Large Yellow Croaker (Pseudosciaena crocea, Richardson) E2F4, a Cyclin-Dependent Transcription Factor, Forms a Heterodimer with DP1
Abstract
1. Introduction
2. Results
2.1. Identification and Cloning of Large Yellow Croaker E2Fs Family Genes
2.2. Subcellular Colocalization of Large Yellow Croaker E2F and DP1
2.3. E2F1–6 Expression Pattern in Healthy Large Yellow Croaker
2.4. Evaluation of Interaction of PcE2F1–6 with DP1
3. Discussion
4. Materials and Methods
4.1. Searching E2F/DP Family Genes of Large Yellow Croaker Pseudosciaena crocea
4.2. Experimental Fish and Sampling
4.3. Cloning the Sequences of PcDP1 and PcE2Fs Genes of Large Yellow Croaker Pseudosciaena crocea
4.4. Sequence and Phylogenetic Analysis
4.5. Tissue Distribution of PcE2Fs in Healthy Large Yellow Croakers Pseudosciaena crocea
4.6. Subcellular Co-Localization Analysis
4.7. Direct Yeast Two-Hybridization
4.8. Bimolecular Fluorescence Complementation (BiFC)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Attwooll, C.; Denchi, E.L.; Helin, K. The E2F family: Specific functions and overlapping interests. EMBO J. 2004, 23, 4709–4716. [Google Scholar] [CrossRef] [PubMed]
- Dimova, D.K.; Dyson, N.J. The E2F transcriptional network: Old acquaintances with new faces. Oncogene 2005, 24, 2810–2826. [Google Scholar] [CrossRef] [PubMed]
- Rowland, B.D.; Bernards, R. Re-evaluating cell-cycle regulation by E2Fs. Cell 2006, 127, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Trimarchi, J.M.; Lees, J.A. Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol. 2002, 3, 11–20. [Google Scholar] [CrossRef]
- Müller, H.; Moroni, M.C.; Vigo, E.; Petersen, B.O.; Bartek, J.; Helin, K. Induction of S-phase entry by E2F transcription factors depends on their nuclear localization. Mol. Cell. Biol. 1997, 17, 5508–5520. [Google Scholar] [CrossRef]
- DeGregori, J. The genetics of the E2F family of transcription factors: Shared functions and unique roles. Biochim. Biophys. Acta 2002, 1602, 131–150. [Google Scholar] [CrossRef]
- Cobrinik, D. Regulatory interactions among E2Fs and cell cycle control proteins. Curr. Top. Microbiol. Immunol. 1996, 208, 31–61. [Google Scholar]
- Westendorp, B.; Mokry, M.; Groot Koerkamp, M.J.; Holstege, F.C.; Cuppen, E.; de Bruin, A. E2F7 represses a network of oscillating cell cycle genes to control S-phase progression. Nucleic Acids Res. 2012, 40, 3511–3523. [Google Scholar] [CrossRef]
- Lammens, T.; Li, J.; Leone, G.; de Veylder, L. Atypical E2Fs: New players in the E2F transcription factor family. Trends Cell Biol. 2009, 19, 111–118. [Google Scholar] [CrossRef]
- Trimarchi, J.M.; Fairchild, B.; Verona, R.; Moberg, K.; Andon, N.; Lees, J.A. E2F-6, a member of the E2F family that can behave as a transcriptional repressor. Proc. Natl. Acad. Sci. USA 1998, 95, 2850–2855. [Google Scholar] [CrossRef]
- Phillips, A.C.; Vousden, K.H. E2F-1 induced apoptosis. Apoptosis 2001, 6, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ni, Z.; Duan, Z.; Xin, Z.; Wang, H.; Tan, J.; Wang, G.; Li, F. Overexpression of E2F mRNAs associated with gastric cancer progression identified by the transcription factor and miRNA co-regulatory network analysis. PLoS ONE 2015, 10, e0116979. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, B.; Zhang, K.; Schabel, A.; E Bolander, M.; Sarkar, G. Identification of twenty-two candidate markers for human osteogenic sarcoma. Gene 2001, 278, 245–252. [Google Scholar] [CrossRef]
- Farman, F.U.; Haq, F.; Muhammad, N.; Ali, N.; Rahman, H.; Saeed, M. Aberrant promoter methylation status is associated with upregulation of the E2F4 gene in breast cancer. Oncol. Lett. 2018, 15, 8461–8469. [Google Scholar] [CrossRef]
- Sasagawa, S.; Nishimura, Y.; Hayakawa, Y.; Murakami, S.; Ashikawa, Y.; Yuge, M.; Okabe, S.; Kawaguchi, K.; Kawase, R.; Tanaka, T. E2F4 promotes neuronal regeneration and functional recovery after spinal cord injury in zebrafish. Front. Pharmacol. 2016, 7, 119. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Hu, J.; Ye, D.; Zhao, C.; Song, S.; Gong, W.; Tan, Z.; Song, P. Identification and expression analysis of two zebrafish E2F5 genes during oogenesis and development. Mol. Biol. Rep. 2010, 37, 1773–1780. [Google Scholar] [CrossRef]
- Milton, A.; Luoto, K.; Ingram, L.; Munro, S.; Logan, N.; Graham, A.L.; Brummelkamp, T.R.; Hijmans, E.M.; Bernards, R.; La Thangue, N.B. A functionally distinct member of the DP family of E2F subunits. Oncogene 2006, 25, 3212–3218. [Google Scholar] [CrossRef]
- Sørensen, T.S.; Girling, R.; Lee, C.-W.; Gannon, J.; Bandara, L.R.; La Thangue, N.B. Functional Interaction between DP-1 and p53. Mol. Cell. Biol. 1996, 16, 5888–5895. [Google Scholar] [CrossRef]
- E Huber, H.; Edwards, G.; Goodhart, P.J.; Patrick, D.R.; Huang, P.S.; Ivey-Hoyle, M.; Barnett, S.F.; Oliff, A.; Heimbrook, D.C. Transcription factor E2F binds DNA as a heterodimer. Proc. Natl. Acad. Sci. USA 1993, 90, 3525–3529. [Google Scholar] [CrossRef]
- Qiao, H.; Di Stefano, L.; Tian, C.; Li, Y.-Y.; Yin, Y.-H.; Qian, X.-P.; Pang, X.-W.; Li, Y.; McNutt, M.A.; Helin, K.; et al. Human TFDP3, a novel DP protein, inhibits DNA binding and transactivation by E2F. J. Biol. Chem. 2007, 282, 454–466. [Google Scholar] [CrossRef]
- Heuvel, S.v.D.; Dyson, N.J. Conserved functions of the pRB and E2F families. Nat. Rev. Mol. Cell Biol. 2008, 9, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Hitchens, M.R.; Robbins, P.D. The role of the transcription factor DP in apoptosis. Apoptosis 2003, 8, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Duronio, R.J.; Bonnette, P.C.; O’Farrell, P.H. Mutations of the Drosophila dDP, dE2F, and cyclin E genes reveal distinct roles for the E2F-DP transcription factor and cyclin E during the S-phase transition. Mol. Cell. Biol. 1998, 18, 141–151. [Google Scholar] [CrossRef]
- Royzman, I.; Whittaker, A.J.; Orr-Weaver, T.L. Mutations in Drosophila DP and E2F distinguish G1-S progression from an associated transcriptional program. Genes Dev. 1997, 11, 1999–2011. [Google Scholar] [CrossRef] [PubMed]
- Verona, R.; Moberg, K.; Estes, S.; Starz, M.; Vernon, J.P.; Lees, J.A. E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol. Cell. Biol. 1997, 17, 7268–7282. [Google Scholar] [CrossRef]
- Tanaka, H.; Matsumura, I.; Ezoe, S.; Satoh, Y.; Sakamaki, T.; Albanese, C.; Machii, T.; Pestell, R.G.; Kanakura, Y. E2F1 and c-Myc potentiate apoptosis through inhibition of NF-κB activity that facilitates MnSOD-mediated ROS elimination. Mol. Cell 2002, 9, 1017–1029. [Google Scholar] [CrossRef]
- Huang, Y.; Lou, H.; Wu, X.; Chen, Y. Characterization of the BPI-like gene from a subtracted cDNA library of large yellow croaker (Pseudosciaena crocea) and induced expression by formalin-inactivated Vibrio alginolyticus and Nocardia seriolae vaccine challenges. Fish Shellfish Immunol. 2008, 25, 740–750. [Google Scholar] [CrossRef]
- Cai, X.H.; Huang, Y.Q.; Chen, H.L.; Qi, Q.C.; Xu, M.J.; Xu, P.; Wu, X.Z. Identification and functional characterization of the transcription factor coding Dp1 gene in large yellow croaker Pseudosciaena crocea. Heliyon 2021, 7, e06299. [Google Scholar] [CrossRef]
- Ao, J.; Mu, Y.; Xiang, L.-X.; Fan, D.; Feng, M.; Zhang, S.; Shi, Q.; Zhu, L.-Y.; Li, T.; Ding, Y.; et al. Genome sequencing of the perciform fish larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. PLoS Genet. 2015, 11, e1005118. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, D.; Kan, M.; Lv, Z.; Zhu, A.; Su, Y.; Zhou, D.; Zhang, J.; Zhang, Z.; Xu, M.; et al. The draft genome of the large yellow croaker reveals well-developed innate immunity. Nat. Commun. 2014, 5, 5227. [Google Scholar] [CrossRef]
- Liban, T.J.; Medina, E.M.; Tripathi, S.; Sengupta, S.; Henry, R.W.; Buchler, N.E.; Rubin, S.M. Conservation and divergence of C-terminal domain structure in the retinoblastoma protein family. Proc. Natl. Acad. Sci. USA 2017, 114, 4942–4947. [Google Scholar] [CrossRef] [PubMed]
- Weimer, A.K.; Nowack, M.K.; Bouyer, D.; Zhao, X.; Harashima, H.; Naseer, S.; De Winter, F.; Dissmeyer, N.; Geldner, N.; Schnittger, A. Retinoblastoma related1 regulates asymmetric cell divisions in Arabidopsis. Plant Cell 2012, 24, 4083–4095. [Google Scholar] [CrossRef] [PubMed]
- Kirienko, N.V.; Fay, D.S. Transcriptome profiling of the C. elegans Rb ortholog reveals diverse developmental roles. Dev. Biol. 2007, 305, 674–684. [Google Scholar] [CrossRef]
- Milet, C.; Rincheval-Arnold, A.; Mignotte, B.; Guenal, I. The Drosophila retinoblastoma protein induces apoptosis in proliferating but not in post-mitotic cells. Cell Cycle 2010, 9, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Xie, B.; Wang, P.; Zhao, C.; Qiu, L. Genomic structure, expression pattern, and functional characterization of transcription factor E2F-2 from black tiger shrimp (Penaeus monodon). PLoS ONE 2017, 12, e0177420. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Y.N.; Lv, Z.M.; Li, C.H. MiR-210 regulates coelomocyte proliferation through targeting E2F3 in Apostichopus japonicus. Fish Shellfish Immunol. 2020, 106, 583–590. [Google Scholar] [CrossRef]
- Chong, Y.L.; Zhang, Y.; Zhou, F.; Roy, S. Distinct requirements of E2f4 versus E2f5 activity for multiciliated cell development in the zebrafish embryo. Dev. Biol. 2018, 443, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Du, X.Y.; Lin, L.; Yu, Y.C.; Yang, N.; Gao, S.; Guo, J.Y.; Fang, L.L.; Su, P. The evolution and functional characterization of transcription factors E2Fs in lamprey, Lethenteron reissneri. Dev. Comp. Immunol. 2025, 165, 105348. [Google Scholar] [CrossRef]
- Jin, X.L.; Liu, J.J.; Wang, S.; Shi, J.L.; Zhao, C.T.; Xie, H.B.; Kang, Y.S. E2f4 is required for intestinal and otolith development in zebrafish. J. Cell. Physiol. 2022, 237, 2690–2702. [Google Scholar] [CrossRef]
- Nahle, Z.; Polakoff, J.; Davuluri, R.V.; McCurrach, M.E.; Jacobson, M.D.; Narita, M.; Zhang, M.Q.; Lazebnik, Y.; Bar-Sagi, D.; Lowe, S.W. Direct coupling of the cell cycle and cell death machinery by E2F. Nat. Cell Biol. 2002, 4, 859–864. [Google Scholar] [CrossRef]
- Cobrinik, D.; Dowdy, S.F.; Hinds, P.W.; Mittnacht, S.; Weinberg, R.A. The retinoblastoma protein and the regulation of cell cycling. Trends Biochem. Sci. 1992, 17, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Helin, K.; Ed, H. The retinoblastoma protein as a transcriptional repressor. Trends Cell Biol. 1993, 3, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Fagan, R.; Flint, K.J.; Jones, N. Phosphorylation of E2F-1 modulates its interaction with the retinoblastoma gene product and the adenoviral E4 19 kDa protein. Cell 1994, 78, 799–811. [Google Scholar] [CrossRef]
- Zhang, W.; Sommers, C.L.; Burshtyn, D.N.; Stebbins, C.C.; DeJarnette, J.B.; Trible, R.P.; Grinberg, A.; Tsay, H.C.; Jacobs, H.M.; Kessler, C.M.; et al. Essential role of LAT in T cell development. Immunity 1999, 10, 323–332. [Google Scholar] [CrossRef]
- Stevens, C.; La Thangue, N.B. E2F and cell cycle control: A double-edged sword. Arch. Biochem. Biophys. 2003, 412, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Lindeman, G.J.; Gaubatz, S.; Livingston, D.M.; Ginsberg, D. The subcellular localization of E2F-4 is cell-cycle dependent. Proc. Natl. Acad. Sci. USA 1997, 94, 5095–5100. [Google Scholar] [CrossRef]
- Olgiate, J.; Ehmann, G.L.; Vidyarthi, S.; Hilton, M.J.; Bachenheimer, S.L. Herpes simplex virus induces intracellular redistribution of E2F4 and accumulation of E2F pocket protein complexes. Virology 1999, 258, 257–270. [Google Scholar] [CrossRef]
- Julian, L.M.; Liu, Y.; A Pakenham, C.; Dugal-Tessier, D.; Ruzhynsky, V.; Bae, S.; Tsai, S.-Y.; Leone, G.; Slack, R.S.; Blais, A. Tissue-specific targeting of cell fate regulatory genes by E2f factors. Cell Death Differ. 2016, 23, 565–575. [Google Scholar] [CrossRef]
- Zappia, M.P.; Frolov, M.V. E2F function in muscle growth is necessary and sufficient for viability in Drosophila. Nat. Commun. 2016, 7, 10509. [Google Scholar] [CrossRef]
- Cuitiño, M.C.; Pécot, T.; Sun, D.; Kladney, R.; Okano-Uchida, T.; Shinde, N.; Saeed, R.; Perez-Castro, A.J.; Webb, A.; Liu, T.; et al. Two distinct E2F transcriptional modules drive cell cycles and differentiation. Cell Rep. 2019, 27, 3547–3560.e5. [Google Scholar] [CrossRef]
- Kan, N.G.; Junghans, D.; Belmonte, J.C.I. Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy. FASEB J. 2009, 23, 3516–3525. [Google Scholar] [CrossRef] [PubMed]
- Tevosian, S.G.; Paulson, K.E.; Bronson, R.; Yee, A.S. Expression of the E2F-1/DP-1 transcription factor in murine development. Cell Growth Differ. Publ. Am. Assoc. Cancer Res. 1996, 7, 43–52. [Google Scholar]
- Yan, L.-H.; Chen, Z.-N.; Li, L.; Mo, X.-W.; Qin, Y.-Z.; Wei, W.-E.; Qin, H.-Q.; Lin, Y.; Chen, J.-S. E2F-1 promotes DAPK2-induced anti-tumor immunity of gastric cancer cells by targeting miR-34a. Tumor Biol. 2016, 37, 15925–15936. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Wu, C.; Sun, S.; Pan, J.-H. E2F2 directly regulates the STAT1 and PI3K/AKT/NF-κB pathways to exacerbate the inflammatory phenotype in rheumatoid arthritis synovial fibroblasts and mouse embryonic fibroblasts. Arthritis Res. Ther. 2018, 20, 225. [Google Scholar] [CrossRef]
- Liao, Y.; Du, W. Rb-independent E2F3 promotes cell proliferation and alters expression of genes involved in metabolism and inflammation. FEBS Open Biol. 2017, 7, 1611–1621. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.N.; Kausar, S.; Sun, Y.X.; Sun, Y.; Wang, L.; Qian, C.; Wei, G.Q.; Zhu, B.J.; Liu, C.L. Molecular cloning, expression, and characterization of E2F transcription factor 4 from Antheraea pernyi. Bull. Entomol. Res. 2017, 107, 839–846. [Google Scholar] [CrossRef]
- Bandara, L.R.; Buck, V.M.; Zamanian, M.; Johnston, L.H.; Thangue, N.B.L. Functional synergy between DP-1 and E2F-1 in the cell cycle-regulating transcription factor DRTF1/E2. EMBO J. 1993, 12, 4317–4324. [Google Scholar] [CrossRef] [PubMed]
- Helin, K.; Wu, C.L.; Fattaey, A.R.; A Lees, J.; Dynlacht, B.D.; Ngwu, C.; Harlow, E. Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation. Genes Dev. 1993, 7, 1850–1861. [Google Scholar] [CrossRef]
- Krek, W.; Livingston, D.M.; Shirodkar, S. Binding to DNA and the retinoblastoma gene product promoted by complex formation of different E2F family members. Science 1993, 262, 1557–1560. [Google Scholar] [CrossRef]
- Wu, C.-L.; Zukerberg, L.R.; Ngwu, C.; Harlow, E.; Lees, J.A. In vivo association of E2F and DP family proteins. Mol. Cell. Biol. 1995, 15, 2536–2546. [Google Scholar] [CrossRef]
- Wang, D.; Russell, J.; Xu, H.; Johnson, D.G. Deregulated expression of DP1 induces epidermal proliferation and enhances skin carcinogenesis. Mol. Carcinog. 2001, 31, 90–100. [Google Scholar] [CrossRef] [PubMed]
- DeGregori, J.; Leone, G.; Miron, A.; Jakoi, L.; Nevins, J.R. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl. Acad. Sci. USA 1997, 94, 7245–7250. [Google Scholar] [CrossRef] [PubMed]
- Dirks, P.B.; Rutka, J.T.; Hubbard, S.L.; Mondal, S.; Hamel, P.A. The E2F-family proteins induce distinct cell cycle regulatory factors in p16-arrested, U343 astrocytoma cells. Oncogene 1998, 177, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Lukas, J.; Petersen, B.O.; Holm, K.; Bartek, J.; Helin, K. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol. Cell. Biol. 1996, 16, 1047–1057. [Google Scholar] [CrossRef]
- Shan, B.; A Farmer, A.; Lee, W.H. The molecular basis of E2F-1/DP-1-induced S-phase entry and apoptosis. Cell Growth Differ. 1996, 7, 689–697. [Google Scholar]
- Johnson, D.G.; Cress, D.; Jakoi, L.; Nevins, J.R. Ocogenic capacity of the E2F1 gene. Proc. Natl. Acad. Sci. USA 1994, 91, 12823–12827. [Google Scholar] [CrossRef]
- Jooss, K.; Lam, E.W.; Bybee, A.; Girling, R.; Müller, R.; La Thangue, N.B. Proto-oncogenic properties of the DP family of proteins. Oncogene 1995, 10, 1529–1536. [Google Scholar]
- Rubin, S.M.; Gall, A.-L.; Zheng, N.; Pavletich, N.P. Structure of the Rb C-terminal domain bound to E2F1-DP1: A mechanism for phosphorylation-induced E2F release. Cell 2005, 123, 1093–1106. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using realtime quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, X.; Chen, H.; Fang, J.; Xu, M.; Chen, M.; Qi, Q.; Xu, P.; Hanington, P.C.; Wu, X. Large Yellow Croaker (Pseudosciaena crocea, Richardson) E2F4, a Cyclin-Dependent Transcription Factor, Forms a Heterodimer with DP1. Int. J. Mol. Sci. 2025, 26, 5343. https://doi.org/10.3390/ijms26115343
Cai X, Chen H, Fang J, Xu M, Chen M, Qi Q, Xu P, Hanington PC, Wu X. Large Yellow Croaker (Pseudosciaena crocea, Richardson) E2F4, a Cyclin-Dependent Transcription Factor, Forms a Heterodimer with DP1. International Journal of Molecular Sciences. 2025; 26(11):5343. https://doi.org/10.3390/ijms26115343
Chicago/Turabian StyleCai, Xiaohui, Honglin Chen, Jing Fang, Meijuan Xu, Meijuan Chen, Qiancheng Qi, Peng Xu, Patrick C. Hanington, and Xinzhong Wu. 2025. "Large Yellow Croaker (Pseudosciaena crocea, Richardson) E2F4, a Cyclin-Dependent Transcription Factor, Forms a Heterodimer with DP1" International Journal of Molecular Sciences 26, no. 11: 5343. https://doi.org/10.3390/ijms26115343
APA StyleCai, X., Chen, H., Fang, J., Xu, M., Chen, M., Qi, Q., Xu, P., Hanington, P. C., & Wu, X. (2025). Large Yellow Croaker (Pseudosciaena crocea, Richardson) E2F4, a Cyclin-Dependent Transcription Factor, Forms a Heterodimer with DP1. International Journal of Molecular Sciences, 26(11), 5343. https://doi.org/10.3390/ijms26115343