Asthma and COPD Beyond the Airways: Exploring Neurocognitive Links Through NF-κB Subunits c-Rel and p65
Abstract
1. Introduction
- To examine the c-Rel and p65 mRNA expression in each group.
- To identify any relationships between the results of neuropsychiatric evaluation and c-Rel or p65 mRNA expression.
2. Results
2.1. Baseline Characteristics
2.2. Relationship Between Neuropsychiatric Evaluation Results and c-Rel/p65 mRNA Expression
3. Discussion
4. Materials and Methods
4.1. Bioethics Committee
4.2. Characteristics of the Groups at the Baseline
4.3. Eligibility Criteria
4.4. Examination Procedure
4.5. Bioemical Methods
4.5.1. RNA Extraction
4.5.2. RNA Concentration Measurement
4.5.3. Reverse Transcription and qPCR
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ΔCT Gene | delta cycle threshold values |
ACQ | Asthma Control Questionnaire |
ACT TM | Asthma Control Test TM |
ADL | Index of Independence of Daily Living |
AMTS | Abbreviated Mental Test Score |
AQLQ(S) | The standardized Asthma Quality of Life Questionnaire |
BBB | Blood–Brain Barrier |
B-H | Benjamini–Hochberg correction |
CAT | COPD Assessment Test |
CDT | Clock-Drawing Test |
CG | control group |
CNS | central nervous system |
COPD | chronic obstructive lung disease |
CREB | cAMP response element binding protein |
EDTA | Ethylenediaminetetraacetic Acid |
G-CSF | granulocyte colony-stimulating factor |
GDS | the 15-item Geriatric Depression Scale |
HAM-D | The Hamilton Depression Rating Scale |
HIS | Hachinski Ischaemic Score |
IADL | The Lawton Instrumental Activities of Daily Living |
IgE | Immunglobuline E |
IL | Interleukin |
MMP | Matrix metalloproteinase |
mMRC | modified Medical Research Council dyspnea scale |
MMSE | Minimal Mental State Examination |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
PKA | protein kinase A |
ROS | reactive oxygen species |
SD | standard deviation |
SE | standard error |
SF-36 | 36-item Short Form Healthy Survey |
SGRQ-C | The St. George Respiratory Questionnaire dedicated COPD patients |
TGF-ß | Transforming Growth Factor ß |
TNF-α | Tumor Necrosis Factor α |
References
- Bartels, C.M.; Chen, Y.; Powell, W.R.; Rosenkranz, M.A.; Bendlin, B.B.; Kramer, J.; Busse, W.W.; Kind, A. Alzheimer incidence and prevalence with and without asthma: A Medicare cohort study. J. Allergy Clin. Immunol. 2024, 154, 498–502.e1. [Google Scholar] [CrossRef] [PubMed]
- Agustí, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; de Oca, M.M.; et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2023, 207, 819–837. [Google Scholar] [CrossRef] [PubMed]
- Hugo, J.; Ganguli, M. Dementia and Cognitive Impairment: Epidemiology, Diagnosis, and Treatment. Clin. Geriatr. Med. 2014, 30, 421. [Google Scholar] [CrossRef]
- Szczerba, M.; Hejnosz, A.; Majewski, G.; Grodzka, O.; Domitrz, I. Asthma as a Modifiable Risk Factor for Dementia and Neurodegeneration: A Systematic Review. Cureus 2025, 17, e77540. [Google Scholar] [CrossRef]
- Nair, A.K.; Van Hulle, C.A.; Bendlin, B.B.; Zetterberg, H.; Blennow, K.; Wild, N.; Kollmorgen, G.; Suridjan, I.; Busse, W.W.; Rosenkranz, M.A. Asthma amplifies dementia risk: Evidence from CSF biomarkers and cognitive decline. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2022, 8, e12315. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.N. Exercise, cognitive function, and aging. Adv. Physiol. Educ. 2015, 39, 55–62. [Google Scholar] [CrossRef]
- Barnes, P.J. Cellular and molecular mechanisms of asthma and COPD. Clin. Sci. 2017, 131, 1541–1558. [Google Scholar] [CrossRef]
- Kempuraj, D.; Thangavel, R.; Natteru, P.A.; Selvakumar, G.P.; Saeed, D.; Zahoor, H.; Zaheer, S.; Iyer, S.S.; Zaheer, A. Neuroinflammation Induces Neurodegeneration. J. Neurol. Neurosurg. Spine 2016, 1, 1003. [Google Scholar]
- Kleniewska, P.; Pawliczak, R. The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomed. Pharmacother. 2017, 94, 100–108. [Google Scholar] [CrossRef]
- Renauld, J.C. New insights into the role of cytokines in asthma. J. Clin. Pathol. 2001, 54, 577. [Google Scholar] [CrossRef]
- Barnes, P.J.; Adcock, I.M. Transcription factors and asthma. Eur. Respir. J. 1998, 12, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J. Inflammatory endotypes in COPD. Allergy 2019, 74, 1249–1256. [Google Scholar] [CrossRef]
- Sethi, S.; Mahler, D.A.; Marcus, P.; Owen, C.A.; Yawn, B.; Rennard, S. Inflammation in COPD: Implications for Management. Am. J. Med. 2012, 125, 1162–1170. [Google Scholar] [CrossRef]
- Barnes, P.J. Mechanisms in COPD: Differences From Asthma. Chest 2000, 117, 10S–14S. [Google Scholar] [CrossRef] [PubMed]
- Bajbouj, K.; AbuJabal, R.; Sahnoon, L.; Olivenstein, R.; Mahboub, B.; Hamid, Q. IL-5 receptor expression in lung fibroblasts: Potential role in airway remodeling in asthma. Allergy 2023, 78, 882–885. [Google Scholar] [CrossRef]
- Gorski, S.A.; Lawrenceid, M.G.; Hinkelman, A.; Spano, M.M.; Steinkeid, J.W.; Borish, L.; Teague, W.G.; Braciale, T.J. Expression of IL-5 receptor alpha by murine and human lung neutrophils. PLoS ONE 2019, 14, e0221113. [Google Scholar] [CrossRef]
- Buchheit, K.M.; Laidlaw, T.M.; Levy, J.M.; Boston, B.; Ga, A. Immunology-based recommendations for available and upcoming biologics in aspirin-exacerbated respiratory disease. J. Allergy Clin. Immunol. 2021, 148, 348–350. [Google Scholar] [CrossRef]
- Singh, D.; Kolsum, U.; Brightling, C.E.; Locantore, N.; Agusti, A. Eosinophilic inflammation in COPD: Prevalence and clinical characteristics. Eur. Respir. J. 2014, 44, 1697–1700. [Google Scholar] [CrossRef] [PubMed]
- Brightling, C.E.; Monteiro, W.; Ward, R.; Parker, D.; Morgan, M.D.L.; Wardlaw, A.J.; Pavord, I.D. Sputum eosinophilia and short-term response to prednisolone in chronic obstructive pulmonary disease: A randomised controlled trial. Lancet 2000, 356, 1480–1485. [Google Scholar] [CrossRef]
- Srinivasan, M.; Lahiri, D.K. Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer’s disease and multiple sclerosis. Expert Opin. Ther. Targets 2015, 19, 471–487. [Google Scholar] [CrossRef]
- Li, J.; Fei, G.-H. The unique alterations of hippocampus and cognitive impairment in chronic obstructive pulmonary disease. Respir. Res. 2013, 14, 140. [Google Scholar]
- Dodd, J.W.; Getov, S.V.; Jones, P.W. Cognitive function in COPD. Eur. Respir. J. 2010, 35, 913–922. [Google Scholar] [CrossRef]
- Wenger, R.H.; Gassmann, M. Oxygen(es) and the hypoxia-inducible factor-1. Biol. Chem. 1997, 378, 609–616. [Google Scholar]
- Gruneberg, D.; Montellano, F.A.; Plaschke, K.; Li, L.; Marti, H.H.; Kunze, R. Neuronal prolyl-4-hydroxylase 2 deficiency improves cognitive abilities in a murine model of cerebral hypoperfusion. Exp. Neurol. 2016, 286, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Le, W. Pathological role of hypoxia in Alzheimer’s disease. Exp. Neurol. 2010, 223, 299–303. [Google Scholar] [CrossRef]
- Erzurum, S.C. New insights in oxidant biology in asthma. Ann. Am. Thorac. Soc. 2016, 13, S35–S39. [Google Scholar] [CrossRef]
- Higbee, D.H.; Dodd, J.W. Cognitive impairment in COPD: An often overlooked co-morbidity. Expert. Rev. Respir. Med. 2021, 15, 9–11. [Google Scholar] [CrossRef]
- Dozor, A.J. The role of oxidative stress in the pathogenesis and treatment of asthma. Ann. N. Y. Acad. Sci. 2010, 1203, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Caldera-Alvarado, G.; Khan, D.A.; Defina, L.F.; Pieper, A.; Brown, E.S. Relationship between asthma and cognition: The Cooper Center Longitudinal Study. Allergy 2013, 68, 545–548. [Google Scholar] [CrossRef]
- O’Byrne, P.M.; Pedersen, S.; Schatz, M.; Thoren, A.; Ekholm, E.; Carlsson, L.G.; Busse, W.W. The Poorly Explored Impact of Uncontrolled Asthma. Chest 2013, 143, 511–523. [Google Scholar] [CrossRef]
- Rhyou, H.I.; Nam, Y.H. Association between cognitive function and asthma in adults. Ann. Allergy Asthma Immunol. 2021, 126, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Irani, F.; Barbone, J.M.; Beausoleil, J.; Gerald, L. Is asthma associated with cognitive impairments? A meta-analytic review. J. Clin. Exp. Neuropsychol. 2017, 39, 965–978. [Google Scholar] [CrossRef]
- Singh, B.; Mielke, M.M.; Parsaik, A.K.; Cha, R.H.; Roberts, R.O.; Scanlon, P.D.; Geda, Y.E.; Christianson, T.J.; Pankratz, V.S.; Petersen, R.C. A prospective study of chronic obstructive pulmonary disease and the risk for mild cognitive impairment. JAMA Neurol. 2014, 71, 581–588. [Google Scholar] [CrossRef]
- Yohannes, A.M.; Chen, W.; Moga, A.M.; Leroi, I.; Connolly, M.J. Cognitive Impairment in Chronic Obstructive Pulmonary Disease and Chronic Heart Failure: A Systematic Review and Meta-analysis of Observational Studies. J. Am. Med. Dir. Assoc. 2017, 18, 451.e1–451.e11. [Google Scholar] [CrossRef] [PubMed]
- Buist, A.S.; McBurnie, M.A.; Vollmer, W.M.; Gillespie, S.; Burney, P.; Mannino, D.M.; Menezes, A.M.; Sullivan, S.D.; Lee, T.A.; Weiss, K.B.; et al. International variation in the prevalence of COPD (the BOLD Study): A population-based prevalence study. Lancet 2007, 370, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Abramson, M.J.; Perret, J.L.; Dharmage, S.C.; McDonald, V.M.; McDonald, C.F. Distinguishing adult-onset asthma from COPD: A review and a new approach. Int. J. Chron. Obstruct. Pulmon. Dis. 2014, 9, 945. [Google Scholar] [CrossRef]
- Covariate Selection—Developing a Protocol for Observational Comparative Effectiveness Research: A User’s Guide—NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK126194/ (accessed on 29 March 2022).
- Yang, Z.Y.; Yuan, C.X. IL-17A promotes the neuroinflammation and cognitive function in sevoflurane anesthetized aged rats via activation of NF-κB signaling pathway. BMC Anesthesiol. 2018, 18, 147. [Google Scholar] [CrossRef]
- Figat, M.; Wiśniewska, A.; Plichta, J.; Miłkowska-Dymanowska, J.; Majewski, S.; Karbownik, M.S.; Kuna, P.; Panek, M.G. Potential association between obstructive lung diseases and cognitive decline. Front. Immunol. 2024, 15, 1363373. [Google Scholar] [CrossRef]
- Shulman, K.I. Clock-drawing: Is it the ideal cognitive screening test? Int. J. Geriatr. Psychiatry 1999, 15, 548–561. [Google Scholar] [CrossRef]
- The Clock-Drawing Test. Available online: https://www.psychiatrictimes.com/view/the-clock-drawing-test (accessed on 2 November 2024).
- Kumar, A.; Takada, Y.; Boriek, A.M.; Aggarwal, B.B. Nuclear factor-kB: Its role in health and disease. J. Mol. Med. 2004, 82, 434–448. [Google Scholar] [CrossRef]
- James De Jesú, T.; Ramakrishnan, P. NF-κB c-Rel Dictates the Inflammatory Threshold by Acting as a Transcriptional Repressor. iScience 2020, 23, 100876. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gan, W.; Kang, M.; Lv, C.; Zhao, Z.; Wu, Y.; Zhang, X.; Wang, R. Asthma aggravates alzheimer’s disease by up-regulating NF-κB signaling pathway through LTD4. Brain Res. 2024, 1825, 148711. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, P. 2023 GINA report for asthma. Lancet Respir. Med. 2023, 11, 589. [Google Scholar] [CrossRef]
- Ahn, H.J.; Hernandez, C.M.; Levenson, J.M.; Lubin, F.D.; Liou, H.C.; Sweatt, J.D. c-Rel, an NF-κB family transcription factor, is required for hippocampal long-term synaptic plasticity and memory formation. Learn. Mem. 2008, 15, 539. [Google Scholar] [CrossRef]
- Gutierrez, H.; O’Keeffe, G.W.; Gavaldà, N.; Gallagher, D.; Davies, A.M. Nuclear Factor κB Signaling Either Stimulates or Inhibits Neurite Growth Depending on the Phosphorylation Status of p65/RelA. J. Neurosci. 2008, 28, 8246–8256. [Google Scholar] [CrossRef]
- Giridharan, S.; Srinivasan, M. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J. Inflamm. Res. 2018, 11, 407. [Google Scholar] [CrossRef]
- Figat, M.; Kardas, G.; Kuna, P.; Panek, M.G. Beneficial Influence of Exendin-4 on Specific Organs and Mechanisms Favourable for the Elderly with Concomitant Obstructive Lung Diseases. Brain Sci. 2022, 12, 1090. [Google Scholar] [CrossRef] [PubMed]
- Skurikhin, E.G.; Pershina, O.V.; Pakhomova, A.V.; Pan, E.S.; Krupin, V.A.; Ermakova, N.N.; Vaizova, O.E.; Pozdeeva, A.S.; Zhukova, M.A.; Skurikhina, V.E.; et al. Endothelial Progenitor Cells as Pathogenetic and Diagnostic Factors, and Potential Targets for GLP-1 in Combination with Metabolic Syndrome and Chronic Obstructive Pulmonary Disease. Int. J. Mol. Sci. 2019, 20, 1105. [Google Scholar] [CrossRef]
- Peters, M.C.; Fahy, J.V. Metabolic consequences of obesity as an “outside in” mechanism of disease severity in asthma. Eur. Respir. J. 2016, 48, 291. [Google Scholar] [CrossRef]
- Peters, M.C.; McGrath, K.W.; Hawkins, G.A.; Hastie, A.T.; Levy, B.D.; Israel, E.; Phillips, B.R.; Mauger, D.T.; Comhair, S.A.; Erzurum, S.C.; et al. Plasma IL6 levels, metabolic dysfunction, and asthma severity: A cross-sectional analysis of two cohorts. Lancet Respir. Med. 2016, 4, 574. [Google Scholar] [CrossRef]
- Venkatesan, P. GOLD COPD report: 2024 update. Lancet Respir. Med. 2024, 12, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. Early View Task force report ERS/ATS technical standard on interpretive strategies for routine lung function tests ERS/ATS Technical Standard on Interpretive Strategies for Routine Lung Function Test. Eur. Respir. J. 2021, 60, 2101499. [Google Scholar] [CrossRef]
- Katz, S.; Downs, T.D.; Cash, H.R.; Grotz, R.C. Progress in Development of the Index of ADL. Gerontologist 1970, 10, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of Illness in the Aged: The Index of ADL: A Standardized Measure of Biological and Psychosocial Function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Graf, C. The Lawton instrumental activities of daily living scale. Am. J. Nurs. 2008, 108, 52–62. [Google Scholar] [CrossRef]
- Ware, J.E.; Kosinski, M. Interpreting SF-36 summary health measures: A response. Qual. Life Res. 2001, 10, 405–413. [Google Scholar] [CrossRef]
- Hagell, P.; Westergren, A.; Årestedt, K. Beware of the origin of numbers: Standard scoring of the SF-12 and SF-36 summary measures distorts measurement and score interpretations. Res. Nurs. Health 2017, 40, 378–386. [Google Scholar] [CrossRef]
- Metodyka Oceny Jakości Życia—Turska, Wioletta—FBC. Available online: https://fbc.pionier.net.pl/details/nnlkd26 (accessed on 13 April 2023).
- Taft, C.; Karlsson, J.; Sullivan, M. Do SF-36 summary component scores accurately summarize subscale scores? Qual. Life Res. 2001, 10, 395–404. [Google Scholar] [CrossRef]
- Thomas, M.; Kay, S.; Pike, J.; Williams, A.; Rosenzweig, J.R.C.; Hillyer, E.V.; Price, D. The Asthma Control TestTM (ACT) as a predictor of GINA guideline-defined asthma control: Analysis of a multinational cross-sectional survey. Prim. Care Respir. J. 2009, 18, 41. [Google Scholar] [CrossRef]
- Juniper, E.F.; Bousquet, J.; Abetz, L.; Bateman, E.D. Identifying “well-controlled” and “not well-controlled” asthma using the Asthma Control Questionnaire. Respir. Med. 2006, 100, 616–621. [Google Scholar] [CrossRef]
- Juniper, E.F.; Sonia Buist, A.; Cox, F.M.; Ferrie, P.J.; King, D.R. Validation of a standardized version of the Asthma Quality of Life Questionnaire. Chest 1999, 115, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.W.; Harding, G.; Berry, P.; Wiklund, I.; Chen, W.H.; Kline Leidy, N. Development and first validation of the COPD Assessment Test. Eur. Respir. J. 2009, 34, 648–654. [Google Scholar] [CrossRef]
- Karloh, M.; Mayer, A.F.; Maurici, R.; Pizzichini, M.M.M.; Jones, P.W.; Pizzichini, E. The COPD Assessment Test: What Do We Know So Far?: A Systematic Review and Meta-Analysis About Clinical Outcomes Prediction and Classification of Patients Into GOLD Stages. Chest 2016, 149, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, M.C. Standardised questionnaire on respiratory symptoms: A statement prepared and approved by the MRC Committee on the Aetiology of Chronic Bronchitis (MRC breathlessness score). BMJ 1960, 2, 1665. [Google Scholar]
- Meguro, M.; Barley, E.A.; Spencer, S.; Jones, P.W. Development and Validation of an Improved, COPD-Specific Version of the St. George Respiratory Questionnaire. Chest 2007, 132, 456–463. [Google Scholar] [CrossRef]
- Martin, A.L.; Marvel, J.; Fahrbach, K.; Cadarette, S.M.; Wilcox, T.K.; Donohue, J.F. The association of lung function and St. George’s respiratory questionnaire with exacerbations in COPD: A systematic literature review and regression analysis. Respir. Res. 2016, 17, 40. [Google Scholar] [CrossRef]
- Pezzotti, P.; Scalmana, S.; Mastromattei, A.; Di Lallo, D. The accuracy of the MMSE in detecting cognitive impairment when administered by general practitioners: A prospective observational study. BMC Fam. Pract. 2008, 9, 29. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Cullen, B.; O’Neill, B.; Evans, J.J.; Coen, R.F.; Lawlor, B.A. A review of screening tests for cognitive impairment. J. Neurol. Neurosurg. Psychiatry 2007, 78, 790. [Google Scholar] [CrossRef]
- Shulman, K.I.; Shedletsky, R.; Silver, I.L. The challenge of time: Clock-drawing and cognitive function in the elderly. Int. J. Geriatr. Psychiatry 1986, 1, 135–140. [Google Scholar] [CrossRef]
- Paganini-Hill, A.; Clark, L.J.; Henderson, V.W.; Birge, S.J. Clock drawing: Analysis in a retirement community. J. Am. Geriatr. Soc. 2001, 49, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Piotrowicz, K.; Romanik, W.; Skalska, A.; Gryglewska, B.; Szczerbińska, K.; Derejczyk, J.; Krzyżewski, R.M.; Grodzicki, T.; Gąsowski, J. The comparison of the 1972 Hodkinson’s Abbreviated Mental Test Score (AMTS) and its variants in screening for cognitive impairment. Aging Clin. Exp. Res. 2019, 31, 561–566. [Google Scholar] [CrossRef]
- Pantoni, L.; Inzitari, D. Hachinski’s ischemic score and the diagnosis of vascular dementia: A review. Ital. J. Neurol. Sci. 1993, 14, 539–546. [Google Scholar] [CrossRef]
- Moroney, J.T.; Bagiella, E.; Desmond, D.W.; Hachinski, V.C.; Mölsä, P.K.; Gustafson, L.; Brun, A.; Fischer, P.; Erkinjuntti, T.; Rosen, W.; et al. Meta-analysis of the Hachinski Ischemic Score in pathologically verified dementias. Neurology 1997, 49, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Rosen, W.G.; Terry, R.D.; Fuld, P.A.; Katzman, R.; Peck, A. Pathological verification of ischemic score in differentiation of dementias. Ann. Neurol. 1980, 7, 486–488. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.C.; Motivala, S.J.; Dang, J.; Lucko, A.; Lang, N.; Levin, M.J.; Oxman, M.N.; Irwin, M.R. Structural Validation of the Hamilton Depression Rating Scale. J. Psychopathol. Behav. Assess. 2004, 26, 241–254. [Google Scholar] [CrossRef]
- Nixon, N.; Guo, B.; Garland, A.; Kaylor-Hughes, C.; Nixon, E.; Morriss, R. The bi-factor structure of the 17-item Hamilton Depression Rating Scale in persistent major depression; dimensional measurement of outcome. PLoS ONE 2020, 15, e241370. [Google Scholar] [CrossRef]
- Almeida, O.P.; Almeida, S.A.; Almeida, O.P. Short versions of the geriatric depression scale: A study of their validity for the diagnosis of a major depressive episode according to ICD-10 and DSM-IV. Int. J. Geriatr. Psychiatry 1999, 14, 858–865. [Google Scholar] [CrossRef]
- Brown, L.M.; Schinka, J.A. Development of initial validation of a 15-item informant version of the Geriatric Depression Scale. Int. J. Geriatr. Psychiatry 2005, 20, 911–918. [Google Scholar] [CrossRef]
- D’Ath, P.; Katona, P.; Mullan, E.; Evans, S.; Katona, C. Screening, detection and management of depression in elderly primary care attenders. I: The acceptability and performance of the 15 item Geriatric Depression Scale (GDS15) and the development of short versions. Fam. Pract. 1994, 11, 260–266. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Quantifying and Storing RNA. Cold Spring Harb. Protoc. 2020, 2020, 101709. [Google Scholar] [CrossRef] [PubMed]
Group | Datatype | −ΔCT c-Rel | SE | −ΔCT p65 | SE |
---|---|---|---|---|---|
Asthma | raw | −13.931 | 0.680 | −9.873 | 0.694 |
adjusted | −13.815 | 0.786 | −9.394 | 0.821 | |
COPD | raw | −15.426 | 0.654 | −10.537 | 0.654 |
adjusted | −16.340 | 0.908 | −11.445 | 0.940 | |
CG | raw | −13.624 | 0.680 | −12.121 | 0.680 |
adjusted | −12.969 | 0.807 | −11.644 | 0.806 |
All * | Asthma | COPD | CG | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ΔCT c-Rel | ΔCT p65 | ΔCT c-Rel | ΔCT p65 | ΔCT c-Rel | ΔCT p65 | ΔCT c-Rel | ΔCT p65 | |||
ΔCT PKA | Raw | β | 0.241 | 0.168 | −0.059 | 0.227 | 0.342 | 0.393 | 0.146 | 0.036 |
p | 0.035 | 0.148 | 0.780 | 0.287 | 0.081 | 0.043 | 0.487 | 0.863 | ||
Adjusted | β | 0.276 | 0.222 | −0.419 | −0.041 | 0.573 | 0.468 | 0.125 | −0.265 | |
p | 0.020 | 0.073 | 0.071 | 0.870 | 0.047 | 0.065 | 0.281 | 0.298 | ||
ΔCT CREB | Raw | β | 0.256 | 0.080 | −0.113 | −0.021 | 0.342 | 0.421 | 0.383 | −0.071 |
p | 0.025 | 0.492 | 0.589 | 0.921 | 0.081 | 0.029 | 0.059 | 0.735 | ||
Adjusted | β | 0.292 | 0.093 | −0.318 | −0.296 | 0.579 | 0.434 | 0.492 | −0.166 | |
p | 0.013 | 0.455 | 0.289 | 0.320 | 0.022 | 0.055 | 0.066 | 0.543 | ||
MMSE | Raw | β | 0.288 | −0.002 | 0.088 | 0.122 | 0.497 | 0.161 | −0.162 | −0.095 |
p | 0.011 | 0.988 | 0.675 | 0.570 | 0.008 | 0.422 | 0.440 | 0.651 | ||
Adjusted | β | 0.215 | 0.015 | −0.046 | 0.091 | 0.166 | 0.075 | 0.238 | 0.036 | |
p | 0.028 | 0.883 | 0.820 | 0.662 | 0.510 | 0.733 | 0.197 | 0.842 | ||
AMTS | Raw | β | 0.273 | 0.054 | 0.043 | 0.185 | 0.351 | 0.094 | 0.204 | 0.202 |
p | 0.016 | 0.641 | 0.838 | 0.386 | 0.073 | 0.642 | 0.327 | 0.334 | ||
Adjusted | β | 0.210 | 0.065 | −0.071 | 0.127 | 0.062 | 0.047 | 0.091 | 0.066 | |
p | 0.042 | 0.544 | 0.769 | 0.569 | 0.813 | 0.835 | 0.732 | 0.797 | ||
HIS | raw | β | −0.183 | 0.067 | −0.082 | −0.134 | −0.288 | −0.022 | 0.136 | 0.172 |
p | 0.111 | 0.567 | 0.698 | 0.533 | 0.145 | 0.913 | 0.517 | 0.412 | ||
adjusted | β | −0.213 | 0.052 | −0.005 | −0.180 | −0.142 | 0.096 | 0.053 | 0.157 | |
p | 0.084 | 0.687 | 0.982 | 0.406 | 0.605 | 0.688 | 0.860 | 0.590 | ||
GDS | raw | β | −0.043 | 0.051 | −0.184 | 0.255 | −0.064 | −0.299 | 0.361 | 0.016 |
p | 0.713 | 0.663 | 0.390 | 0.241 | 0.750 | 0.129 | 0.076 | 0.941 | ||
adjusted | β | −0.031 | 0.019 | −0.227 | 0.479 | 0.108 | −0.384 | 0.395 | −0.133 | |
p | 0.775 | 0.864 | 0.432 | 0.074 | 0.709 | 0.114 | 0.091 | 0.573 | ||
HAM-D | raw | β | −0.169 | −0.024 | −0.025 | 0.334 | −0.328 | −0.398 | 0.139 | −0.058 |
p | 0.141 | 0.839 | 0.904 | 0.110 | 0.095 | 0.040 | 0.506 | 0.784 | ||
adjusted | β | −0.174 | −0.051 | −0.126 | 0.414 | −0.011 | −0.363 | 0.121 | −0.149 | |
p | 0.159 | 0.691 | 0.684 | 0.159 | 0.969 | 0.165 | 0.640 | 0.554 |
−ΔCT c-Rel | −ΔCT p65 | −ΔCT c-Rel | −ΔCT p65 | ||||
---|---|---|---|---|---|---|---|
All * | Correct | raw | −14.198 | −11.333 | adjusted | −14.387 | −11.461 |
Wrong | −14.792 | −9.379 | −14.787 | −9.123 | |||
p | 0.516 | 0.035 | 0.728 | 0.056 | |||
Asthma | Correct | −13.655 | −10.201 | −13.597 | −10.265 | ||
Wrong | −14.424 | −9.217 | −14.247 | −8.885 | |||
p | 0.352 | 0.217 | 0.494 | 0.119 | |||
COPD | Correct | −15.171 | −9.097 | −15.544 | −9.408 | ||
Wrong | −15.617 | −11.233 | −15.341 | −11.024 | |||
p | 0.817 | 0.199 | 0.935 | 0.461 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figat, M.; Wisniewska, A.; Plichta, J.; Milkowska-Dymanowska, J.; Majewski, S.; Karbownik, M.S.; Kuna, P.; Panek, M.G. Asthma and COPD Beyond the Airways: Exploring Neurocognitive Links Through NF-κB Subunits c-Rel and p65. Int. J. Mol. Sci. 2025, 26, 5217. https://doi.org/10.3390/ijms26115217
Figat M, Wisniewska A, Plichta J, Milkowska-Dymanowska J, Majewski S, Karbownik MS, Kuna P, Panek MG. Asthma and COPD Beyond the Airways: Exploring Neurocognitive Links Through NF-κB Subunits c-Rel and p65. International Journal of Molecular Sciences. 2025; 26(11):5217. https://doi.org/10.3390/ijms26115217
Chicago/Turabian StyleFigat, Magdalena, Aleksandra Wisniewska, Jacek Plichta, Joanna Milkowska-Dymanowska, Sebastian Majewski, Michal S. Karbownik, Piotr Kuna, and Michal G. Panek. 2025. "Asthma and COPD Beyond the Airways: Exploring Neurocognitive Links Through NF-κB Subunits c-Rel and p65" International Journal of Molecular Sciences 26, no. 11: 5217. https://doi.org/10.3390/ijms26115217
APA StyleFigat, M., Wisniewska, A., Plichta, J., Milkowska-Dymanowska, J., Majewski, S., Karbownik, M. S., Kuna, P., & Panek, M. G. (2025). Asthma and COPD Beyond the Airways: Exploring Neurocognitive Links Through NF-κB Subunits c-Rel and p65. International Journal of Molecular Sciences, 26(11), 5217. https://doi.org/10.3390/ijms26115217