21, 986. [Google Scholar] [CrossRef] [PubMed]
- Pizzolato, C.; Lloyd, D.G.; Zheng, M.H.; Besier, T.F.; Shim, V.B.; Obst, S.J.; Newsham-West, R.; Saxby, D.J.; Barrett, R.S. Finding the Sweet Spot via Personalised Achilles Tendon Training: The Future Is within Reach. Br. J. Sports Med. 2019, 53, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Docking, S.I.; Cook, J. How Do Tendons Adapt? Going beyond Tissue Responses to Understand Positive Adaptation and Pathology Development: A Narrative Review. J. Musculoskelet. Neuronal Interact. 2019, 19, 300–310. [Google Scholar]
- Wang, J.; Jia, F.; Yang, G.; Yang, S.; Campbell, B.; Stone, D.; Woo, S. Cyclic Mechanical Stretching of Human Tendon Fibroblasts Increases the Production of Prostaglandin E 2 and Levels of Cyclooxygenase Expression: A Novel In Vitro Model Study. Connect. Tissue Res. 2003, 44, 128–133. [Google Scholar] [CrossRef]
- Șulea, C.M.; Mártonfalvi, Z.; Csányi, C.; Haluszka, D.; Pólos, M.; Ágg, B.; Stengl, R.; Benke, K.; Szabolcs, Z.; Kellermayer, M.S.Z. Nanoscale Structural Comparison of Fibrillin-1 Microfibrils Isolated from Marfan and Non-Marfan Syndrome Human Aorta. Int. J. Mol. Sci. 2023, 24, 7561. [Google Scholar] [CrossRef]
- Haine, E.; Salles, J.-P.; Khau Van Kien, P.; Conte-Auriol, F.; Gennero, I.; Plancke, A.; Julia, S.; Dulac, Y.; Tauber, M.; Edouard, T. Muscle and Bone Impairment in Children With Marfan Syndrome: Correlation With Age and FBN1 Genotype. J. Bone Miner. Res. 2015, 30, 1369–1376. [Google Scholar] [CrossRef]
- Tomaz Da Silva, M.; Santos, A.R.; Koike, T.E.; Nascimento, T.L.; Rozanski, A.; Bosnakovski, D.; Pereira, L.V.; Kumar, A.; Kyba, M.; Miyabara, E.H. The Fibrotic Niche Impairs Satellite Cell Function and Muscle Regeneration in Mouse Models of Marfan Syndrome. Acta Physiol. 2023, 237, e13889. [Google Scholar] [CrossRef]
- Emerah, A.; Mostafa, S.; Kotb, L.; Amer, Y.; Ismail, B.; Sarhan, S.A. The Burden of Entheseal Involvement in Systemic Lupus Erythematosus: A Comparative Ultrasonograghic Study. Clin. Rheumatol. 2024, 43, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Castro, J.L.; Aranda-Valera, I.C.; Peña-Amaro, J.; Martínez-Galisteo, A.; González-Navas, C.; Rodrigues-de-Souza, D.P.; Alcaraz-Clariana, S.; García-Luque, L.; Sánchez, I.R.M.; López-Medina, C.; et al. Mechanical Properties of Lumbar and Cervical Paravertebral Muscles in Patients with Axial Spondyloarthritis: A Case-Control Study. Diagnostics 2021, 11, 1662. [Google Scholar] [CrossRef] [PubMed]
- Stull, C.; Sprow, G.; Werth, V.P. Cutaneous Involvement in Systemic Lupus Erythematosus: A Review for the Rheumatologist. J. Rheumatol. 2023, 50, 27–35. [Google Scholar] [CrossRef]
- Magro, C.M.; Crowson, A.N. The Spectrum of Cutaneous Lesions in Rheumatoid Arthritis: A Clinical and Pathological Study of 43 Patients. J. Cutan. Pathol. 2003, 30, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, I.E.; Fujimoto, M.; Vencovsky, J.; Aggarwal, R.; Holmqvist, M.; Christopher-Stine, L.; Mammen, A.L.; Miller, F.W. Idiopathic Inflammatory Myopathies. Nat. Rev. Dis. Primers 2021, 7, 86. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, Y.; Wang, Y.; Xiong, H.; Que, C.; Zhang, X.; Zhu, Y.; Zhao, Y.; Yu, M.; Meng, L.; et al. Thigh MRI in Antisynthetase Syndrome, and Comparisons with Dermatomyositis and Immune-Mediated Necrotizing Myopathy. Rheumatology 2022, 62, 310–320. [Google Scholar] [CrossRef]
- Findeisen, K.; Guymer, E.; Littlejohn, G. Neuroinflammatory and Immunological Aspects of Fibromyalgia. Brain Sci. 2025, 15, 206. [Google Scholar] [CrossRef]
- Goebel, A.; Krock, E.; Gentry, C.; Israel, M.R.; Jurczak, A.; Urbina, C.M.; Sandor, K.; Vastani, N.; Maurer, M.; Cuhadar, U.; et al. Passive Transfer of Fibromyalgia Symptoms from Patients to Mice. J. Clin. Investig. 2021, 131, e144201. [Google Scholar] [CrossRef]
- Tofts, L.J.; Simmonds, J.; Schwartz, S.B.; Richheimer, R.M.; O’Connor, C.; Elias, E.; Engelbert, R.; Cleary, K.; Tinkle, B.T.; Kline, A.D.; et al. Pediatric Joint Hypermobility: A Diagnostic Framework and Narrative Review. Orphanet J. Rare Dis. 2023, 18, 104. [Google Scholar] [CrossRef]
- Santore, R.F.; Gosey, G.M.; Muldoon, M.P.; Long, A.A.; Healey, R.M. Hypermobility Assessment in 1,004 Adult Patients Presenting with Hip Pain: Correlation with Diagnoses and Demographics. J. Bone Jt. Surg. 2020, 102, 27–33. [Google Scholar] [CrossRef]
- Fede, C.; Fan, C.; Pirri, C.; Petrelli, L.; Biz, C.; Porzionato, A.; Macchi, V.; De Caro, R.; Stecco, C. The Effects of Aging on the Intramuscular Connective Tissue. Int. J. Mol. Sci. 2022, 23, 11061. [Google Scholar] [CrossRef] [PubMed]
Level | Dysfunction | Mechanism |
---|---|---|
Molecular Level | Molecular Pathways | Key molecular dysregulation includes aberrant activation of Wnt/β-catenin signaling, altered miRNA expression (e.g., downregulation of miR-23a, upregulation of miR-224 and miR-378-3p), upregulation of prolactin receptor (PRLR), and decreased NR4A nuclear receptor expression, contributing to inflammation, myofibroblast persistence, and ECM disorganization. |
Cellular Level | Fibroblast Dysfunction | Pathological fibroblast-to-myofibroblast transition is driven by the αvβ3 integrin–ILK–Snail1/Slug signaling axis, resulting in persistent α-SMA expression, resistance to apoptosis, and enhanced migratory and matrix-altering capacity. |
ECM Remodeling | Collagen I/III/V are aberrantly organized; elastin is mislocalized within cells; fibronectin fails to integrate and fragments. There is also downregulation of integrins α2β1 and α5β1 and fibronectin receptor dysfunction, disrupting ECM–cell communication. | |
Immune Dysregulation | Persistent immune–fibroblast crosstalk, involving mast cells, macrophages, and T-cells, leads to elevated levels of IL-6, TGF-β1, MCP-1, and ECM-derived DAMPs, reinforcing chronic inflammation, tissue fragility, and immune hypersensitivity. | |
Tissue Level | Fascial Layer Alterations | Sonoelastography reveals fascial thickening, reduced interfascial glide, and altered viscoelasticity. Increased myofibroblast density is seen in high-load fascial regions, contributing to densification, pain, and reduced proprioception. |
Tendon and Enthesis Involvement | Tendons exhibit reduced stiffness and excessive elongation (10.1–21.8%) impairing force transmission and increasing the risk of subluxation and dislocation. Enthesopathies are common due to collagen disarray, water retention, and repetitive microtrauma | |
Adipose Disorders | Lipedema and Dercum disease frequently co-occur and are associated with thickened superficial fascia, M2 macrophage-dominant inflammation, proteoglycan accumulation, and increased autonomic and immune dysregulation. | |
System Level | Dysautonomia | Approximately 60% of individuals with hEDS/HSD experience autonomic symptoms, likely due to dense autonomic innervation of fascia and TGF-β1-mediated feedback loops triggered by emotional stress, tissue strain, and immunological changes. |
Immune Dysregulation | Mechanical strain/injury, psychological stress, autonomic imbalance, and immune activation converge through shared signaling pathways (e.g., TGF-β1 and prolactin), reinforcing fibroblast activation and systemic inflammation. | |
Clinical Expression | Aging and Disease Progression | Over time, symptoms often shift from hypermobility to changes in gliding property and joint instability. These phenotypic changes reflect accumulated microtrauma, altered ECM remodeling, inflammation, and mechanical compensations, especially in fascia and tendons. Hypermobility and clinical expression may vary with immune state, trauma, and hormones. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.J.; Stecco, A.; Hakim, A.J.; Schleip, R. Fascial Pathophysiology in Hypermobility Spectrum Disorders and Hypermobile Ehlers–Danlos Syndrome: A Review of Emerging Evidence. Int. J. Mol. Sci. 2025, 26, 5587. https://doi.org/10.3390/ijms26125587
Wang TJ, Stecco A, Hakim AJ, Schleip R. Fascial Pathophysiology in Hypermobility Spectrum Disorders and Hypermobile Ehlers–Danlos Syndrome: A Review of Emerging Evidence. International Journal of Molecular Sciences. 2025; 26(12):5587. https://doi.org/10.3390/ijms26125587
Chicago/Turabian StyleWang, Tina J., Antonio Stecco, Alan J. Hakim, and Robert Schleip. 2025. "Fascial Pathophysiology in Hypermobility Spectrum Disorders and Hypermobile Ehlers–Danlos Syndrome: A Review of Emerging Evidence" International Journal of Molecular Sciences 26, no. 12: 5587. https://doi.org/10.3390/ijms26125587
APA StyleWang, T. J., Stecco, A., Hakim, A. J., & Schleip, R. (2025). Fascial Pathophysiology in Hypermobility Spectrum Disorders and Hypermobile Ehlers–Danlos Syndrome: A Review of Emerging Evidence. International Journal of Molecular Sciences, 26(12), 5587. https://doi.org/10.3390/ijms26125587