Roles of a Y-Linked iDmrt1 Paralogue and Insulin-like Androgenic Gland Hormone in Sexual Development in the Tropical Rock Lobster, Panulirus ornatus
Abstract
1. Introduction
2. Results
2.1. Panulirus Ornatus Male Genome
2.1.1. Genome Survey
2.1.2. Genome Sequencing Assembly
2.1.3. Repeat Annotation
2.1.4. Gene Prediction
2.1.5. Identification and Validation of the Male Y-Linked iDmrt Paralogue, Po-iDMY
2.2. iDMY and iDmrt Ontogeny
2.3. IAG Expression and the Appearance of Sexual Characteristics
2.4. Po-IAG Silencing in Juvenile Panulirus Ornatus: Effects on Sexual Development
3. Discussion
4. Materials and Methods
4.1. Male Genome
4.1.1. Sample Collection
4.1.2. High-Molecular-Weight Genomic DNA Extraction
4.1.3. Next-Generation Sequencing
4.1.4. Genome Assembly and Annotation
4.2. Identification of the Full Sequence of the Male Y-Linked iDmrt Paralogue, Po-iDMY
4.2.1. Sample Collection
4.2.2. Identify the Complete Sequence of Po-iDMY
4.2.3. Sequence Analysis
4.2.4. Validation of Male-Specific Po-iDMY Marker
4.3. iDMY Ontogeny
4.4. Correlation Between Po-IAG Expression and the Appearance of Sexual Characteristics
Primer Name | Gene/Amplicon Size (nt) | Primer Sequence 5′–3′ | Template |
---|---|---|---|
Po-iDMY-GSP1_F | iDMY | GGACACCAAGCTACAGAAGTGCGAC | cDNA |
Po-iDMY-NGSP1_F | iDMY | GGCGTTATGAAAGAGAAGCGGGCCC | cDNA |
Po-IAG F | Po-IAG/394nt | TCTCCTCCTACAACGTGACG | cDNA |
Po-IAG R | TGTCGTAGCTCAGTGTCACT | ||
Po-IAG F | Po-IAG/189nt | CAAGTCTTACATCGGCAGCC | cDNA |
Po-IAG R | TTCGTGATAGGAGGGTTGCC | ||
Po-IGFBP F | Po-IGFBP/309nt | GGAGGGATCTTCGTTGTTGC | cDNA |
Po-IGFBP R | TGACCCACATACAGGATCCG | ||
Po-iDMY F | Po-iDMY/208nt | AGGTTGGGAAGTACCCAGTG | gDNA |
Po-iDMY R | GTCGCACCTCTCAAAGAACC | ||
Po-Dmrt R | Po-Dmrt/600nt | GCAGCCTGAATATGAGGGGT | gDNA |
Po-Dmrt F | AGTAAGGCAAGTTGACGGGA |
4.5. In Vivo Panulirus Ornatus IAG Silencing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Porter, M.L.; Pérez-Losada, M.; Crandall, K.A. Model-based multi-locus estimation of decapod phylogeny and divergence times. Mol. Phylogenet. Evol. 2005, 37, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Klaoudatos, S.; Klaoudatos, D. Phylogeny Biology and Ecology of Crustaceans (Phylum Arthropoda; Subphylum Crustacea). In Reproductive Biology of Crustaceans; CRC Press: Boca Raton, FL, USA, 2008; pp. 13–90. [Google Scholar]
- Ghafor, I.M. Crustacean. In Crustacea; IntechOpen: London, UK, 2020. [Google Scholar]
- Chakraborty, R.D. Taxonomy, Biology and Distribution of Deep Sea Shrimps and Lobsters. In Training Manual on Species Identification; CMFRI: Kochi, India, 2019; pp. 142–159. ISBN 978-93-82263-16-6. [Google Scholar]
- Hurzaid, A.; Chan, T.Y.; Mohd Nor, S.A.; Muchlisin, Z.A.; Chen, W.J. Molecular phylogeny and diversity of penaeid shrimps (Crustacea: Decapoda) from South-East Asian waters. Zool. Scr. 2020, 49, 596–613. [Google Scholar] [CrossRef]
- Cuesta, J.A.; Drake, P.; Martínez-Rodríguez, G.; Rodríguez, A.; Schubart, C.D. Molecular phylogeny of the genera Palaemon and Palaemonetes (Decapoda, Caridea, Palaemonidae) from a European perspective. Crustaceana 2012, 85, 877–888. [Google Scholar] [CrossRef]
- Matzen da Silva, J.; Creer, S.; Dos Santos, A.; Costa, A.C.; Cunha, M.R.; Costa, F.O.; Carvalho, G.R. Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca). PLoS ONE 2011, 6, e19449. [Google Scholar] [CrossRef]
- Spiridonov, V.A.; Neretina, T.V.; Schepetov, D. Morphological characterization and molecular phylogeny of Portunoidea Rafinesque, 1815 (Crustacea Brachyura): Implications for understanding evolution of swimming capacity and revision of the family-level classification. Zool. Anz. J. Comp. Zool. 2014, 253, 404–429. [Google Scholar] [CrossRef]
- Tsang, L.; Chan, T.-Y.; Cheung, M.; Chu, K. Molecular evidence for the Southern Hemisphere origin and deep-sea diversification of spiny lobsters (Crustacea: Decapoda: Palinuridae). Mol. Phylogenet. Evol. 2009, 51, 304–311. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome: Italy, 2020. [Google Scholar]
- Williams, K.C. Nutritional requirements of juvenile Panulirus ornatus lobsters. In Spiny Lobster Aquaculture in the Asia–Pacific Region, Proceedings of the International Symposium, Nha Trang, Vietnam, 9–10 December 2008; ACIAR: Canberra, Australia, 2009; p. 131. [Google Scholar]
- Plagányi, É.; Dutra, L.; Murphy, N.; Edgar, S.; Salee, K.; Deng, R.A.; Blamey, L.K.; Parker, D.; Brodie, S. Lessons from long-term monitoring of tropical rock lobsters to support fisheries management. Fish. Res. 2024, 275, 107030. [Google Scholar] [CrossRef]
- Dennis, D.; Plagányi, É.; Van Putten, I.; Hutton, T.; Pascoe, S. Cost benefit of fishery-independent surveys: Are they worth the money? Mar. Policy 2015, 58, 108–115. [Google Scholar] [CrossRef]
- Pozhoth, J.; Jeffs, A. Effectiveness of the Food-Safe Anaesthetic Isobutanol in the Live Transport of Tropical Spiny Lobster Species. Fishes 2022, 7, 40. [Google Scholar] [CrossRef]
- Nankervis, L.; Jones, C. Recent advances and future directions in practical diet formulation and adoption in tropical Palinurid lobster aquaculture. Rev. Aquac. 2022, 14, 1830–1842. [Google Scholar] [CrossRef]
- Plagányi, É.E.; McGarvey, R.; Gardner, C.; Caputi, N.; Dennis, D.; de Lestang, S.; Hartmann, K.; Liggins, G.; Linnane, A.; Ingrid, E. Overview, opportunities and outlook for Australian spiny lobster fisheries. Rev. Fish Biol. Fish. 2018, 28, 57–87. [Google Scholar] [CrossRef]
- Shearer, D. Assessing the South-East Asian Tropical Lobster Supply and Major Market Demands; Australian Centre for International Agriculture Research: Canberra, Australia, 2009; Volume 30, pp. 1–55. [Google Scholar]
- Hall, M.; Kenway, M.; Salmon, M.; Francis, D.; Goulden, E.; Høj, L. 9. Palinurid lobster larval rearing for closed-cycle hatchery production. In Advances in Aquaculture Hatchery Technology; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Francis, D.S.; Salmon, M.L.; Kenway, M.J.; Hall, M.R. Palinurid lobster aquaculture: Nutritional progress and considerations for successful larval rearing. Rev. Aquac. 2014, 6, 180–203. [Google Scholar] [CrossRef]
- Lewis, C. Physiological and Transcriptomic Analysis Across the Life-Cycle of the Ornate Spiny Lobster, Panulirus ornatus, for Sustainable Aquaculture Production. Ph.D. Thesis, University of the Sunshine Coast, Sippy Downs, Australia, 2025. [Google Scholar]
- Fotedar, R.; Phillips, B. Recent Advances and New Species in Aquaculture; Wiley-Blackwell: Chichester, UK, 2011. [Google Scholar]
- Jeffs, A.G. Status and challenges for advancing lobster aquaculture. J. Mar. Biol. Ass. India 2010, 52, 320–326. [Google Scholar]
- Sachlikidis, N.G. Reproduction in the Tropical Rock Lobster Panulirus ornatus in Captivity. Ph.D. Thesis, James Cook University, Douglas, Australia, 2010. [Google Scholar]
- Phillips, B.F.; McWilliam, P.S. Spiny lobster development: Where does successful metamorphosis to the puerulus occur?: A review. Rev. Fish Biol. Fish. 2009, 19, 193–215. [Google Scholar] [CrossRef]
- Radhakrishnan, E.; Kizhakudan, J.K.; P, V.; S, J.N. Breeding, hatchery production and mariculture. In Lobsters: Biology, Fisheries and Aquaculture; Springer: Singapore, 2019; pp. 409–517. [Google Scholar]
- Kropielnicka-Kruk, K. Behavioural and Morphological Aspects of Feed Intake in Spiny Lobsters Panulirus ornatus and Sagmariasus verreauxi. Ph.D Thesis, University of Tasmania, Hobart, Australia, 2022. [Google Scholar]
- Townsend, E. Lobster: A Global History; Reaktion Books: London, UK, 2012. [Google Scholar]
- Kropielnicka-Kruk, K.; Fitzgibbon, Q.P.; Codabaccus, B.M.; Trotter, A.J.; Giosio, D.R.; Carter, C.G.; Smith, G.G. The effect of feed frequency on growth, survival and behaviour of juvenile spiny lobster (Panulirus ornatus). Animals 2022, 12, 2241. [Google Scholar] [CrossRef]
- Marchese, G.; Fitzgibbon, Q.P.; Trotter, A.J.; Carter, C.G.; Jones, C.M.; Smith, G.G. The influence of flesh ingredients format and krill meal on growth and feeding behaviour of juvenile tropical spiny lobster Panulirus ornatus. Aquaculture 2019, 499, 128–139. [Google Scholar] [CrossRef]
- Thomas, C.; Carter, C.; Crear, B. Feed availability and its relationship to survival, growth, dominance and the agonistic behaviour of the southern rock lobster, Jasus edwardsii in captivity. Aquaculture 2003, 215, 45–65. [Google Scholar] [CrossRef]
- Peters, C.; Infante Villamil, S.; Nankervis, L. The Periodic Feeding Frequency of the Juvenile Tropical Rock Lobster (Panulirus ornatus) in the Examination of Chemo-Attract Diet Performance and Colour-Contrast Preference. Animals 2024, 14, 2971. [Google Scholar] [CrossRef]
- Rogers, P.P.; Barnard, R.; Johnston, M. Lobster aquaculture a commercial reality: A review. J. Mar. Biol. Assoc. India 2010, 52, 327–335. [Google Scholar]
- Uy, T.; Fitzgibbon, Q.; Codabaccus, B.; Smith, G. Thermal physiology of tropical rock lobster (Panulirus ornatus); defining physiological constraints to high temperature tolerance. Aquaculture 2023, 569, 739357. [Google Scholar] [CrossRef]
- Kenway, M.; Salmon, M.; Smith, G.; Hall, M. Potential of seacage culture of Panulirus ornatus in Australia. In Spiny Lobster Aquaculture in the Asia–Pacific Region, Proceedings of the International Symposium, Nha Trang, Vietnam, 9–10 December 2008; ACIAR: Canberra, Australia, 2009; p. 18. [Google Scholar]
- Spencer, E.L.; Fitzgibbon, Q.P.; Day, R.D.; Trotter, A.J.; Smith, G.G. Effects of acute salinity stress on the survival and haemolymph biochemistry of juvenile tropical rock lobster, Panulirus ornatus, at different moult stages. Aquaculture 2023, 573, 739597. [Google Scholar] [CrossRef]
- van Putten, I.E.; Farmery, A.K.; Green, B.S.; Hobday, A.J.; Lim-Camacho, L.; Norman-López, A.; Parker, R.W. The environmental impact of two Australian rock lobster fishery supply chains under a changing climate. J. Ind. Ecol. 2016, 20, 1384–1398. [Google Scholar] [CrossRef]
- Chittleborough, R. Environmental factors affecting growth and survival of juvenile western rock lobsters Panulirus longipes (Milne-Edwards). Mar. Freshw. Res. 1975, 26, 177–196. [Google Scholar] [CrossRef]
- Lalancette, A.; Mulrennan, M. Competing voices: Indigenous rights in the shadow of conventional fisheries management in the tropical rock lobster fishery in Torres Strait, Australia. Marit. Stud. 2022, 21, 255–277. [Google Scholar] [CrossRef]
- Iitembu, J.A.; Kainge, P.; Sauer, W.H. Climate vulnerability and its perceived impact on the Namibian rock lobster fishery. In Handbook of Climate Change Management Research, Leadership, Transformation; Springer: Cham, Switzerland, 2021; pp. 1–22. [Google Scholar]
- Kelly, T.R.; Giosio, D.R.; Trotter, A.J.; Smith, G.G.; Fitzgibbon, Q.P. Cannibalism in cultured juvenile lobster Panulirus ornatus and contributing biological factors. Aquaculture 2023, 576, 739883. [Google Scholar] [CrossRef]
- Kelly, T.R.; Fitzgibbon, Q.P.; Smith, G.G.; Banks, T.M.; Ventura, T. Tropical rock lobster (Panulirus ornatus) uses chemoreception via the antennular lateral flagellum to identify conspecific ecdysis. Sci. Rep. 2023, 13, 12409. [Google Scholar] [CrossRef]
- Rivaie, A.R.; Adiputra, Y.T.; Setyawan, A.; Putro, D.H. Effect of different diets on growth performance, physiological response and behavior of spiny lobster Panulirus homarus (Linnaeus, 1758). J. Kelaut. Trop. 2023, 26, 301–314. [Google Scholar] [CrossRef]
- Ma, C.-H.; Huang, P.-Y.; Chang, Y.-C.; Pan, Y.-J.; Azra, M.N.; Chen, L.-L.; Hsu, T.-H. Improving survival of juvenile scalloped spiny lobster (Panulirus homarus) and crucifix crab (Charybdis feriatus) using shelter and live prey. Animals 2021, 11, 370. [Google Scholar] [CrossRef]
- Syafaat, M.N.; Abualreesh, M.H.; Yatim, N.I.; Fazhan, H.; Waiho, K.; Ma, H.; Okomoda, V.T.; Ikhwanuddin, M. Interspecific hybridization of decapod crustacean species with commercial interest—A review. Rev. Aquac. 2024, 16, 741–758. [Google Scholar] [CrossRef]
- Murugan, T.S.; Remany, M.C.; Leema, T.M.; Kumar, J.H.A.D.; Santhanakumar, J.; Vijayakumaran, M.; Venkatesan, R.; Ravindran, M. Growth, repetitive breeding, and aquaculture potential of the spiny lobster, Panulirus ornatus. N. Z. J. Mar. Freshw. Res. 2005, 39, 311–315. [Google Scholar] [CrossRef]
- Creaser, E.P. Repetition of Egg-Laying and Number of Eggs of the Bermuda Spiny Lobster; FAO: Rome, Italy, 2021. [Google Scholar]
- Dennis, D.M.; Pitcher, C.R.; Prescott, J.H.; Skewes, T.D. Severe mortality in a breeding population of ornate rock lobster Panulirus ornatus (Fabricius) at Yule Island, Papua New Guinea. J. Exp. Mar. Biol. Ecol. 1992, 162, 143–158. [Google Scholar] [CrossRef]
- Goñi, R.; Quetglas, A.; Reñones, O. Size at maturity, fecundity and reproductive potential of a protected population of the spiny lobster Palinurus elephas (Fabricius, 1787) from the western Mediterranean. Mar. Biol. 2003, 143, 583–592. [Google Scholar] [CrossRef]
- Bevacqua, D.; Melià, P.; Follesa, M.C.; De Leo, G.A.; Gatto, M.; Cau, A. Body growth and mortality of the spiny lobster Palinurus elephas within and outside a small marine protected area. Fish. Res. 2010, 106, 543–549. [Google Scholar] [CrossRef]
- Li, J. A review of sexual determination and differentiation in crustacean. J. Biosci. Med. 2022, 10, 19–37. [Google Scholar] [CrossRef]
- Cui, Z.; Liu, Y.; Yuan, J.; Zhang, X.; Ventura, T.; Ma, K.Y.; Sun, S.; Song, C.; Zhan, D.; Yang, Y.; et al. The Chinese mitten crab genome provides insights into adaptive plasticity and developmental regulation. Nat. Commun. 2021, 12, 2395. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, S.; Yao, J.; Bao, L.; Zhang, J.; Li, Y.; Jiang, C.; Sun, L.; Wang, R.; Zhang, Y.; et al. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat. Commun. 2016, 7, 11757. [Google Scholar] [CrossRef]
- Smeds, L.; Warmuth, V.; Bolivar, P.; Uebbing, S.; Burri, R.; Suh, A.; Nater, A.; Bureš, S.; Garamszegi, L.Z.; Hogner, S.; et al. Evolutionary analysis of the female-specific avian W chromosome. Nat. Commun. 2015, 6, 7330. [Google Scholar] [CrossRef]
- Pitt, A.R.; Kolch, W. Genomics, Proteomics, and Metabolomics. In Medical Biochemistry—E-Book; Elsevier: Amsterdam, The Netherlands, 2022; Chapter 24; p. 333. [Google Scholar]
- Inbakandan, D. Transcriptomics in aquaculture. Encycl. Mar. Biotechnol. 2020, 3, 1919–1936. [Google Scholar]
- Zafar, I.; Rather, M.A.; Dhandare, B.C. Genome-Wide identification of doublesex and Mab-3-Related transcription factor (DMRT) genes in nile tilapia (Oreochromis niloticus). Biotechnol. Rep. 2019, 24, e00398. [Google Scholar] [CrossRef]
- Augstenová, B.; Ma, W.-J. Decoding Dmrt1: Insights into vertebrate sex determination and gonadal sex differentiation. J. Evol. Biol. 2025, XX, voaf031. [Google Scholar] [CrossRef]
- Noor, Z.; Zhao, Z.; Guo, S.; Wei, Z.; Cai, B.; Qin, Y.; Ma, H.; Yu, Z.; Li, J.; Zhang, Y. A Testis-Specific DMRT1 (Double Sex and Mab-3-Related Transcription Factor 1) Plays a Role in Spermatogenesis and Gonadal Development in the Hermaphrodite Boring Giant Clam Tridacna crocea. Int. J. Mol. Sci. 2024, 25, 5574. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Wan, H.; Zhang, C.; Guo, S.; Zhang, W.; Mu, S.; Kang, X. Genome-wide identification and expressional profile of the Dmrt gene family in the swimming crab (Portunus trituberculatus). Gene 2024, 927, 148682. [Google Scholar] [CrossRef] [PubMed]
- Kopp, A. Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet. 2012, 28, 175–184. [Google Scholar] [CrossRef]
- Raymond, C.S.; Shamu, C.E.; Shen, M.M.; Seifert, K.J.; Hirsch, B.; Hodgkin, J.; Zarkower, D. Evidence for evolutionary conservation of sex-determining genes. Nature 1998, 391, 691–695. [Google Scholar] [CrossRef]
- Chandler, J.C.; Fitzgibbon, Q.P.; Smith, G.; Elizur, A.; Ventura, T. Y-linked iDmrt1 paralogue (iDMY) in the Eastern spiny lobster, Sagmariasus verreauxi: The first invertebrate sex-linked Dmrt. Dev. Biol. 2017, 430, 337–345. [Google Scholar] [CrossRef]
- Picard, M.A.-L.; Cosseau, C.; Mouahid, G.; Duval, D.; Grunau, C.; Toulza, E.; Allienne, J.-F.; Boissier, J. The roles of Dmrt (Double sex/Male-abnormal-3 Related Transcription factor) genes in sex determination and differentiation mechanisms: Ubiquity and diversity across the animal kingdom. Comptes Rendus. Biol. 2015, 338, 451–462. [Google Scholar] [CrossRef]
- Matson, C.K.; Zarkower, D. Sex and the singular DM domain: Insights into sexual regulation, evolution and plasticity. Nat. Rev. Genet. 2012, 13, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Yu, H.; Li, Q. Examination of the roles of Foxl2 and Dmrt1 in sex differentiation and gonadal development of oysters by using RNA interference. Aquaculture 2022, 548, 737732. [Google Scholar] [CrossRef]
- Li, F.; Chen, S.; Zhang, T.; Pan, L.; Liu, C.; Bian, L. Gonadal Transcriptome Sequencing Analysis Reveals the Candidate Sex-Related Genes and Signaling Pathways in the East Asian Common Octopus, Octopus sinensis. Genes 2024, 15, 682. [Google Scholar] [CrossRef]
- Fang, S.; Zhang, Y.; Shi, X.; Zheng, H.; Li, S.; Zhang, Y.; Fazhan, H.; Waiho, K.; Tan, H.; Ikhwanuddin, M. Identification of male-specific SNP markers and development of PCR-based genetic sex identification technique in crucifix crab (Charybdis feriatus) with implication of an XX/XY sex determination system. Genomics 2020, 112, 404–411. [Google Scholar] [CrossRef]
- Ye, Z.; Bishop, T.; Wang, Y.; Shahriari, R.; Lynch, M. Evolution of sex determination in crustaceans. Mar. Life Sci. Technol. 2023, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yu, Y.; Li, S.; Li, F. Molecular mechanisms of sex determination and differentiation in decapod crustaceans for potential aquaculture applications: An overview. Rev. Aquac. 2024, 16, 1819–1839. [Google Scholar] [CrossRef]
- Peng, B.; Huang, J.; Zhang, Z.; Jia, X.; Zou, P.; Zeng, X.; Wang, Y. The potential modulation mechanisms of Dmrt-1 and Dmrt-3 affecting testicular development of Scylla paramamosain. Aquaculture 2025, 595, 741521. [Google Scholar] [CrossRef]
- Mapp, A.K.; Ansari, A.Z. A TAD Further: Exogenous Control of Gene Activation. ACS Chem. Biol. 2007, 2, 62–75. [Google Scholar] [CrossRef]
- Abayed, F.A.A.; Manor, R.; Aflalo, E.D.; Sagi, A. Screening for Dmrt genes from embryo to mature Macrobrachium rosenbergii prawns. Gen. Comp. Endocrinol. 2019, 282, 113205. [Google Scholar] [CrossRef]
- Murphy, M.W.; Lee, J.K.; Rojo, S.; Gearhart, M.D.; Kurahashi, K.; Banerjee, S.; Loeuille, G.-A.; Bashamboo, A.; McElreavey, K.; Zarkower, D. An ancient protein-DNA interaction underlying metazoan sex determination. Nat. Struct. Mol. Biol. 2015, 22, 442–451. [Google Scholar] [CrossRef]
- Beukeboom, L.; Perrin, N.; Beukeboom, L.; Perrin, N. Molecular mechanisms of sex determination. In The Evolution of Sex Determination; Oxford University Press: Oxford, UK, 2014; pp. 37–76. [Google Scholar]
- Murphy, M.W.; Zarkower, D.; Bardwell, V.J. Vertebrate DM domain proteins bind similar DNA sequences and can heterodimerize on DNA. BMC Mol. Biol. 2007, 8, 58. [Google Scholar] [CrossRef]
- Murphy, M.W.; Sarver, A.L.; Rice, D.; Hatzi, K.; Ye, K.; Melnick, A.; Heckert, L.L.; Zarkower, D.; Bardwell, V.J. Genome-wide analysis of DNA binding and transcriptional regulation by the mammalian Doublesex homolog DMRT1 in the juvenile testis. Proc. Natl. Acad. Sci. USA 2010, 107, 13360–13365. [Google Scholar] [CrossRef]
- Narendra, U.; Zhu, L.; Li, B.; Wilken, J.; Weiss, M.A. Sex-specific gene regulation: The doublesex DM motif is a bipartite DNA-binding domain. J. Biol. Chem. 2002, 277, 43463–43473. [Google Scholar] [CrossRef]
- Ventura, T.; Chandler, J.C.; Nguyen, T.V.; Hyde, C.J.; Elizur, A.; Fitzgibbon, Q.P.; Smith, G.G. Multi-Tissue transcriptome analysis identifies key sexual development-related genes of the ornate spiny lobster (Panulirus ornatus). Genes 2020, 11, 1150. [Google Scholar] [CrossRef]
- Ventura, T.; Manor, R.; Aflalo, E.D.; Weil, S.; Raviv, S.; Glazer, L.; Sagi, A. Temporal silencing of an androgenic gland-specific insulin-like gene affecting phenotypical gender differences and spermatogenesis. Endocrinology 2009, 150, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Sagi, A.; Aflalo, E.D. The androgenic gland and monosex culture of freshwater prawn Macrobrachium rosenbergii (De Man): A biotechnological perspective. Aquac. Res. 2005, 36, 231–237. [Google Scholar] [CrossRef]
- Sagi, A.; Cohen, D.; Milner, Y. Effect of androgenic gland ablation on morphotypic differentiation and sexual characteristics of male freshwater prawns, Macrobrachium rosenbergii. Gen. Comp. Endocrinol. 1990, 77, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Ye, H.; Huang, H.; Yang, Y.; Gong, J. An insulin-like androgenic gland hormone gene in the mud crab, Scylla paramamosain, extensively expressed and involved in the processes of growth and female reproduction. Gen. Comp. Endocrinol. 2014, 204, 229–238. [Google Scholar] [CrossRef]
- Fu, C.; Li, F.; Wang, L.; Wu, F.; Wang, J.; Fan, X.; Liu, T. Molecular characteristics and abundance of insulin-like androgenic gland hormone and effects of RNA interference in Eriocheir sinensis. Anim. Reprod. Sci. 2020, 215, 106332. [Google Scholar] [CrossRef]
- Liu, F.; Shi, W.; Ye, H.; Liu, A.; Zhu, Z. RNAi reveals role of insulin-like androgenic gland hormone 2 (IAG2) in sexual differentiation and growth in hermaphrodite shrimp. Front. Mar. Sci. 2021, 8, 666763. [Google Scholar] [CrossRef]
- Yan, J.; Zheng, B.; Tan, K.; Yi, S.; Li, Y. Effects of two exogenous proteins on the insulin-like androgenic gland hormone gene expression in Procambarus clarkii. Aquac. Res. 2021, 52, 6602–6611. [Google Scholar] [CrossRef]
- Shi, L.; Han, S.; Fei, J.; Zhang, L.; Ray, J.W.; Wang, W.; Li, Y. Molecular characterization and functional study of insulin-like androgenic gland hormone gene in the red swamp crayfish, Procambarus clarkii. Genes 2019, 10, 645. [Google Scholar] [CrossRef]
- Li, F.; Bai, H.; Xiong, Y.; Fu, H.; Jiang, S.; Jiang, F.; Jin, S.; Sun, S.; Qiao, H.; Zhang, W. Molecular characterization of insulin-like androgenic gland hormone-binding protein gene from the oriental river prawn Macrobrachium nipponense and investigation of its transcriptional relationship with the insulin-like androgenic gland hormone gene. Gen. Comp. Endocrinol. 2015, 216, 152–160. [Google Scholar] [CrossRef]
- Sun, R.; Li, Y. A sex-reversing factor: Insulin-like androgenic gland hormone in decapods. Rev. Aquac. 2021, 13, 1352–1366. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, W.; Wang, C.; Sun, C.; Shi, L.; Chan, S.F. Insulin-like androgenic gland hormone from the shrimp Fenneropenaeus merguiensis: Expression, gene organization and transcript variants. Gene 2021, 782, 145529. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J.C.; Aizen, J.; Bttaglene, S.C.; Elizur, A.; Ventura, T. Male sexual development and the androgenic gland: Novel insights through the de novo assembled transcriptome of the Eastern spiny lobster, Sagmariasus verreauxi. Sex. Dev. 2015, 9, 338–354. [Google Scholar] [CrossRef] [PubMed]
- Levy, T.; Sagi, A. The “IAG-switch”—A key controlling element in decapod crustacean sex differentiation. Front. Endocrinol. 2020, 11, 651. [Google Scholar] [CrossRef]
- Levy, T.; Aflalo, E.D.; Sagi, A. Sex Control in Cultured Decapod Crustaceans. In Sex Control in Aquaculture; Wiley: Hoboken, NJ, USA, 2018; pp. 689–704. [Google Scholar]
- Tan, K.; Jiang, H.; Jiang, D.; Wang, W. Sex reversal and the androgenic gland (AG) in Macrobrachium rosenbergii: A review. Aquac. Fish. 2020, 5, 283–288. [Google Scholar] [CrossRef]
- Ventura, T.; Manor, R.; Aflalo, E.D.; Weil, S.; Rosen, O.; Sagi, A. Timing sexual differentiation: Full functional sex reversal achieved through silencing of a single insulin-like gene in the prawn, Macrobrachium rosenbergii. Biol. Reprod. 2012, 86, 1–6. [Google Scholar] [CrossRef]
- Qian, H.; Ma, K.; Feng, J.; Guo, Z.; Gong, J.; Chen, H.; Bai, H.; Qiu, G. Transcriptome analysis of the post-larvae of giant freshwater prawn (Macrobrachium rosenbergii) after IAG gene knockdown with microRNA interference. Gen. Comp. Endocrinol. 2022, 325, 114054. [Google Scholar] [CrossRef]
- Priyadarshi, H.; Das, R.; Pavan-Kumar, A.; Gireesh-Babu, P.; Javed, H.; Kumar, S.; Marappan, M.; Somdutt; Krishna, G.; Chaudhari, A. Silencing and augmentation of IAG hormone transcripts in adult Macrobrachium rosenbergii males affects morphotype transformation. J. Exp. Biol. 2017, 220, 4101–4108. [Google Scholar] [CrossRef] [PubMed]
- Garza-Torres, R.; Campos-Ramos, R.; Maeda-Martínez, A.M. Organogenesis and subsequent development of the genital organs in female and male Pacific white shrimp Penaeus (Litopenaeus) vannamei. Aquaculture 2009, 296, 136–142. [Google Scholar] [CrossRef]
- Toyota, K.; Miyakawa, H.; Hiruta, C.; Sato, T.; Katayama, H.; Ohira, T.; Iguchi, T. Sex Determination and Differentiation in Decapod and Cladoceran Crustaceans: An Overview of Endocrine Regulation. Genes 2021, 12, 305–316. [Google Scholar] [CrossRef]
- Veldsman, W.P.; Ma, K.Y.; Hui, J.H.L.; Chan, T.F.; Baeza, J.A.; Qin, J.; Chu, K.H. Comparative genomics of the coconut crab and other decapod crustaceans: Exploring the molecular basis of terrestrial adaptation. BMC Genom. 2021, 22, 313. [Google Scholar] [CrossRef]
- Ren, X.; Sun, D.; Lv, J.; Gao, B.; Jia, S.; Bian, X.; Zhao, K.; Li, J.; Liu, P.; Li, J. Chromosome-level genome of the long-tailed marine-living ornate spiny lobster, Panulirus ornatus. Sci. Data 2024, 11, 662. [Google Scholar] [CrossRef] [PubMed]
- Hyde, C.J.; Elizur, A.; Ventura, T. The crustacean ecdysone cassette: A gatekeeper for molt and metamorphosis. J. Steroid Biochem. Mol. Biol. 2019, 185, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.L.; Fitzgibbon, Q.P.; Smith, G.G.; Elizur, A.; Ventura, T. Transcriptomic analysis and time to hatch visual prediction of embryo development in the ornate spiny lobster (Panulirus ornatus). Front. Mar. Sci. 2022, 9, 889317. [Google Scholar] [CrossRef]
- Xue, W.; Li, J.T.; Zhu, Y.P.; Hou, G.Y.; Kong, X.F.; Kuang, Y.Y.; Sun, X.W. L_RNA_scaffolder: Scaffolding genomes with transcripts. BMC Genom. 2013, 14, 604. [Google Scholar] [CrossRef]
- Song, L.; Shankar, D.S.; Florea, L. Rascaf: Improving Genome Assembly with RNA Sequencing Data. Plant Genome 2016, 9, 1–12. [Google Scholar] [CrossRef]
- Zhu, B.-H.; Xiao, J.; Xue, W.; Xu, G.-C.; Sun, M.-Y.; Li, J.-T. P_RNA_scaffolder: A fast and accurate genome scaffolder using paired-end RNA-sequencing reads. BMC Genom. 2018, 19, 175. [Google Scholar] [CrossRef]
- Vurture, G.W.; Sedlazeck, F.J.; Nattestad, M.; Underwood, C.J.; Fang, H.; Gurtowski, J.; Schatz, M.C. GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics 2017, 33, 2202–2204. [Google Scholar] [CrossRef]
- Ai, H.T.N.; Yoon, J.; Nong, W.; Glendinning, S.; Smith, G.; Fitzgibbon, Q.P.; Hui, J.H.L.; Chu, K.-H.; Herzig, V.; Ventura, T. Roles of a Y-linked iDmrt1 paralogue and Insulin-Like Androgenic Gland Hormone in Sexual Development in the Tropical Rock Lobster, Panulirus ornatus. Figshare 2024. [Google Scholar] [CrossRef]
- Baril, T.; Imrie, R.M.; Hayward, A. Earl Grey: A fully automated user-friendly transposable element annotation and analysis pipeline. Mol. Biol. Evol. 2024, 41, msae068. [Google Scholar] [CrossRef]
- Hyde, C.J.; Fitzgibbon, Q.P.; Elizur, A.; Smith, G.G.; Ventura, T. CrustyBase: An interactive online database for crustacean transcriptomes. BMC Genom. 2020, 21, 637. [Google Scholar] [CrossRef]
- Yuan, J.; Yu, Y.; Zhang, X.; Li, S.; Xiang, J.; Li, F. Recent advances in crustacean genomics and their potential application in aquaculture. Rev. Aquac. 2023, 15, 1501–1521. [Google Scholar] [CrossRef]
- Polinski, J.M.; Zimin, A.V.; Clark, K.F.; Kohn, A.B.; Sadowski, N.; Timp, W.; Ptitsyn, A.; Khanna, P.; Romanova, D.Y.; Williams, P.; et al. The American lobster genome reveals insights on longevity, neural, and immune adaptations. Sci. Adv. 2021, 7, eabe8290. [Google Scholar] [CrossRef] [PubMed]
- Chandler, J. Sexual Development in the Male Eastern Spiny Lobster (Sagmariasus verreauxi): The Sex Determination Mechanism and Ongoing Regulation of Sexual Differentiation. Ph.D. Thesis, University of the Sunshine Coast, Sippy Downs, Australia, 2017. [Google Scholar]
- Waiho, K.; Fazhan, H.; Ikhwanuddin, M.; Quinitio, E.T.; Baylon, J.C.; Shu-Chien, A.C.; Liew, H.J.; Afiqah-Aleng, N.; Ma, H. Chromosomal sex determination system in brachyurans and its potential application in aquaculture. Aquaculture 2021, 543, 736990. [Google Scholar] [CrossRef]
- Xu, H.-J.; Chen, Y.-L.; Wang, Y.-M.; Luo, J.-Y.; Li, J.-W.; Shen, S.-Q.; Yang, J.-S.; Ma, W.-M. Full Functional Sex Reversal Achieved Through Silencing of MroDmrt11E Gene in Macrobrachium rosenbergii: Production of All-Male Monosex Freshwater Prawn. Front. Endocrinol. 2022, 12, 772498. [Google Scholar] [CrossRef]
- Labeed, A.A.-S.; Ayoob, R.A.-Z. Evaluating the efficiency of ethanol precipitation method in purification of gDNA and PCR product. Basrah J. Agric. Sci. 2019, 32, 276–281. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Weisenfeld, N.I.; Kumar, V.; Shah, P.; Church, D.M.; Jaffe, D.B. Direct determination of diploid genome sequences. Genome Res. 2017, 27, 757–767. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Perez-Enriquez, R.; Juárez, O.E.; Galindo-Torres, P.; Vargas-Aguilar, A.L.; Llera-Herrera, R. Improved genome assembly of the whiteleg shrimp Penaeus (Litopenaeus) vannamei using long- and short-read sequences from public databases. J. Hered. 2024, 115, 302–310. [Google Scholar] [CrossRef]
- Li, J.; Singh, U.; Bhandary, P.; Campbell, J.; Arendsee, Z.; Seetharam, A.S.; Wurtele, E.S. Foster thy young: Enhanced prediction of orphan genes in assembled genomes. bioRxiv 2021. [Google Scholar] [CrossRef]
- Toni, L.S.; Garcia, A.M.; Jeffrey, D.A.; Jiang, X.; Stauffer, B.L.; Miyamoto, S.D.; Sucharov, C.C. Optimization of phenol-chloroform RNA extraction. MethodsX 2018, 5, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Scotto–Lavino, E.; Du, G.; Frohman, M.A. 5′ end cDNA amplification using classic RACE. Nat. Protoc. 2006, 1, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Ventura, T.; Fitzgibbon, Q.; Battaglene, S.; Sagi, A.; Elizur, A. Identification and characterization of androgenic gland specific insulin-like peptide-encoding transcripts in two spiny lobster species: Sagmariasus verreauxi and Jasus edwardsii. Gen. Comp. Endocrinol. 2015, 214, 126–133. [Google Scholar] [CrossRef]
- Piskacek, S.; Gregor, M.; Nemethova, M.; Grabner, M.; Kovarik, P.; Piskacek, M. Nine-amino-acid transactivation domain: Establishment and prediction utilities. Genomics 2007, 89, 756–768. [Google Scholar] [CrossRef]
- Piskacek, M.; Havelka, M.; Rezacova, M.; Knight, A. The 9aaTAD Transactivation Domains: From Gal4 to p53. PLoS ONE 2016, 11, e0162842. [Google Scholar] [CrossRef]
- Piskacek, M. Common Transactivation Motif 9aaTAD recruits multiple general co-activatorsTAF9, MED15, CBP and p300. Nat. Preced. 2009. [Google Scholar] [CrossRef]
- Salamov, A.A.; Nishikawa, T.; Swindells, M.B. Assessing protein coding region integrity in cDNA sequencing projects. Bioinformatics 1998, 14, 384–390. [Google Scholar] [CrossRef]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef]
- Hyde, C.J.; Fitzgibbon, Q.P.; Elizur, A.; Smith, G.G.; Ventura, T. Transcriptional profiling of spiny lobster metamorphosis reveals three new additions to the nuclear receptor superfamily. BMC Genom. 2019, 20, 531. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran Nguyen, A.H.; Yoon, J.; Nong, W.; Glendinning, S.; Fitzgibbon, Q.P.; Smith, G.G.; Hui, J.H.L.; Chu, K.H.; Herzig, V.; Ventura, T. Roles of a Y-Linked iDmrt1 Paralogue and Insulin-like Androgenic Gland Hormone in Sexual Development in the Tropical Rock Lobster, Panulirus ornatus. Int. J. Mol. Sci. 2025, 26, 5149. https://doi.org/10.3390/ijms26115149
Tran Nguyen AH, Yoon J, Nong W, Glendinning S, Fitzgibbon QP, Smith GG, Hui JHL, Chu KH, Herzig V, Ventura T. Roles of a Y-Linked iDmrt1 Paralogue and Insulin-like Androgenic Gland Hormone in Sexual Development in the Tropical Rock Lobster, Panulirus ornatus. International Journal of Molecular Sciences. 2025; 26(11):5149. https://doi.org/10.3390/ijms26115149
Chicago/Turabian StyleTran Nguyen, Ai Hang, Jihye Yoon, Wenyan Nong, Susan Glendinning, Quinn P. Fitzgibbon, Gregory G. Smith, Jerome H. L. Hui, Ka Hou Chu, Volker Herzig, and Tomer Ventura. 2025. "Roles of a Y-Linked iDmrt1 Paralogue and Insulin-like Androgenic Gland Hormone in Sexual Development in the Tropical Rock Lobster, Panulirus ornatus" International Journal of Molecular Sciences 26, no. 11: 5149. https://doi.org/10.3390/ijms26115149
APA StyleTran Nguyen, A. H., Yoon, J., Nong, W., Glendinning, S., Fitzgibbon, Q. P., Smith, G. G., Hui, J. H. L., Chu, K. H., Herzig, V., & Ventura, T. (2025). Roles of a Y-Linked iDmrt1 Paralogue and Insulin-like Androgenic Gland Hormone in Sexual Development in the Tropical Rock Lobster, Panulirus ornatus. International Journal of Molecular Sciences, 26(11), 5149. https://doi.org/10.3390/ijms26115149