Moderate-Low Risk Breast Cancer Gene Expression in a Romanian Population
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
- high-penetrance breast cancer susceptibility genes: BRCA1, BRCA2, TP53, PALB2, CDH1, STK11, PTEN;
- moderate-risk genes: ATM, CHEK2, BARD1, RAD51C, RAD51D, NF1 (Neurofibromatosis type 1);
- low-risk genes: MSH2, MSH6, MLH1, PMS2, EPCAM (epithelial cellular adhesion molecule);
- insufficient evidence: RAD50, RAD51B, BRIP1, NBN, BLM (Bloom syndrome helicase), FAM175A, MEN1 (multiple endocrine neoplasia 1), MRE11A, MUTYH, XRCC2, APC (adenomatous polyposis coli), RET (rearranged during transfection), FANCA (Fanconi anaemia, complementation group A).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BC | Breast Cancer |
HBOC | Hereditary Breast and Ovarian Cancer |
NCCN | National Comprehensive Cancer Network |
ESO | European School of Oncology |
ESMO | European Society for Medical Oncology |
HGVS | Human Genome Variation Society |
PV | pathogenic variants |
ATM | Ataxia Telangiectasia Mutated protein |
VUS | variants of uncertain significance |
CHECK2 | checkpoint kinase 2 |
LoF | loss-of-function |
BARD1 | BRCA1-associated RING domain 1 |
PARP | Poly (ADP-ribose) polymerase |
MUTYH | mutY DNA glycosylase |
ATM gene | Ataxia-telangiectasia Mutated gene |
BARD1 | BRCA1-associated ring domain 1 |
RAD51C | Radiation Sensitive 51 Paralog C |
MSH1 | melanocyte-stimulating hormone gene |
MLH1 | MutL homolog 1 |
BRCA | BReast Cancer |
TP53 | tumor protein p53 |
PTEN | Phosphatase and TENsin homolog deleted on chromosome 10 |
PALB | Partner and Localizer of BRCA2 |
STK11 | serine/threonine kinase 11 |
CDH1 | Cadherin 1 |
PMS2 | postmeiotic segregation increased 2 |
NBN | nibrin |
Xrcc | X-ray repair cross-complementing 2 |
MRE11A | meiotic recombination 11 homolog A |
BRIP1 | BRCA1 Interacting Protein 1 |
FAM175A | Family with sequence similarity 175 member A |
NF1 | Neurofibromatosis type 1 |
EPCAM | epithelial cellular adhesion molecule |
BLM | Bloom syndrome helicase |
References
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, W.D. The ten genes for breast (and ovarian) cancer susceptibility. Nat. Rev. Clin. Oncol. 2021, 18, 259–260. [Google Scholar] [CrossRef] [PubMed]
- Goidescu, I.G.; Caracostea, G.; Rotar, I.C.; Eniu, D.T.; Nemeti, G.I.; Cruciat, G.; Stamatian, F.; Muresan, D. The influence of reproductive factors on breast cancer risk in women with pathogenic mutations. J. BUON 2019, 24, 1067–1074. [Google Scholar]
- Cardoso, F.; Paluch-Shimon, S.; Senkus, E.; Curigliano, G.; Aapro, M.S.; André, F.; Barrios, C.H.; Bergh, J.; Bhattacharyya, G.S.; Biganzoli, L.; et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 1623–1649. [Google Scholar] [CrossRef] [PubMed]
- Bedrosian, I.; Somerfield, M.R.; Achatz, M.I.; Boughey, J.C.; Curigliano, G.; Friedman, S.; Kohlmann, W.K.; Kurian, A.W.; Laronga, C.; Lynce, F.; et al. Germline Testing in Patients With Breast Cancer: ASCO-Society of Surgical Oncology Guideline. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2024, 42, 584–604. [Google Scholar] [CrossRef]
- Chiang, J.; Chia, T.H.; Yuen, J.; Shaw, T.; Li, S.-T.; Binte Ishak, N.D.; Chew, E.L.; Chong, S.T.; Chan, S.H.; Ngeow, J. Impact of Variant Reclassification in Cancer Predisposition Genes on Clinical Care. JCO Precis. Oncol. 2021, 5, 577–584. [Google Scholar] [CrossRef]
- Knappskog, S.; Chrisanthar, R.; Løkkevik, E.; Anker, G.; Østenstad, B.; Lundgren, S.; Risberg, T.; Mjaaland, I.; Leirvaag, B.; Miletic, H.; et al. Low expression levels of ATM may substitute for CHEK2/TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer. Breast Cancer Res. 2012, 14, R47. [Google Scholar] [CrossRef]
- Pintican, R.M.; Chiorean, A.; Duma, M.; Feier, D.; Szep, M.; Eniu, D.; Goidescu, I.; Dudea, S. Are Mutation Carrier Patients Different from Non-Carrier Patients? Genetic, Pathology, and US Features of Patients with Breast Cancer. Cancers 2022, 14, 2759. [Google Scholar] [CrossRef]
- Goidescu, I.; Nemeti, G.; Caracostea, G.; Eniu, D.T.; Chiorean, A.; Pintican, R.; Cruciat, G.; Muresan, D. The role of imaging techniques in the diagnosis, staging and choice of therapeutic conduct in pregnancy associated breast cancer. Med. Ultrason. 2019, 21, 336–343. [Google Scholar] [CrossRef]
- Iannuzzi, C.M.; Atencio, D.P.; Green, S.; Stock, R.G.; Rosenstein, B.S. ATM mutations in female breast cancer patients predict for an increase in radiation-induced late effects. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 606–613. [Google Scholar] [CrossRef]
- Bogdan, R.-G.; Helgiu, A.; Cimpean, A.-M.; Ichim, C.; Todor, S.B.; Iliescu-Glaja, M.; Bodea, I.C.; Crainiceanu, Z.P. Assessing Fat Grafting in Breast Surgery: A Narrative Review of Evaluation Techniques. J. Clin. Med. 2024, 13, 7209. [Google Scholar] [CrossRef] [PubMed]
- Dorling, L.; Carvalho, S.; Allen, J.; González-Neira, A.; Luccarini, C.; Wahlström, C.; Pooley, K.A.; Parsons, M.T.; Fortuno, C.; Wang, Q.; et al. Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar]
- Hu, C.; Hart, S.N.; Gnanaolivu, R.; Huang, H.; Lee, K.Y.; Na, J.; Gao, C.; Lilyquist, J.; Yadav, S.; Boddicker, N.J.; et al. A Population-Based Study of Genes Previously Implicated in Breast Cancer. N. Engl. J. Med. 2021, 384, 440–451. [Google Scholar] [CrossRef]
- Rainville, I.; Hatcher, S.; Rosenthal, E.; Larson, K.; Bernhisel, R.; Meek, S.; Gorringe, H.; Mundt, E.; Manley, S. High risk of breast cancer in women with biallelic pathogenic variants in CHEK2. Breast Cancer Res. Treat. 2020, 180, 503–509. [Google Scholar] [CrossRef]
- Hanson, H.; Astiazaran-Symonds, E.; Amendola, L.M.; Balmaña, J.; Foulkes, W.D.; James, P.; Klugman, S.; Ngeow, J.; Schmutzler, R.; Voian, N.; et al. Management of individuals with germline pathogenic/likely pathogenic variants in CHEK2: A clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. Off. J. Am. Coll. Med. Genet. 2023, 25, 100870. [Google Scholar] [CrossRef]
- Goldgar, D.E.; Healey, S.; Dowty, J.G.; Da Silva, L.; Chen, X.; Spurdle, A.B.; Terry, M.B.; Daly, M.J.; Buys, S.M.; Southey, M.C.; et al. Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res. 2011, 13, R73. [Google Scholar] [CrossRef] [PubMed]
- Vasen, H.F.A.; Blanco, I.; Aktan-Collan, K.; Gopie, J.P.; Alonso, A.; Aretz, S.; Bernstein, I.; Bertario, L.; Burn, J.; Capella, G.; et al. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): Recommendations by a group of European experts. Gut 2013, 62, 812–823. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, S.; Huang, M.; Elledge, S.J. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 1998, 282, 1893–1897. [Google Scholar] [CrossRef]
- Bartek, J.; Falck, J.; Lukas, J. CHK2 kinase—A busy messenger. Nat. Rev. Mol. Cell Biol. 2001, 2, 877–886. [Google Scholar] [CrossRef]
- Cybulski, C.; Wokołorczyk, D.; Jakubowska, A.; Huzarski, T.; Byrski, T.; Gronwald, J.; Masojć, B.; Dębniak, T.; Górski, B.; Blecharz, P.; et al. Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 3747–3752. [Google Scholar] [CrossRef]
- Muranen, T.A.; Blomqvist, C.; Dörk, T.; Jakubowska, A.; Heikkilä, P.; Fagerholm, R.; Greco, D.; Aittomäki, K.; Bojesen, S.E.; Shah, M.; et al. Patient survival and tumor characteristics associated with CHEK2:p.I157T—Findings from the Breast Cancer Association Consortium. Breast Cancer Res. 2016, 18, 98. [Google Scholar] [CrossRef] [PubMed]
- Cybulski, C.; Górski, B.; Huzarski, T.; Masojć, B.; Mierzejewski, M.; Debniak, T.; Teodorczyk, U.; Byrski, T.; Gronwald, J.; Matyjasik, J.; et al. CHEK2 is a multiorgan cancer susceptibility gene. Am. J. Hum. Genet. 2004, 75, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Kilpivaara, O.; Vahteristo, P.; Falck, J.; Syrjäkoski, K.; Eerola, H.; Easton, D.; Bartkova, J.; Lukas, J.; Heikkilä, P.; Aittomäki, K.; et al. CHEK2 variant I157T may be associated with increased breast cancer risk. Int. J. Cancer 2004, 111, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wang, Y.; Wang, Q.-S.; Wang, Y.-J. The CHEK2 I157T variant and breast cancer susceptibility: A systematic review and meta-analysis. Asian Pac. J. Cancer Prev. 2012, 13, 1355–1360. [Google Scholar] [CrossRef]
- Bychkovsky, B.L.; Agaoglu, N.B.; Horton, C.; Zhou, J.; Yussuf, A.; Hemyari, P.; Richardson, M.E.; Young, C.; LaDuca, H.; McGuinness, D.L.; et al. Differences in Cancer Phenotypes Among Frequent CHEK2 Variants and Implications for Clinical Care-Checking CHEK2. JAMA Oncol. 2022, 8, 1598–1606. [Google Scholar] [CrossRef]
- Nizic-Kos, T.; Krajc, M.; Blatnik, A.; Stegel, V.; Skerl, P.; Novakovic, S.; Gazic, B.; Besic, N. Bilateral Disease Common Among Slovenian CHEK2-Positive Breast Cancer Patients. Ann. Surg. Oncol. 2021, 28, 2561–2570. [Google Scholar] [CrossRef]
- Bernstein-Molho, R.; Galmor, L.; Laitman, Y.; Segev, S.; Friedman, E. Yield of targeted genotyping for the recurring pathogenic variants in cancer susceptibility genes in a healthy, multiethnic Israeli population. Cancer 2021, 127, 3599–3604. [Google Scholar] [CrossRef]
- Nguyen-Dumont, T.; Dowty, J.G.; Steen, J.A.; Renault, A.-L.; Hammet, F.; Mahmoodi, M.; Theys, D.; Rewse, A.; Tsimiklis, H.; Winship, I.M.; et al. Population-Based Estimates of the Age-Specific Cumulative Risk of Breast Cancer for Pathogenic Variants in CHEK2: Findings from the Australian Breast Cancer Family Registry. Cancers 2021, 13, 1378. [Google Scholar] [CrossRef]
- Guindalini, R.S.C.; Viana, D.V.; Kitajima, J.P.F.W.; Rocha, V.M.; López, R.V.M.; Zheng, Y.; Freitas, É.; Monteiro, F.P.M.; Valim, A.; Schlesinger, D.; et al. Detection of germline variants in Brazilian breast cancer patients using multigene panel testing. Sci. Rep. 2022, 12, 4190. [Google Scholar] [CrossRef]
- Apostolou, P.; Dellatola, V.; Papadimitriou, C.; Kalfakakou, D.; Fountzilas, E.; Faliakou, E.; Fountzilas, G.; Romanidou, O.; Konstantopoulou, I.; Fostira, F. CHEK2 Pathogenic Variants in Greek Breast Cancer Patients: Evidence for Strong Associations with Estrogen Receptor Positivity, Overuse of Risk-Reducing Procedures and Population Founder Effects. Cancers 2021, 13, 2106. [Google Scholar] [CrossRef]
- Bora, E.; Caglayan, A.O.; Koc, A.; Cankaya, T.; Ozkalayci, H.; Kocabey, M.; Kemer, D.; Aksoy, S.; Alicikus, Z.A.; Akin, I.B.; et al. Evaluation of hereditary/familial breast cancer patients with multigene targeted next generation sequencing panel and MLPA analysis in Turkey. Cancer Genet. 2022, 262–263, 118–133. [Google Scholar] [CrossRef]
- Goidescu, I.G.; Caracostea, G.; Eniu, D.T.; Stamatian, F.V. Prevalence of deleterious mutations among patients with breast cancer referred for multigene panel testing in a Romanian population. Clujul. Med. 2018, 91, 157–165. [Google Scholar] [CrossRef]
- Cybulski, C.; Wokołorczyk, D.; Huzarski, T.; Byrski, T.; Gronwald, J.; Górski, B.; Debniak, T.; Masojć, B.; Jakubowska, A.; van de Wetering, T.; et al. A deletion in CHEK2 of 5,395 bp predisposes to breast cancer in Poland. Breast Cancer Res. Treat. 2007, 102, 119–122. [Google Scholar] [CrossRef]
- Cybulski, C.; Lubiński, J.; Wokołorczyk, D.; Kuźniak, W.; Kashyap, A.; Sopik, V.; Huzarski, T.; Gronwald, J.; Byrski, T.; Szwiec, M.; et al. Mutations predisposing to breast cancer in 12 candidate genes in breast cancer patients from Poland. Clin. Genet. 2015, 88, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Bąk, A.; Janiszewska, H.; Junkiert-Czarnecka, A.; Heise, M.; Pilarska-Deltow, M.; Laskowski, R.; Pasińska, M.; Haus, O. A risk of breast cancer in women—Carriers of constitutional CHEK2 gene mutations, originating from the North—Central Poland. Hered. Cancer Clin. Pract. 2014, 12, 10. [Google Scholar] [CrossRef]
- Graffeo, R.; Rana, H.Q.; Conforti, F.; Bonanni, B.; Cardoso, M.J.; Paluch-Shimon, S.; Pagani, O.; Goldhirsch, A.; Partridge, A.H.; Lambertini, M.; et al. Moderate penetrance genes complicate genetic testing for breast cancer diagnosis: ATM, CHEK2, BARD1 and RAD51D. Breast 2022, 65, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Girard, E.; Eon-Marchais, S.; Olaso, R.; Renault, A.-L.; Damiola, F.; Dondon, M.-G.; Barjhoux, L.; Goidin, D.; Meyer, V.; Le Gal, D.; et al. Familial breast cancer and DNA repair genes: Insights into known and novel susceptibility genes from the GENESIS study, and implications for multigene panel testing. Int. J. Cancer 2019, 144, 1962–1974. [Google Scholar] [CrossRef] [PubMed]
- Feliubadaló, L.; Moles-Fernández, A.; Santamariña-Pena, M.; Sánchez, A.T.; López-Novo, A.; Porras, L.-M.; Blanco, A.; Capellá, G.; de la Hoya, M.; Molina, I.J.; et al. A Collaborative Effort to Define Classification Criteria for ATM Variants in Hereditary Cancer Patients. Clin. Chem. 2021, 67, 518–533. [Google Scholar] [CrossRef]
- Nykamp, K.; Anderson, M.; Powers, M.; Garcia, J.; Herrera, B.; Ho, Y.-Y.; Kobayashi, Y.; Patil, N.; Thusberg, J.; Westbrook, M.; et al. Sherloc: A comprehensive refinement of the ACMG-AMP variant classification criteria. Genet. Med. Off. J. Am. Coll. Med. Genet. 2017, 19, 1105–1117. [Google Scholar] [CrossRef]
- Watters, A.K.; Seltzer, E.S.; MacKenzie, D.J.; Young, M.; Muratori, J.; Hussein, R.; Sodoma, A.M.; To, J.; Singh, M.; Zhang, D. The Effects of Genetic and Epigenetic Alterations of BARD1 on the Development of Non-Breast and Non-Gynecological Cancers. Genes 2020, 11, 829. [Google Scholar] [CrossRef]
- Couch, F.J.; Shimelis, H.; Hu, C.; Hart, S.N.; Polley, E.C.; Na, J.; Hallberg, E.; Moore, R.; Thomas, A.; Lilyquist, J.; et al. Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer. JAMA Oncol. 2017, 3, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Cătană, A.; Trifa, A.P.; Achimas-Cadariu, P.A.; Bolba-Morar, G.; Lisencu, C.; Kutasi, E.; Chelaru, V.F.; Muntean, M.; Martin, D.L.; Antone, N.Z.; et al. Hereditary Breast Cancer in Romania-Molecular Particularities and Genetic Counseling Challenges in an Eastern European Country. Biomedicines 2023, 11, 1386. [Google Scholar] [CrossRef]
- Principe, D.R.; Narbutis, M.; Koch, R.; Rana, A. Frequency and prognostic value of mutations associated with the homologous recombination DNA repair pathway in a large pan cancer cohort. Sci. Rep. 2020, 10, 20223. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Wang, X.; Lin, H.; Lindor, N.M.; Couch, F.J. Mutation screening of RAD51C in high-risk breast and ovarian cancer families. Fam. Cancer 2012, 11, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Grešner, P.; Jabłońska, E.; Gromadzińska, J. Rad51 paralogs and the risk of unselected breast cancer: A case-control study. PLoS ONE. 2020, 15, e0226976. [Google Scholar] [CrossRef]
- Goidescu, I.G.; Nemeti, G.; Preda, A.; Kovacs, T.; Surcel, M.; Eniu, D.T.; Cruciat, G.; Mureșan, D. Krukenberg tumor in pregnancy: A rare case and review of the literature. J. Matern. Neonatal. Med. Off. J. Eur. Assoc. Perinat. Med. Fed. Asia Ocean. Perinat. Soc. Int. Soc. Perinat. Obstet. 2021, 35, 7290–7295. [Google Scholar] [CrossRef]
- Boland, C.R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 2010, 138, 2073–2087.e3. [Google Scholar] [CrossRef]
- Buerki, N.; Gautier, L.; Kovac, M.; Marra, G.; Buser, M.; Mueller, H.; Heinimann, K. Evidence for breast cancer as an integral part of Lynch syndrome. Genes Chromosomes Cancer 2012, 51, 83–91. [Google Scholar] [CrossRef]
- Engel, C.; Loeffler, M.; Steinke, V.; Rahner, N.; Holinski-Feder, E.; Dietmaier, W.; Schackert, H.K.; Goergens, H.; Doeberitz, M.v.K.; Goecke, T.O.; et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 4409–4415. [Google Scholar] [CrossRef]
- Daly, M.B.; Pal, T.; Maxwell, K.N.; Churpek, J.; Kohlmann, W.; AlHilli, Z.; Arun, B.; Buys, S.S.; Cheng, H.; Domchek, S.M.; et al. NCCN Guidelines® Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2024. J. Natl. Compr. Canc. Netw. 2023, 21, 1000–1010. [Google Scholar] [CrossRef]
- Roberts, M.E.; Jackson, S.A.; Susswein, L.R.; Zeinomar, N.; Ma, X.; Marshall, M.L.; Stettner, A.R.; Milewski, B.; Xu, Z.; Solomon, B.D.; et al. MSH6 and PMS2 germ-line pathogenic variants implicated in Lynch syndrome are associated with breast cancer. Genet. Med. Off. J. Am. Coll. Med. Genet. 2018, 20, 1167–1174. [Google Scholar]
- Harkness, E.F.; Barrow, E.; Newton, K.; Green, K.; Clancy, T.; Lalloo, F.; Hill, J.; Evans, D.G. Lynch syndrome caused by MLH1 mutations is associated with an increased risk of breast cancer: A cohort study. J. Med. Genet. 2015, 52, 553–556. [Google Scholar] [PubMed]
- McCarthy, A.J.; Capo-Chichi, J.-M.; Spence, T.; Grenier, S.; Stockley, T.; Kamel-Reid, S.; Serra, S.; Sabatini, P.; Chetty, R. Heterogenous loss of mismatch repair (MMR) protein expression: A challenge for immunohistochemical interpretation and microsatellite instability (MSI) evaluation. J. Pathol. Clin. Res. 2019, 5, 115–129. [Google Scholar]
- Kurzawski, G.; Safranow, K.; Suchy, J.; Chlubek, D.; Scott, R.J.; Lubiński, J. Mutation analysis of MLH1 and MSH2 genes performed by denaturing high-performance liquid chromatography. J. Biochem. Biophys. Methods 2002, 51, 89–100. [Google Scholar] [CrossRef]
- Barnetson, R.A.; Tenesa, A.; Farrington, S.M.; Nicholl, I.D.; Cetnarskyj, R.; Porteous, M.E.; Campbell, H.; Dunlop, M.G. Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N. Engl. J. Med. 2006, 354, 2751–2763. [Google Scholar] [PubMed]
- Mangold, E.; Pagenstecher, C.; Friedl, W.; Mathiak, M.; Buettner, R.; Engel, C.; Loeffler, M.; Holinski-Feder, E.; Müller-Koch, Y.; Keller, G.; et al. Spectrum and frequencies of mutations in MSH2 and MLH1 identified in 1,721 German families suspected of hereditary nonpolyposis colorectal cancer. Int. J. Cancer 2005, 116, 692–702. [Google Scholar]
- Belhadj, S.; Khurram, A.; Bandlamudi, C.; Palou-Márquez, G.; Ravichandran, V.; Steinsnyder, Z.; Wildman, T.; Catchings, A.; Kemel, Y.; Mukherjee, S.; et al. NBN Pathogenic Germline Variants are Associated with Pan-Cancer Susceptibility and In Vitro DNA Damage Response Defects. Clin. Cancer Res. an Off. J. Am. Assoc. Cancer Res. 2023, 29, 422–431. [Google Scholar]
- Wokołorczyk, D.; Kluźniak, W.; Huzarski, T.; Gronwald, J.; Szymiczek, A.; Rusak, B.; Stempa, K.; Gliniewicz, K.; Kashyap, A.; Morawska, S.; et al. Mutations in ATM, NBN and BRCA2 predispose to aggressive prostate cancer in Poland. Int. J. Cancer 2020, 147, 2793–2800. [Google Scholar] [CrossRef]
- Steffen, J.; Varon, R.; Mosor, M.; Maneva, G.; Maurer, M.; Stumm, M.; Nowakowska, D.; Rubach, M.; Kosakowska, E.; Ruka, W. Increased cancer risk of heterozygotes with NBS1 germline mutations in Poland. Int. J. Cancer 2004, 111, 67–71. [Google Scholar] [CrossRef]
- Steffen, J.; Nowakowska, D.; Niwińska, A.; Czapczak, D.; Kluska, A.; Piatkowska, M.; Wiśniewska, A.; Paszko, Z. Germline mutations 657del5 of the NBS1 gene contribute significantly to the incidence of breast cancer in Central Poland. Int. J. Cancer 2006, 119, 472–475. [Google Scholar] [CrossRef]
- Zhang, G.; Zeng, Y.; Liu, Z.; Wei, W. Significant association between Nijmegen breakage syndrome 1 657del5 polymorphism and breast cancer risk. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2013, 34, 2753–2757. [Google Scholar]
- Hauke, J.; Horvath, J.; Groß, E.; Gehrig, A.; Honisch, E.; Hackmann, K.; Schmidt, G.; Arnold, N.; Faust, U.; Sutter, C.; et al. Gene panel testing of 5589 BRCA1/2-negative index patients with breast cancer in a routine diagnostic setting: Results of the German Consortium for Hereditary Breast and Ovarian Cancer. Cancer Med. 2018, 7, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Lintas, C.; Canalis, B.; Azzarà, A.; Sabarese, G.; Perrone, G.; Gurrieri, F. Exploring the Role of the MUTYH Gene in Breast, Ovarian and Endometrial Cancer. Genes 2024, 15, 554. [Google Scholar] [CrossRef] [PubMed]
- Paller, C.J.; Tukachinsky, H.; Maertens, A.; Decker, B.; Sampson, J.R.; Cheadle, J.P.; Antonarakis, E.S. Pan-Cancer Interrogation of MUTYH Variants Reveals Biallelic Inactivation and Defective Base Excision Repair Across a Spectrum of Solid Tumors. JCO Precis. Oncol. 2024, 8, e2300251. [Google Scholar] [CrossRef] [PubMed]
- Goidescu, I.G.; Nemeti, G.; Surcel, M.; Caracostea, G.; Florian, A.R.; Cruciat, G.; Staicu, A.; Muresan, D.; Goidescu, C.; Pintican, R.; et al. Spectrum of High-Risk Mutations among Breast Cancer Patients Referred for Multigene Panel Testing in a Romanian Population. Cancers 2023, 15, 1895. [Google Scholar] [CrossRef]
- Kinoshita, E.; van der Linden, E.; Sanchez, H.; Wyman, C. RAD50, an SMC family member with multiple roles in DNA break repair: How does ATP affect function? Chromosome Res. 2009, 17, 277–288. [Google Scholar]
- Toh, M.; Ngeow, J. Homologous Recombination Deficiency: Cancer Predispositions and Treatment Implications. Oncologist 2021, 26, e1526–e1537. [Google Scholar]
- Goidescu, I.G.; Eniu, D.T.; Caracostea, G.V.; Cruciat, G.; Stamatian, F. Associations of pathogenic mutations responsible for breast cancer risk with histology and immunohistochemistry in Romanian population. Rev. Română Med. Lab. 2018, 26, 165–175. [Google Scholar]
Mutations | Pathogenic Variants | VUS | |||
---|---|---|---|---|---|
Case Nr | Mutation Type | Case Nr | Mutation Type | ||
Moderate risk | CHEK2 | 13 | c.470T>C (p.Ile157Thr) (7 cases) 1283C>T (p.Ser428Phe) c.349A>G (p.Arg117Gly) c.1232G>A (p.Trp411Ter) c.909?-1095 delA c.902delT (p.Leu301fs) c.444+1G>A | 1 | c.1313A>T |
ATM | 6 | c.7630-2A>C (2 cases) c.2250G>A c.1564_1565delGA c.5318delA c.6628delC | 9 | c.9077T>G c8734A>G c.3331C>G c.2518G>A c.1444A>C c.2735G>A c.680C>T c.4768C>T c.2735G>A | |
BARD1 | 1 | c.632T>A | 4 | c.1333G>A c.2282G>A c.26_40del15 c.1915T>C | |
RAD51C | 1 | c.905-2A>G | 5 | c.790G>A c.1063G>A | |
RAD51D | - | - | - | - | |
Low risk | MSH2 | - | - | 1 | c.1597C>G |
MSH6 | 2 | c.3261dupC c.2136delG | 2 | c.1068T>G c.2189A>G | |
MLH1 | 1 | c.2041G>A | - | - | |
PMS2 | - | - | 5 | c.620G>A c.2012C>T c.852A>G c.46A>G c.2149G>A | |
Insufficient evidence | NBN | 4 | c.657_661delACAAA (4 cases) | - | - |
MUTYH | 3 | c.721C>T c.536A>G c.1187G>A | - | - | |
RAD50 | 1 | c.2165dupA | - | - |
HGVS Mutation Nomenclature | Cases (No.) | Percentage (%) | Risk Estimation | Type |
---|---|---|---|---|
c.470T>C (p.Ile157Thr) | 7 | 53.84 | Likley Pathogenic | Missense |
1283C>T (p.Ser428Phe) | 1 | 7.69 | Pathogenic | Missense |
c.349A>G (p.Arg117Gly) | 1 | 7.69 | Pathogenic | Missense |
c.1232G>A (p.Trp411Ter) | 1 | 7.69 | Pathogenic | Nonsense |
c.909-?_1095+?del | 1 | 7.69 | Pathogenic | Deletion |
c.902delT (p.Leu301fs) | 1 | 7.69 | Pathogenic | Frameshift variant |
c.444+1G>A | 1 | 7.69 | Pathogenic | Splice donor variant |
HGVS Mutation Nomenclature | Cases (No.) | Percentage (%) | Risk Estimation | Type |
---|---|---|---|---|
c.7630-2A>C | 2 | 33.33 | Pathogenic | splice acceptor variant |
c.2250G>A | 1 | 16.66 | Pathogenic | synonymous variant |
c.1564_1565delGA | 1 | 16.66 | Pathogenic | frameshift variant |
c.5318delA | 1 | 16.66 | Pathogenic | frameshift variant |
c.6628delC | 1 | 16.66 | Pathogenic | frameshift variant |
Pathogenic Variants in High Risk Genes | Number of Patients | HGVS Mutation (Human Genome Variation Society) |
---|---|---|
BRCA1 | 43 | c.3607C>T (14 cases) c.5266dupC (11 cases) c.181T>G (3 cases) c.3700_3704delGTAAA (3 cases) c.2241dupC (2 cases) c.843_846delCTCA (2 cases) c.135-2A>G (single case) c.4035delA (single case) c.1789G>A (single case) c.737delT (single case) c.3187C>T (single case) c.4986+6T>C (single case) c.212+1G>T (single case) c.5030_5033delCTAA (single case) |
BRCA2 | 21 | c.9371A>T (9 cases) c.8755-1G>A (3 cases) c.1528G>T (single case) c.9253delA (single case) c.7007G>C (single case) c.8695C>T (single case) c.7209_7212delCAAAinsGG (single case) c.6557C>A (single case) c.793+1G>A (single case) c.3462delC (single case) c.8655dupA pat (single case) |
TP53 | 2 | c.469G>T (2 cases) |
PALB2 | 6 | c.93dupA (3 cases) c.509_510delGA (single case) c.3549C>G (single case) |
Moderate Risk mutation | High Risk Mutation |
CHEK2 c.470T>C | BRCA1 c.843_846delCTCA |
Moderate Risk mutation | Moderate Risk mutation |
CHEK2 c.444n+1G>A | ATM c.7630-2A>C |
Moderate Risk mutation | Insufficient evidence |
RAD51C c.905-2A>G | MUTYH c.536A>G |
ATM c.5318delA | MUTYH c.721C>T |
Moderate Risk mutation | VUS |
CHEK2 c.1283C>T | BLM c.1642C>T |
CHEK2 c.1232G>A | RAD50 c900G>A |
Insufficient evidence | VUS |
NBN c.657_661delACAAA | MRE11A c.1091G>A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goidescu, I.G.; Rotar, I.C.; Nemeti, G.; Staicu, A.; Surcel, M.; Cruciat, G.; Mureșan, D.; Goidescu, C.; Eniu, D. Moderate-Low Risk Breast Cancer Gene Expression in a Romanian Population. Int. J. Mol. Sci. 2025, 26, 5313. https://doi.org/10.3390/ijms26115313
Goidescu IG, Rotar IC, Nemeti G, Staicu A, Surcel M, Cruciat G, Mureșan D, Goidescu C, Eniu D. Moderate-Low Risk Breast Cancer Gene Expression in a Romanian Population. International Journal of Molecular Sciences. 2025; 26(11):5313. https://doi.org/10.3390/ijms26115313
Chicago/Turabian StyleGoidescu, Iulian Gabriel, Ioana Cristina Rotar, Georgiana Nemeti, Adelina Staicu, Mihai Surcel, Gheorghe Cruciat, Daniel Mureșan, Cerasela Goidescu, and Dan Eniu. 2025. "Moderate-Low Risk Breast Cancer Gene Expression in a Romanian Population" International Journal of Molecular Sciences 26, no. 11: 5313. https://doi.org/10.3390/ijms26115313
APA StyleGoidescu, I. G., Rotar, I. C., Nemeti, G., Staicu, A., Surcel, M., Cruciat, G., Mureșan, D., Goidescu, C., & Eniu, D. (2025). Moderate-Low Risk Breast Cancer Gene Expression in a Romanian Population. International Journal of Molecular Sciences, 26(11), 5313. https://doi.org/10.3390/ijms26115313