Exploring the Potential of Novel Animal-Origin Probiotics as Key Players in One Health: Opportunities and Challenges
Abstract
1. Introduction
2. Probiotics’ Role in Promoting Health in Humans and Animals
2.1. Probiotics Implications on Human Health with Clinical Application in Certain Diseases
2.1.1. Probiotic Therapy Alongside Antibiotics Administration
2.1.2. Probiotics in Helicobacter pylori (H. pylori) Infection
2.1.3. Probiotics in Metabolic Health
2.1.4. Probiotics in IBD
2.1.5. Probiotics in Gastrointestinal Integrity
2.1.6. Potential Anticarcinogenic Properties of Probiotics
2.1.7. Influence of Probiotics on the Central Nervous System
2.1.8. Probiotic Preparation Application in Skin Diseases and Wound Healing
2.1.9. Probiotics and the Immune System
2.1.10. Probiotics in Urinary Tract Infections
2.1.11. Probiotics Usage in Hypertension Management
2.1.12. Probiotics in Maintaining Oral Health
2.2. Health Benefits of Probiotic Usage in Companion Animals and Viable Strains Used in Specific Conditions
2.3. Probiotic Therapy in the Animal Production Sector
2.3.1. Swine
2.3.2. Poultry
2.3.3. Cattle
2.4. Influence of Probiotics on Bioavailability of Drugs
2.5. The Role of Probiotics in Digestion and Nutrient Absorption
2.6. Probiotics as the Connecting Link in the One Health Concept
3. Key Characteristics of New Probiotic Strains Derived from Animals
3.1. Tolerance to Environmental Conditions
3.2. Production of Antimicrobial Properties and Bioactive Compounds
3.2.1. Bacteriocins
3.2.2. Organic Acids, Vitamins, and Exopolysaccharides
4. Factors Influencing the Safety and Effectiveness of the New Strains
4.1. Stability and Safety Testing of New Probiotic Strains
4.2. Effectiveness
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | Angiotensin-converting enzyme |
ACD | Allergic contact dermatitis |
AD | Alzheimer’s disease |
AFLP | Amplified Fragment Length Polymorphism |
ARGs | Antibiotic resistance genes |
ASD | Autism spectrum disorder |
ATP | Adenosine Triphosphate |
BSH | Bile salt hydrolase |
BL999 | Bifidobacterium longum (strain 999) |
CLA | Conjugated linoleic acid |
CDI | Clostridioides difficile Infection |
CFU | Colony-forming unit |
CKD | Chronic kidney disease |
CNS | Central nervous system |
COX-2 | Cyclooxygenase-2 |
CPEK | Canine progenitor epidermal keratinocytes |
DNA | Deoxyribonucleic Acid |
EcN | Escherichia coli Nissle 1917 |
EHEC | Enterohemorrhagic Escherichia coli |
EHPM | European Federation of Associations of Health Product Manufacturers |
ENS | Enteric nervous system |
EPSs | Exopolysaccharides |
EPEC | Enteropathogenic Escherichia coli |
FAO | Food and Agriculture Organization |
FHV-1 | Feline herpesvirus type 1 |
FIC | Feline Idiopathic Cystitis |
FISH | Fluorescent In Situ Hybridization |
GALT | Gut-associated lymphoid tissue |
GBA | Gut–brain axis |
GIT | Gastrointestinal tract |
GFR | Glomerular filtration rate |
GLUT2 | Glucose transporter 2 |
H. pylori | Helicobacter pylori |
HPA | Hypothalamic-pituitary-adrenal |
HIF | Hypoxia-inducible factor |
IBD | Inflammatory bowel disease |
IBS | Irritable bowel syndrome |
Is | Indoxyl sulfate |
IgA | Immunoglobulin A |
LAB | Lactic acid bacteria |
LG2055 | Lactobacillus gasseri SBT2055 |
LcS | Lactobacillus casei strain Shirota |
MIC | Minimum Inhibitory Concentration |
MDR | Multidrug-resistant |
MRSA | Methicillin-resistant Staphylococcus aureus |
MOA | Mechanism of action |
UTI | Urinary tract infection |
pCS | p-Cresyl Sulfate |
RCTs | Randomized Controlled Trials |
ROS | Reactive oxygen species |
rUTIs | Recurrence of Urinary Tract Infections |
SCFA | Short-chain fatty acids |
sIgA | Secretory Immunoglobulin A |
STT | Standard triple therapy |
TC | Total cholesterol |
T2DM | Type 2 diabetes mellitus |
TGF-β1 | Transforming Growth Factor Beta 1 |
Tregs | T regulatory cells |
UPEC | Uropathogenic Escherichia coli |
VRE | Vancomycin-resistant Enterococci |
VBNC | Viable but Non-Culturable |
VVC | Vulvovaginal Candidiasis |
WHO | World Health Organization |
References
- Li, H.-Y.; Zhou, D.-D.; Gan, R.-Y.; Huang, S.-Y.; Zhao, C.-N.; Shang, A.O.; Xu, X.-Y.; Li, H.-B. Effects and Mechanisms of Probiotics, Prebiotics, Synbiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota: A Narrative Review. Nutrients 2021, 13, 3211. [Google Scholar] [CrossRef] [PubMed]
- Hand, D.; Wallis, C.; Colyer, A.; Penn, C.W. Pyrosequencing the canine fecal microbiota: Breadth and depth of biodiversity. PLoS ONE 2013, 8, e53115. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of action of probiotics. Adv. Nutr. 2019, 10, S49–S66. [Google Scholar] [CrossRef] [PubMed]
- Bindels, L.A.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 380–388. [Google Scholar] [CrossRef]
- Pinna, C.; Vecchiato, C.G.; Bolduan, C.; Grandi, M.; Stefanelli, C.; Windish, W.; Zaghini, G.; Biagi, G. Influence of dietary protein and fructooligosaccharides on fecal fermentative end-products, fecal bacterial populations, and apparent total tract digestibility in dogs. BMC Vet. Res. 2018, 14, 106. [Google Scholar] [CrossRef]
- Wang, G.; Ding, T.; Ai, L. Editorial: Effects and mechanisms of probiotics, prebiotics, synbiotics and postbiotics on intestinal health and disease. Front. Cell. Infect. Microbiol. 2024, 14, 1430312. [Google Scholar] [CrossRef]
- Vinderola, G.; Sanders, M.E.; Salminen, S. The Concept of Postbiotics. Foods 2022, 11, 1077. [Google Scholar] [CrossRef]
- Collado, M.C.; Vinderola, G.; Salminen, S. Postbiotics: Facts and Open Questions. A Position Paper on the Need for a Consensus Definition. Benef. Microbes 2019, 10, 711–720. [Google Scholar] [CrossRef]
- Ozen, M.; Dinleyici, E.C. The history of probiotics: The untold story. Benef. Microbes 2015, 6, 159–166. [Google Scholar] [CrossRef]
- Gasbarrini, G.; Bonvicini, F.; Gramenzi, A. Probiotics History. J. Clin. Gastroenterol. 2016, 50, S116–S119. [Google Scholar] [CrossRef]
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef]
- Abdou, A.M.; Hedia, R.H.; Omara, S.T.; Mahmoud, M.A.E.; Kandil, M.M.; Bakry, M.A. Interspecies comparison of probiotics isolated from different animals. Vet. World. 2018, 11, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Bunesova, V.; Vlkova, E.; Rada, V.; Killer, J.; Musilova, S. Bifidobacteria from the gastrointestinal tract of animals: Differences and similarities. Benef. Microbes 2014, 5, 377–388. [Google Scholar] [CrossRef]
- Elzeini, H.M.; Ali, A.R.A.A.; Nasr, N.F.; Hassan, M.; Hassan, A.A.M.; Elenany, Y.E. Probiotic capability of novel lactic acid bacteria isolated from worker honey bees gut microbiota. FEMS Microbiol. Lett. 2021, 368, fnab030. [Google Scholar] [CrossRef]
- Deng, Y.; Xu, L.; Liu, S.; Wang, Q.; Guo, Z.; Chen, C.; Feng, J. What drives changes in the virulence and antibiotic resistance of Vibrio harveyi in the South China Sea? J. Fish Dis. 2020, 43, 1103–1112. [Google Scholar] [CrossRef]
- Anee, I.J.; Alam, S.; Begum, R.A.; Shahjahan, R.M.; Khandaker, A.M. The role of probiotics on animal health and nutrition. J. Basic Appl. Zool. 2021, 82, 52. [Google Scholar] [CrossRef]
- Park, Y.H.; Hamidon, F.; Rajangan, C.; Soh, K.P.; Gan, C.Y.; Lim, T.S.; Abdullah, W.N.W.; Liong, M.T. Application of Probiotics for the Production of Safe and High-Quality Poultry Meat. Korean J. Food Sci. Anim. Resour. 2016, 36, 567–576. [Google Scholar] [CrossRef]
- Goel, G.; Kumar, A. (Eds.) Advances in Probiotics for Sustainable Food and Medicine; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Kober, A.K.M.H.; Riaz Rajoka, M.S.; Mehwish, H.M.; Villena, J.; Kitazawa, H. Immunomodulation Potential of Probiotics: A Novel Strategy for Improving Livestock Health, Immunity, and Productivity. Microorganisms 2022, 10, 388. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Shi, W.; Yang, B.; Wang, J. The Probiotic and Immunomodulation Effects of Limosilactobacillus reuteri RGW1 Isolated from Calf Feces. Front. Cell. Infect. Microbiol. 2023, 12, 1086861. [Google Scholar] [CrossRef]
- Sakai, F.; Hosoya, T.; Ono-Ohmachi, A.; Ukibe, K.; Ogawa, A.; Moriya, T.; Kadooka, Y.; Shiozaki, T.; Nakagawa, H.; Nakayama, Y.; et al. Lactobacillus gasseri SBT2055 Induces TGF-β Expression in Dendritic Cells and Activates TLR2 Signal to Produce IgA in the Small Intestine. PLoS ONE 2014, 9, e105370. [Google Scholar] [CrossRef]
- Kwon, H.-K.; Lee, C.-G.; So, J.-S.; Chae, C.-S.; Hwang, J.-S.; Sahoo, A.; Nam, J.H.; Rhee, J.H.; Hwang, K.-C.; Im, S.-H. Generation of Regulatory Dendritic Cells and CD4+Foxp3+ T Cells by Probiotics Administration Suppresses Immune Disorders. Proc. Natl. Acad. Sci. USA 2010, 107, 2159–2164. [Google Scholar] [CrossRef] [PubMed]
- Nugent, W.R.; Daugherty, L. A Measurement Equivalence Study of the Family Bondedness Scale: Measurement Equivalence Between Cat and Dog Owners. Front. Vet. Sci. 2021, 8, 812922. [Google Scholar] [CrossRef]
- Deng, P.; Swanson, K.S. Gut microbiota of humans, dogs, and cats: Current knowledge and future opportunities and challenges. Br. J. Nutr. 2015, 113, S6–S17. [Google Scholar] [CrossRef] [PubMed]
- Fuller, R. Probiotics in human medicine. Gut 1991, 32, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.N.; Barua, N.; Tin, M.C.F.; Dharmaratne, P.; Wong, S.H.; Ip, M. The use of probiotics and prebiotics in decolonizing pathogenic bacteria from the gut; A systematic review and meta-analysis of clinical outcomes. Gut Microbes 2024, 16, 2356279. [Google Scholar] [CrossRef]
- Shah, T.; Baloch, Z.; Shah, Z.; Cui, X.; Xia, X. The intestinal microbiota: Impacts of antibiotics therapy, colonisation resistance, and diseases. Int. J. Mol. Sci. 2021, 22, 6597. [Google Scholar] [CrossRef]
- Roson-Calero, N.; Ballesté-Delpierre, C.; Fernández, J.; Vila, J. Insights on current strategies to decolonize the gut from multidrug-resistant bacteria: Pros and cons. Antibiotics 2023, 12, 1074. [Google Scholar] [CrossRef]
- Wombwell, E.; Patterson, M.E.; Bransteitter, B.; Gillen, L. The effect of Saccharomyces Boulardii primary prevention on risk of hospital-onset Clostridioides difficile infection in hospitalized patients administered antibiotics frequently associated with C. difficile infection. Clin. Infect. Dis. 2021, 73, e2512–e2518. [Google Scholar] [CrossRef]
- Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic Mechanisms of Action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef]
- Christensen, H.R.; Larsen, C.N.; Kæstel, P.; Rosholm, L.B.; Sternberg, C.; Michaelsen, K.F.; Frøkiær, H. Immunomodulating potential of supplementation with probiotics: A dose-response study in healthy young adults. FEMS Immunol. Med. Microbiol. 2006, 47, 380–390. [Google Scholar] [CrossRef]
- Tegegne, B.A.; Kebede, B. Probiotics, Their Prophylactic and Therapeutic Applications in Human Health Development: A Review of the Literature. Heliyon 2022, 8, e09725. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Cho, I.K.; Lee, C.H. Clinical Outcomes of Standard Triple Therapy Plus Probiotics or Concomitant Therapy for Helicobacter pylori Infection. Gut Liver 2018, 12, 165. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Qi, Z.; Luo, J.; Chen, T. Potential Applications of Engineered Bacteria in Disease Diagnosis and Treatment. Microbiome Res. Rep. 2025, 4, 10. [Google Scholar] [CrossRef]
- Wu, T.; Wang, G.; Xiong, Z.; Xia, Y.; Song, X.; Zhang, H.; Wu, Y.; Ai, L. Probiotics Interact with Lipids Metabolism and Affect Gut Health. Front. Nutr. 2022, 9, 917043. [Google Scholar] [CrossRef]
- Chen, D.; Yang, Z.; Chen, X.; Huang, Y.; Yin, B.; Guo, F.; Zhao, H.; Zhao, T.; Qu, H.; Huang, J.; et al. The Effect of Lactobacillus rhamnosus Hsryfm 1301 on the Intestinal Microbiota of a Hyperlipidemic Rat Model. BMC Complement. Altern. Med. 2014, 14, 386. [Google Scholar]
- Ballan, R.; Saad, S.M.I. Characteristics of the Gut Microbiota and Potential Effects of Probiotic Supplements in Individuals with Type 2 Diabetes Mellitus. Foods 2021, 10, 2528. [Google Scholar] [CrossRef] [PubMed]
- Sohn, M.; Na, G.Y.; Chu, J.; Joung, H.; Kim, B.-K.; Lim, S. Efficacy and Safety of Lactobacillus plantarum K50 on Lipids in Koreans with Obesity: A Randomized, Double-Blind Controlled Clinical Trial. Front. Endocrinol. 2022, 12, 790046. [Google Scholar] [CrossRef]
- Mishra, S.; Wang, S.; Nagpal, R.; Miller, B.; Singh, R.; Taraphder, S.; Yadav, H. Probiotics and Prebiotics for the Amelioration of Type 1 Diabetes: Present and Future Perspectives. Microorganisms 2019, 7, 67. [Google Scholar] [CrossRef]
- Caesar, R. Pharmacologic and Non-Pharmacologic Therapies for Type 2 Diabetes on the Gut Microbiota. Can. J. Diabetes 2019, 43, 224–231. [Google Scholar] [CrossRef]
- Mahboobi, S.; Iraj, B.; Maghsoudi, Z.; Feizi, A.; Ghiasvand, R.; Askari, G.; Maayeshi, N. The Effects of Probiotic Supplementation on Markers of Blood Lipids, and Blood Pressure in Patients with Prediabetes: A Randomized Clinical Trial. Int. J. Prev. Med. 2014, 5, 1239–1246. [Google Scholar]
- Jakubczyk, D.; Leszczyńska, K.; Górska, S. The Effectiveness of Probiotics in the Treatment of Inflammatory Bowel Disease (IBD)—A Critical Review. Nutrients 2020, 12, 1973. [Google Scholar] [CrossRef] [PubMed]
- Veerappan, G.R.; Betteridge, J.; Young, P.E. Probiotics for the treatment of inflammatory bowel disease. Curr. Gastroenterol. Rep. 2012, 14, 324–333. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.D.S.S.; Barbalho, S.M.; de Alvares Goulart, R.; Quesada, K.; Bechara, M.D. The Current and Future Role of Drugs and Probiotics in the Management of Inflammatory Bowel Disease. J. Biosci. Med. 2015, 3, 76–85. [Google Scholar] [CrossRef]
- Mao, N.; Cubillos-Ruiz, A.; Cameron, D.E.; Collins, J.J. Probiotic strains detect and suppress cholera in mice. Sci. Transl. Med. 2018, 10, eaao2586. [Google Scholar] [CrossRef]
- Alcon-Giner, C.; Dalby, M.J.; Caim, S.; Ketskemety, J.; Shaw, A.; Sim, K.; Lawson, M.A.E.; Kiu, R.; Leclaire, C.; Chalklen, L.; et al. Microbiota supplementation with Bifidobacterium and Lactobacillus modifies the preterm infant gut microbiota and metabolome: An observational study. Cell Rep. Med. 2020, 1, 100077. [Google Scholar] [CrossRef]
- Aljohani, A.M.; El-Chami, C.; Alhubail, M.; Ledder, R.G.; O’Neill, C.A.; McBain, A.J. Escherichia coli Nissle 1917 inhibits biofilm formation and mitigates virulence in Pseudomonas aeruginosa. Front. Microbiol. 2023, 14, 1108273. [Google Scholar] [CrossRef] [PubMed]
- Altonsy, M.O.; Andrews, S.C.; Tuohy, K.M. Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: Mediation by the mitochondrial pathway. Int. J. Food Microbiol. 2010, 137, 190–203. [Google Scholar] [CrossRef]
- Borowicki, A.; Michelmann, A.; Stein, K.; Scharlau, D.; Scheu, K. Fermented wheat aleurone enriched with probiotic strains LGG and Bb12 modulates markers of tumor progression in human colon cells. Nutr. Cancer 2011, 63, 151–160. [Google Scholar] [CrossRef]
- Orlando, A.; Refolo, M.G.; Messa, C.; Amati, L.; Lavermicocca, P.; Guerra, V.; Russo, F. Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2.1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines. Nutr. Cancer 2012, 64, 1103–1111. [Google Scholar] [CrossRef]
- Russo, F.; Orlando, A.; Linsalata, M.; Cavallini, A.; Messa, C. Effects of Lactobacillus rhamnosus GG on the cell growth and polyamine metabolism in HGC-27 human gastric cancer cells. Nutr. Cancer 2007, 59, 106–114. [Google Scholar] [CrossRef]
- Sadeghi-Aliabadi, H.; Mohammadi, F.; Fazeli, H.; Mirlohi, M. Effects of Lactobacillus plantarum A7 with probiotic potential on colon cancer and normal cells proliferation in comparison with a commercial strain. Iran. J. Basic Med. Sci. 2014, 17, 815–819. [Google Scholar] [PubMed]
- Lee, J.W.; Shin, J.G.; Kim, E.H.; Kang, H.E.; Yim, I.B.; Kim, J.Y.; Joo, H.G.; Woo, H.J. Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J. Vet. Sci. 2004, 5, 41–48. [Google Scholar] [CrossRef]
- Śliżewska, K.; Markowiak-Kopeć, P.; Śliżewska, W. The Role of Probiotics in Cancer Prevention. Cancers 2021, 13, 20. [Google Scholar] [CrossRef]
- Boleij, A.; Hechenbleikner, E.M.; Goodwin, A.C.; Badani, R.; Stein, E.M.; Lazarev, M.G.; Ellis, B.; Carroll, K.C.; Albesiano, E.; Wick, E.C. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis. 2015, 60, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.H.; Shim, Y.Y.; Cha, S.K.; Reaney, M.J.T.; Chee, K.M. Effect of Lactobacillus acidophilus KFRI342 on the development of chemically induced precancerous growths in the rat colon. J. Med. Microbiol. 2012, 61, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Rountree, R. Proven therapeutic benefits of high-quality probiotics. Appl. Nutr. Sci. Rep. 2002, 4, 1–6. [Google Scholar]
- Gantois, I.; Ducatelle, R.; Pasmans, F.; Haesebrouck, F.; Hautefort, I.; Thompson, A.; Hinton, J.C.; Van Immerseel, F. Butyrate specifically down-regulates salmonella pathogenicity island 1 gene expression. Appl. Environ. Microbiol. 2006, 72, 946–949. [Google Scholar] [CrossRef]
- Bassaganya-Riera, J.; Viladomiu, M.; Pedragosa, M.; Simone, C.; Hontecillas, R. Immunoregulatory mechanisms underlying prevention of colitis-associated colorectal cancer by probiotic bacteria. PLoS ONE 2012, 7, e0275512. [Google Scholar] [CrossRef]
- Góralczyk-Bińkowska, A.; Szmajda-Krygier, D.; Kozłowska, E. The Microbiota–Gut–Brain Axis in Psychiatric Disorders. Int. J. Mol. Sci. 2022, 23, 11245. [Google Scholar] [CrossRef]
- O’Mahony, S.M.; Clarke, G.; Borre, Y.E.; Dinan, T.G.; Cryan, J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015, 277, 32–48. [Google Scholar] [CrossRef]
- Grenham, S.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Brain-Gut-Microbe Communication in Health and Disease. Front. Physiol. 2011, 2, 94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, Y.; Wang, Z.; Xie, G.; Liu, M.; Yuan, B.; Chai, H.; Wang, W.; Cheng, P. Implications of gut microbiota in neurodegenerative diseases. Front. Immunol. 2022, 13, 785644. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.F.; Hardingham, G.E. The influence of synaptic activity on neuronal health. Curr. Opin. Neurobiol. 2011, 21, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Ojha, S.; Patil, N.; Jain, M.; Kole, C.; Kaushik, P. Probiotics for Neurodegenerative Diseases: A Systemic Review. Microorganisms 2023, 11, 1083. [Google Scholar] [CrossRef]
- Fasano, A.; Bove, F.; Gabrielli, M.; Petracca, M.; Zocco, M.A.; Ragazzoni, E.; Barbaro, F.; Piano, C.; Fortuna, S.; Tortora, A.; et al. The role of small intestinal bacterial overgrowth in Parkinson’s disease. Mov. Disord. 2013, 28, 1241–1249. [Google Scholar] [CrossRef]
- Schaeffer, E.; Kluge, A.; Böttner, M.; Zunke, F.; Cossais, F.; Berg, D.; Arnold, P. Alpha synuclein connects the gut-brain axis in Parkinson’s disease patients—A view on clinical aspects, cellular pathology and analytical methodology. Front. Cell Dev. Biol. 2020, 8, 573696. [Google Scholar] [CrossRef]
- Magistrelli, L.; Amoruso, A.; Mogna, L.; Graziano, T.; Cantello, R.; Pane, M.; Comi, C. Probiotics May Have Beneficial Effects in Parkinson’s Disease: In vitro Evidence. Front. Immunol. 2021, 10, 969. [Google Scholar] [CrossRef]
- Nowak, A.; Paliwoda, A.; Blasiak, J. Anti-proliferative, pro-apoptotic and anti-oxidative activity of Lactobacillus and Bifidobacterium strains: A review of mechanisms and therapeutic perspectives. Crit. Rev. Food Sci. Nutr. 2018, 59, 3456–3467. [Google Scholar] [CrossRef]
- Mohammedsaeed, W.; Cruickshank, S.; McBain, A.J.; O’Neill, C.A. Lactobacillus rhamnosus GG lysate increases re-epithelialization of keratinocyte scratch assays by promoting migration. Sci. Rep. 2015, 5, 16147. [Google Scholar] [CrossRef]
- Puebla-Barragan, S.; Reid, G. Probiotics in Cosmetic and Personal Care Products: Trends and Challenges. Molecules 2021, 26, 1249. [Google Scholar] [CrossRef]
- Gueniche, A.; Delattre, C.; Winstall, E.; Bastien, P.; Bernard, D.; Castiel-Higounec, I.; Breton, L. An Original Topical Probiotic-Related Ingredient for Dry Skin: Efficacy Evaluated in a Clinical Trial with the Help of Bioinstrumental Measurements and Proteomic Tools. J. Investig. Dermatol. 2010, 130, S65. [Google Scholar]
- Habeebuddin, M.; Karnati, R.K.; Shiroorkar, P.N.; Nagaraja, S.; Asdaq, S.M.B.; Anwer, M.K.; Fattepur, S. Topical Probiotics: More Than a Skin Deep. Pharmaceutics 2022, 14, 557. [Google Scholar] [CrossRef]
- Karimi, F.; Montazeri-Najafabady, N.; Mohammadi, F.; Azadi, A.; Koohpeyma, F.; Gholami, A. A Potential Therapeutic Strategy of an Innovative Probiotic Formulation Toward Topical Treatment of Diabetic Ulcer: An In Vivo Study. Nutr. Diabetes 2024, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- Alziadi, R.; Thaher, A.A.S.; Al-Issawi, N. Utilization of Isolated Therapeutic Bacteria in Topical Ointment for Infection Treatment. Iraqi J. Agric. Sci. 2020, 51, 1661–1669. [Google Scholar] [CrossRef]
- Aybar, J.N.A.; Mayor, S.O.; Olea, L.; Garcia, J.J.; Nisoria, S.; Kolling, Y.; Melian, C.; Rachid, M.; Dimani, R.T.; Werenitzky, C.; et al. Topical Administration of Lactiplantibacillus plantarum Accelerates the Healing of Chronic Diabetic Foot Ulcers through Modifications of Infection, Angiogenesis, Macrophage Phenotype, and Neutrophil Response. Microorganisms 2022, 10, 634. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Jalili, M.; Kamali, A.; Nikahval, B. The concurrent use of probiotic microorganism and collagen hydrogel/scaffold enhances burn wound healing: An in vivo evaluation. Burns 2018, 44, 1775–1786. [Google Scholar] [CrossRef]
- Sikorska, H.; Smoragiewicz, W. Role of probiotics in the prevention and treatment of meticillin-resistant Staphylococcus aureus infections. Int. J. Antimicrob. Agents 2013, 42, 475–481. [Google Scholar] [CrossRef]
- Woodfolk, J.A. T-cell responses to allergens. J. Allergy Clin. Immunol. 2007, 119, 280–294. [Google Scholar] [CrossRef]
- Chapat, L.; Chemin, K.; Dubois, B.; Bourdet-Sicard, R.; Kaiserlian, D. Lactobacillus casei reduces CD8+T cell-mediated skin inflammation. Eur. J. Immunol. 2004, 3, 2520–2528. [Google Scholar] [CrossRef]
- Weise, C.; Zhu, Y.; Ernst, D.; Ku, A.A.; Worm, M. Oral administration of Escherichia coli Nissle 1917 prevents allergen-induced dermatitis in mice. Exp. Dermatol. 2011, 20, 805–809. [Google Scholar] [CrossRef]
- Cohen, C.R.; Wierzbicki, M.R.; French, A.L.; Morris, S.; Newmann, S.; Reno, H.; Green, L.; Miller, S.; Powell, J.; Parks, T.; et al. Randomized Trial of Lactin-V to Prevent Recurrence of Bacterial Vaginosis. N. Engl. J. Med. 2020, 382, 1906–1915. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, A.E.; Au-yeung, M.; Hooton, T.M.; Fredricks, D.N.; Roberts, P.L.; Czaja, C.A.; Yarova-Yarovaya, Y.; Fiedler, T.; Cox, M.; Stamm, W.E. Randomized, Placebo-Controlled Phase 2 Trial of a Lactobacillus crispatus Probiotic Given Intravaginally for Prevention of Recurrent Urinary Tract Infection. Clin. Infect. Dis. 2011, 52, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Groah, S.L.; Rounds, A.K.; Ljungberg, I.H.; Sprague, B.M.; Frost, J.K.; Tractenberg, R.E. Intravesical Lactobacillus rhamnosus GG Is Safe and Well Tolerated in Adults and Children with Neurogenic Lower Urinary Tract Dysfunction: First-in-Human Trial. Neurourol. Urodyn. 2019, 38, 1441–1449. [Google Scholar] [CrossRef]
- Reid, G.; Bruce, A.W.; Taylor, M. Instillation of Lactobacillus and Stimulation of Indigenous Organisms to Prevent Recurrence of Urinary Tract Infections. Microecol. Ther. 1995, 23, 32–45. [Google Scholar]
- Gupta, V.; Mastromarino, P.; Garg, R. Effectiveness of Prophylactic Oral and/or Vaginal Probiotic Supplementation in the Prevention of Recurrent Urinary Tract Infections: A Randomized, Double-Blind, Placebo-Controlled Trial. Clin. Infect. Dis. 2024, 78, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Oerlemans, E.F.M.; Bellen, G.; Claes, I.; Henkens, T.; Allonsius, C.N.; Wittouck, S.; van den Broek, M.F.L.; Wuyts, S.; Kiekens, F.; Donders, G.G.G.; et al. Impact of a Lactobacilli-Containing Gel on Vulvovaginal Candidosis and the Vaginal Microbiome. Sci. Rep. 2020, 10, 7976. [Google Scholar] [CrossRef]
- Kang, Y.; Cai, Y. Gut Microbiota and Hypertension: From Pathogenesis to New Therapeutic Strategies. Clin. Res. Hepatol. Gastroenterol. 2018, 42, 110–117. [Google Scholar] [CrossRef]
- Hu, L.; Zhou, M.; Young, A.; Zhao, W.; Yan, Z. In Vivo Effectiveness and Safety of Probiotics on Prophylaxis and Treatment of Oral Candidiasis: A Systematic Review and Meta-Analysis. BMC Oral Health 2019, 19, 140. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, Z. Gut Probiotics and Health of Dogs and Cats: Benefits, Applications, and Underlying Mechanisms. Microorganisms 2023, 11, 2452. [Google Scholar] [CrossRef]
- Mondo, E.; Marliani, G.; Accorsi, P.A.; Cocchi, M.; Di Leone, A. Role of gut microbiota in dog and cat’s health and diseases. Open Vet. J. 2019, 9, 253–258. [Google Scholar] [CrossRef]
- Gookin, J.L.; Strong, S.J.; Bruno-Bárcena, J.M.; Stauffer, S.H.; Williams, S.; Wassack, E.; Azcarate-Peril, M.A.; Estrada, M.; Seguin, A.; Balzer, J. Randomized placebo-controlled trial of feline-origin Enterococcus hirae probiotic effects on preventative health and fecal microbiota composition of fostered shelter kittens. Front. Vet. Sci. 2022, 9, 923792. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, F.; Hou, Q.; Huang, W.; Liu, Y.; Zhang, H.; Sun, Z. Metagenomic analysis revealed beneficial effects of probiotics in improving the composition and function of the gut microbiota in dogs with diarrhoea. Food Funct. 2019, 10, 2618–2629. [Google Scholar] [CrossRef]
- Sýkora, J.; Valecková, K.; Amlerová, J.; Siala, K.; Dedek, P.; Watkins, S.; Varvarovská, J.; Stožický, F.; Pazdiora, P.; Schwarz, J. Effects of a specially designed fermented milk product containing probiotic Lactobacillus casei DN-114 001 and the eradication of H. pylori in children: A prospective randomized double-blind study. J. Clin. Gastroenterol. 2005, 39, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Mazcorro, J.F. Evaluation of the Gastrointestinal Microbiota in Response to Dietary and Therapeutic Factors in Cats and Dogs Using Molecular Methods; Texas A&M University: College Station, TX, USA, 2011. [Google Scholar]
- Kelley, R.L.; Minikhiem, D.; Kiely, B.; O’Mahony, L.; O’Sullivan, D.; Boileau, T.; Park, J.S. Clinical Benefits of Probiotic Canine-Derived Bifidobacterium animalis Strain AHC7 in Dogs with Acute Idiopathic Diarrhea. Vet. Ther. 2009, 10, 121–130. [Google Scholar] [PubMed]
- Strompfová, V.; Simonová, M.P.; Gancarčíková, S.; Mudroňová, D.; Farbáková, J.; Mad’Ari, A.; Lauková, A. Effect of Bifidobacterium animalis B/12 Administration in Healthy Dogs. Anaerobe 2014, 28, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Strompfová, V.; Kubašová, I.; Lauková, A. Health benefits observed after probiotic Lactobacillus fermentum CCM 7421 application in dogs. Appl. Microbiol. Biotechnol. 2017, 101, 6309–6319. [Google Scholar] [CrossRef]
- Veir, J.K.; Knorr, R.; Cavadini, C.; Sherrill, S.J.; Benyacoub, J.; Satyaraj, E.; Lappin, M.R. Effect of Supplementation with Enterococcus faecium (SF68) on Immune Functions in Cats. Vet. Ther. 2007, 8, 229–238. [Google Scholar]
- Watson, V.E.; Jacob, M.E.; Bruno-Bárcena, J.M.; Amirsultan, S.; Stauffer, S.H.; Píqueras, V.O.; Frias, R.; Gookin, J.L. Influence of the intestinal microbiota on disease susceptibility in kittens with experimentally-induced carriage of atypical enteropathogenic Escherichia coli. Vet. Microbiol. 2019, 231, 197–206. [Google Scholar] [CrossRef]
- Fusi, E.; Rizzi, R.; Polli, M.; Cannas, S.; Giardini, A.; Bruni, N.; Marelli, S.P. Effects of Lactobacillus acidophilus D2/CSL (CECT 4529) supplementation on healthy cat performance. Vet. Rec. Open 2019, 6, e000368. [Google Scholar] [CrossRef]
- Xu, H.; Huang, W.; Hou, Q.; Kwok, L.-Y.; Laga, W.; Wang, Y.; Ma, H.; Sun, Z.; Zhang, H. Oral administration of compound probiotics improved canine feed intake, weight gain, immunity, and intestinal microbiota. Front. Immunol. 2019, 10, 666. [Google Scholar] [CrossRef]
- Strompfová, V.; Marciňáková, M.; Simonová, M.; Bogovič-Matijašić, B.; Lauková, A. Application of potential probiotic Lactobacillus fermentum AD1 strain in healthy dogs. Anaerobe 2006, 12, 75–79. [Google Scholar] [CrossRef]
- Kumar, S.; Pattanaik, A.K.; Sharma, S.; Gupta, R.; Jadhav, S.E.; Dutta, N. Comparative assessment of canine-origin Lactobacillus johnsonii CPN23 and dairy-origin Lactobacillus acidophilus NCDC 15 for nutrient digestibility, fecal fermentative metabolites and selected gut health indices in dogs. J. Nutr. Sci. 2017, 6, e38. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pattanaik, A.K.; Sharma, S.; Jadhav, S.E. Species-specific probiotic Lactobacillus johnsonii CPN23 supplementation modulates blood biochemical profile and erythrocytic antioxidant indices in Labrador dogs. Indian J. Anim. Sci. 2016, 86, 918–924. [Google Scholar] [CrossRef]
- Delucchi, L.; Fraga, M.; Zunino, P. Effect of the probiotic Lactobacillus murinus LbP2 on clinical parameters of dogs with distemper-associated diarrhea. Can. J. Vet. Res. 2017, 81, 118–121. [Google Scholar] [PubMed]
- Segovia, B.M.; Torras, M.D.L.Á.C. Communication of the results of the treatment with probiotics in two cats with chronic gingivostomatitis. Open J. Vet. Med. 2018, 8, 9–14. [Google Scholar] [CrossRef]
- Garcia-Mazcorro, J.F.; Lanerie, D.J.; Dowd, S.E.; Paddock, C.G.; Grützner, N.; Steiner, J.M.; Ivanek, R.; Suchodolski, J.S. Effect of a multi-species synbiotic formulation on fecal bacterial microbiota of healthy cats and dogs as evaluated by pyrosequencing. FEMS Microbiol. Ecol. 2011, 78, 542–554. [Google Scholar] [CrossRef]
- Li, Y.; Ali, I.; Lei, Z.; Li, Y.; Yang, M.; Yang, C.; Li, L. Effect of a Multistrain Probiotic on Feline Gut Health through the Fecal Microbiota and Its Metabolite SCFAs. Metabolites 2023, 13, 228. [Google Scholar] [CrossRef]
- Lappin, M.R.; Veir, J.K.; Satyaraj, E.; Czarnecki-Maulden, G. Pilot study to evaluate the effect of oral supplementation of Enterococcus faecium SF68 on cats with latent feline herpesvirus 1. J. Feline Med. Surg. 2009, 11, 650–654. [Google Scholar] [CrossRef]
- Rossi, G.; Jergens, A.; Cerquetella, M.; Berardi, S.; Di Cicco, E.; Bassotti, G.; Pengo, G.; Suchodolski, J.S. Effects of a probiotic (SLAB51TM) on clinical and histologic variables and microbiota of cats with chronic constipation/megacolon: A pilot study. Benef. Microbes 2018, 9, 101–110. [Google Scholar] [CrossRef]
- Bybee, S.N.; Scorza, A.V.; Lappin, M.R. Effect of the probiotic Enterococcus faecium SF68 on presence of diarrhea in cats and dogs housed in an animal shelter. Vet. Intern. Med. 2011, 25, 856–860. [Google Scholar] [CrossRef]
- Wang, C.; He, R.; Dong, G. Comparative experiment on quality evaluation and deodorization antibacterial effect of probiotic bentonite cat litter. China Anim. Health 2022, 24, 110–112. [Google Scholar]
- Belà, B.; Di Simone, D.; Pignataro, G.; Fusaro, I.; Gramenzi, A. Effects of L. reuteri NBF 2 DSM 32264 consumption on the body weight, body condition score, fecal parameters, and intestinal microbiota of healthy persian cats. Vet. Sci. 2024, 11, 61. [Google Scholar] [CrossRef]
- Lippi, I.; Perondi, F.; Ceccherini, G.; Marchetti, V.; Guidi, G. Effects of probiotic VSL#3 on glomerular filtration rate in dogs affected by chronic kidney disease: A pilot study. Can. Vet. J. 2017, 58, 1301–1305. [Google Scholar] [PubMed]
- Kongtasai, T.; Paepe, D.; Meyer, E.; Mortier, F.; Marynissen, S.; Stammeleer, L.; Defauw, P.; Daminet, S. Renal Biomarkers in Cats: A Review of the Current Status in Chronic Kidney Disease. J. Vet. Intern. Med. 2022, 36, 379–396. [Google Scholar] [CrossRef]
- Prajapati, A.S.; Panchasara, H.H.; Sutaria, P.T.; Chauhan, P.M.; Suthar, A.N. Diagnosis of Chronic Renal Failure in Canine Using Enteric Dialysis. In Advances in Renal and Bladder Sciences; BP International: Kolkata, India, 2021; Chapter 9. [Google Scholar] [CrossRef]
- Rishniw, M.; Wynn, S.G. Azodyl, a Synbiotic, Fails to Alter Azotemia in Cats with Chronic Kidney Disease When Sprinkled onto Food. J. Feline Med. Surg. 2011, 13, 425–431. [Google Scholar] [CrossRef]
- Summers, S. Assessment of Novel Causes and Investigation into the Gut Microbiome in Cats with Chronic Kidney Disease. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2020. [Google Scholar]
- Huang, H.-W.; Kuo, T.-C.; Lee, Y.-J.; Chen, M.J. Multi-Omics Reveal That Two Probiotic Strains Associated with the Gut Microbiome and Host Metabolome Contribute to the Efficacy of Lactobacillus Intervention in Alleviating Feline Chronic Kidney Disease. Preprints 2023, 2023120403. [Google Scholar] [CrossRef]
- Hutchins, R.G.; Bailey, C.S.; Jacob, M.E.; Harris, T.L.; Wood, M.W.; Saker, K.E.; Vaden, S.L. The Effect of an Oral Probiotic Containing Lactobacillus, Bifidobacterium, and Bacillus Species on the Vaginal Microbiota of Spayed Female Dogs. Animals 2013, 27, 1368–1371. [Google Scholar] [CrossRef]
- Sofyan, M.S.; Rosman, N.; Krisnu, B.; Kamaludeen, J.B.; Dadi, T.B.; Pertiwi, H. Management of Feline Idiopathic Cystitis (FIC) Using Probiotic Combination Treatment. Indian Vet. J. 2019, 96, 20–22. [Google Scholar]
- Grin, P.M.; Kowalewska, P.M.; Alhazzani, W.; Fox-Robichaud, A.E. Lactobacillus for preventing recurrent urinary tract infections in women: Meta-analysis. Can. J. Urol. 2013, 20, 6607–6614. [Google Scholar]
- Liu, Y.H.; Ho, C.Y.; Huang, C.C.; Tsai, C.C. Inhibitory effect of lactic acid bacteria on uropathogenic Escherichia coli-induced urinary tract infections. J. Prob. Health 2016, 4, 144. [Google Scholar] [CrossRef]
- Shah, H.; Trivedi, M.; Gurjar, T.; Sahoo, D.K.; Jergens, A.E.; Yadav, V.K.; Patel, A.; Pandya, P. Decoding the Gut Microbiome in Companion Animals: Impacts and Innovations. Microorganisms 2024, 12, 1831. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.; Calinoiu, L.F.; Mitrea, L.; Vodnar, D.C. Probiotics, prebiotics, and synbiotics: Implications and beneficial effects against irritable bowel syndrome. Nutrients 2021, 13, 2112. [Google Scholar] [CrossRef]
- Meineri, G.; Martello, E.; Atuahene, D.; Miretti, S.; Stefanon, B.; Sandri, M.; Biasato, I.; Corvaglia, M.R.; Ferrocino, I.; Cocolin, L.S. Effects of Saccharomyces boulardii Supplementation on Nutritional Status, Fecal Parameters, Microbiota, and Mycobiota in Breeding Adult Dogs. Vet. Sci. 2022, 9, 389. [Google Scholar] [CrossRef]
- Yeh, Y.-M.; Lye, X.-Y.; Lin, H.-Y.; Wong, J.-Y.; Wu, C.-C.; Huang, C.-L.; Tsai, Y.-C.; Wang, L.-C. Effects of Lactiplantibacillus plantarum PS128 on alleviating canine aggression and separation anxiety. Appl. Anim. Behav. Sci. 2022, 247, 105569. [Google Scholar] [CrossRef]
- Cannas, S.; Tonini, B.; Bela, B.; Di Prinzio, R.; Pignataro, G.; Di Simone, D.; and Gramenzi, A. Effect of a novel nutraceutical supplement (Relaxigen Pet dog) on the fecal microbiome and stress-related behaviors in dogs: A pilot study. J. Vet. Behav. 2021, 42, 37–47. [Google Scholar] [CrossRef]
- Mondo, E.; Barone, M.; Soverini, M.; Mariani, G.; Candelà, M.; Accorsi, P.A. Gut Microbiome Structure and Adrenocortical Activity in Dogs with Aggressive and Phobic Behavioral Disorders. Heliyon 2020, 6, e03311. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef]
- Barthe, M.; Gillot, L.; Perdigon, L.; Jacobs, A.; Schoonbroodt, G.; Mauhin, P.; Bouhajja, E.; Osman-Ponchet, H. Topical Probiotic Formulation Promotes Rapid Healing in Dog Keratinocyte Cells: A Promising Approach for Wound Management. Int. J. Mol. Sci. 2023, 24, 12360. [Google Scholar] [CrossRef] [PubMed]
- Coelho, L.P.; Kultima, J.R.; Costea, P.I.; Fournier, C.; Pan, Y.; Czarnecki-Maulden, G.; Hayward, M.R.; Forslund, S.K.; Schmidt, T.S.B.; Descombes, P.; et al. Similarity of the Dog and Human Gut Microbiomes in Gene Content and Response to Diet. Microbiome 2018, 6, 72. [Google Scholar] [CrossRef]
- Wu, D.; Cao, M.; Zhou, J.; Yan, S.; Peng, J.; Yu, Z.; Zhang, A.; Wu, J.; Yan, X.; Zhao, J. Lactobacillus casei T1 from Kurut against Helicobacter pylori-induced inflammation and the gut microbial disorder. J. Funct. Foods 2021, 85, 104611. [Google Scholar] [CrossRef]
- Mia, N.; Alam, A.M.M.N.; Rahman, M.M.; Ali, M.S.; Hashem, M.A. Probiotics to enhance animal production performance and meat quality: A review. Meat Res. 2024, 4, 1–7. [Google Scholar] [CrossRef]
- Ngunjiri, J.M.; Taylor, K.J.M.; Abundo, M.C.; Jang, H.; Elaish, M.; Kc, M.; Ghorbani, A.; Wijeratne, S.; Weber, B.P.; Johnson, T.J.; et al. Farm Stage, Bird Age, and Body Site Dominantly Affect the Quantity, Taxonomic Composition, and Dynamics of Respiratory and Gut Microbiota of Commercial Layer Chickens. Appl. Environ. Microbiol. 2019, 85, e03137-18. [Google Scholar] [CrossRef]
- Ngunjiri, J.M.; Taylor, K.J.M.; Abundo, M.C.; Jang, H.; Elaish, M.; Kc, M.; Ghorbani, A.; Wijeratne, S.; Weber, B.P.; Johnson, T.J.; et al. Longitudinal Investigation of the Swine Gut Microbiome from Birth to Market Reveals Stage and Growth Performance Associated Bacteria. Microbiome 2019, 7, 109. [Google Scholar] [CrossRef]
- Krueger, L.A.; Spangler, D.A.; Sims, M.D. Titration of Supplemental Bacillus subtilis Subsp. subtilis American Type Culture Collection PTA-125135 to Broiler Chickens Fed Diets of 2 Different Metabolizable Energy Concentrations. Poult. Sci. 2020, 99, 3987–3996. [Google Scholar] [CrossRef]
- Arshad, M.A.; Rehman, M.S.; Huws, S.A.; Cheng, Y.; Din, A.U. Gut Microbiome Colonization and Development in Neonatal Ruminants: Strategies, Prospects, and Opportunities. Anim. Nutr. 2021, 7, 883–895. [Google Scholar] [CrossRef]
- Lambo, M.T.; Chang, X.; Liu, D. The Recent Trend in the Use of Multistrain Probiotics in Livestock Production: An Overview. Animals 2021, 11, 2805. [Google Scholar] [CrossRef] [PubMed]
- Kraimi, N.; Dawkins, M.; Gebhardt-Henrich, S.G.; Velge, P.; Rychlik, I.; Volf, J.; Creach, P.; Smith, A.; Colles, F.; Leterrier, C. Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiol. Behav. 2019, 210, 112658. [Google Scholar] [CrossRef]
- Ran, T.; Gomaa, W.; Shen, Y.; Saleem, A.; Yang, W.; McAllister, T. Use of naturally sourced feed additives (Lactobacillus fermentation products and enzymes) in growing and finishing steers: Effects on performance, carcass characteristics and blood metabolites, Anim. Feed Sci. Technol. 2019, 254, 114190. [Google Scholar] [CrossRef]
- Jäger, R.; Purpura, M.; Farmer, S.; Cash, H.A.; Keller, D. Probiotic Bacillus coagulans GBI-30, 6086 improves protein absorption and utilization, Probiotics Antimicrob. Proteins 2018, 10, 611–615. [Google Scholar]
- Zhu, C.; Yao, J.; Zhu, M.; Zhu, C.; Yuan, L.; Li, Z.; Cai, D.; Chen, S.; Hu, P.; Liu, H.-Y. A Meta-Analysis of Lactobacillus-Based Probiotics for Growth Performance and Intestinal Morphology in Piglets. Front. Vet. Sci. 2022, 9, 1045965. [Google Scholar] [CrossRef]
- Tsukahara, T.; Inoue, R.; Nakatani, M.; Fukuta, K.; Kishino, E.; Ito, T.; Ushida, K. Influence of Weaning Age on the Villous Height and Disaccharidase Activities in the Porcine Small Intestine. Anim. Sci. J. 2016, 87, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Kuśnirek, M.; Lipiński, K.; Jørgensen, J.N.; Hansen, L.H.B.; Antoszkiewicz, Z.; Zabielski, R.; Konieczka, P. The Effect of a Bacillus-Based Probiotic on Sow and Piglet Performance in Two Production Cycles. Animals 2023, 13, 3163. [Google Scholar] [CrossRef] [PubMed]
- Dlamini, Z.C.; Langa, R.L.S.; Aiyegoro, O.A.; Okoh, A.I. Effects of probiotics on growth performance, blood parameters, and antibody stimulation in piglets. S. Afr. J. Anim. Sci. 2017, 47, 766–775. [Google Scholar] [CrossRef]
- Aalaei, M.; Khatibjoo, A.; Zaghari, M.; Taherpou, K.; Akbari-Gharaei, M.; Soltani, M. Effect of single- and multistrain probiotics on broiler breeder performance, immunity and intestinal toll-like receptors expression. J. Appl. Anim. Res. 2019, 47, 236–242. [Google Scholar] [CrossRef]
- Bohmer, B.M.; Kramer, W.; Roth-Maier, D.A. Dietary probiotic supplementation and resulting effects on performance, health status, and microbial characteristics of primiparous sows. J. Anim. Physiol. Anim. Nutr. 2006, 90, 309–315. [Google Scholar] [CrossRef]
- Arsène, M.M.; Davares, A.K.; Andreevna, S.L.; Vladimirovich, E.A.; Carime, B.Z.; Marouf, R.; Khelifi, I. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics. Vet. World 2021, 14, 319–328. [Google Scholar] [CrossRef]
- Partlow, J.; Blikslager, A.; Matthews, C.; Mac Law, M.; Daniels, J.; Baker, R.; Labens, R. Effect of Topically Applied Saccharomyces boulardii on the Healing of Acute Porcine Wounds: A Preliminary Study. BMC Res. Notes 2016, 9, 210. [Google Scholar] [CrossRef]
- Pang, J.; Liu, Y.; Kang, L.; Ye, H.; Zang, J.; Wang, J.; Han, D. Bifidobacterium animalis Promotes the Growth of Weaning Piglets by Improving Intestinal Development, Enhancing Antioxidant Capacity, and Modulating Gut Microbiota. Appl. Environ. Microbiol. 2022, 88, e0129622. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Cao, M.; Li, Y.; Zhuo, Y.; Fang, Z.; Che, L.; Xu, S.; Feng, B.; Lin, Y.; et al. Dietary Supplementation of Bacillus subtilis PB6 Improves Sow Reproductive Performance and Reduces Piglet Birth Intervals. Animal Nutr. 2020, 6, 278–287. [Google Scholar] [CrossRef]
- Joysowal, M.; Saikia, B.N.; Dowarah, R.; Tamuly, S.; Kalita, D.; Dev Choudhury, K.B. Effect of Probiotic Pediococcus acidilactici FT28 on Growth Performance, Nutrient Digestibility, Health Status, Meat Quality, and Intestinal Morphology in Growing Pigs. Vet. World 2018, 11, 1669–1675. [Google Scholar] [CrossRef]
- Laskowska, E.; Jarosz, Ł.; Grądzki, Z. Effect of Multi-Microbial Probiotic Formulation Bokashi on Pro- and Anti-Inflammatory Cytokines Profile in the Serum, Colostrum and Milk of Sows, and in a Culture of Polymorphonuclear Cells Isolated from Colostrum. Home Probiotics Antimicrob. Probiotics Antimicrob. Proteins 2019, 11, 220–232. [Google Scholar] [CrossRef]
- Luise, D.; Bosi, P.; Raff, L.; Amatucci, L.; Virdis, S.; Trevisi, P. Bacillus spp. Probiotic Strains as a Potential Tool for Limiting the Use of Antibiotics, and Improving the Growth and Health of Pigs and Chickens. Front. Microbiol. 2022, 13, 801827. [Google Scholar] [CrossRef] [PubMed]
- Monteverde, V.; Congiu, F.; Vazzana, I.; Dara, S.; Di Pietro, S.; Piccione, G. Serum Lipid Profile Modification Related to Polyunsaturated Fatty Acid Supplementation in Thoroughbred Horses. J. Appl. Anim. Res. 2017, 45, 615–618. [Google Scholar] [CrossRef]
- Kembabazi, B.; Ondiek, J.O.; Migwi, P.K. Effect of single or mixed strain probiotics on milk yield of dairy cows. Livest. Res. Rural Dev. 2021, 33. Available online: http://www.lrrd.org/lrrd33/1/brend3307.html (accessed on 18 February 2025).
- Chapman, C.M.C.; Gibson, G.R.; Todd, S.; Rowland, I. Comparative in vitro inhibition of urinary tract pathogens by single- and multistrain probiotics. Eur. J. Nutr. 2013, 52, 1669–1677. [Google Scholar] [CrossRef]
- Reuben, R.C.; Sarkar, S.L.; Ibnat, H.; Setu, M.A.A.; Roy, P.C.; Jahid, I.K. Novel Multi-Strain Probiotics Reduces Pasteurella multocida-Induced Fowl Cholera Mortality in Broilers. Sci. Rep. 2021, 11, 8885. [Google Scholar] [CrossRef] [PubMed]
- Revajová, V.; Benková, T.; Karaffová, V.; Levkut, M.; Selecká, E. Dvorožňáková, E.; Ševčíková, Z.; Herich, R.; Levkut, M. Influence of Immune Parameters after Enterococcus faecium AL41 Administration and Salmonella Infection in Chickens. Life 2022, 12, 201. [Google Scholar] [CrossRef]
- He, Y.; Liu, X.; Dong, Y.; Lei, J.; Ito, K.; Zhang, B. Enterococcus faecium PNC01 Isolated from the Intestinal Mucosa of Chicken as an Alternative for Antibiotics to Reduce Feed Conversion Rate in Broiler Chickens. Microb. Cell Fact. 2021, 20, 122. [Google Scholar] [CrossRef]
- Sun, P.; Wang, J.Q.; Deng, L.F. Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows. Animal 2013, 7, 216–222. [Google Scholar] [CrossRef]
- Alhussien, M.N.; Dang, A.K. Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet. World 2018, 11, 562–577. [Google Scholar] [CrossRef]
- Elghandour, M.M.Y.; Tan, Z.L.; Abu Hafsa, S.H.; Adegbeye, M.J.; Greiner, R.; Ugbogu, E.A.; Cedillo, M.N.; Salem, A.Z.M. Saccharomyces cerevisiae as a Probiotic Feed Additive to Non and Pseudo-Ruminant Feeding: A Review. J. Appl. Microbiol. 2020, 128, 658–674. [Google Scholar] [CrossRef] [PubMed]
- Al-Shawi, S.G.; Dang, D.S.; Yousif, A.Y.; Al-Younis, Z.K.; Najm, T.A.; Matarneh, S.K. The Potential Use of Probiotics to Improve Animal Health, Efficiency, and Meat Quality: A Review. Agriculture 2020, 10, 452. [Google Scholar] [CrossRef]
- Nalla, K.; Manda, N.K.; Dhillon, H.S.; Kanade, S.R.; Rokana, N.; Hess, M.; Puniya, A.K. Impact of Probiotics on Dairy Production Efficiency. Front Microbiol. 2022, 13, 805963. [Google Scholar] [CrossRef]
- Renaud, D.L.; Kelton, D.F.; Weese, J.S.; Noble, C.; Duffield, T.F. Evaluation of a multispecies probiotic as a supportive treatment for diarrhea in dairy calves: A randomized clinical trial. J. Dairy Sci. 2019, 102, 4498–4505. [Google Scholar] [CrossRef]
- Rao, Y.Y.N.K.A.; Kumar, C.V.S.D.S.; Lekha, M.S. Effect of Feeding Multi-Strain Probiotic on Feed Intake and Milk Production Performance in Murrah Buffaloes. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 409–417. [Google Scholar]
- Genís, S.; Sánchez-Chardi, A.; Bach, A.; Fàbregas, F.; Arís, A. A combination of lactic acid bacteria regulates Escherichia coli infection and inflammation of the bovine endometrium. J. Dairy Sci. 2017, 100, 479–492. [Google Scholar] [CrossRef]
- Liu, M.; Wu, Q.; Wang, M.; Fu, Y.; Wang, J. Lactobacillus rhamnosus GR-1 Limits Escherichia coli-Induced Inflammatory Responses via Attenuating MyD88-Dependent and MyD88-Independent Pathway Activation in Bovine Endometrial Epithelial Cells. Inflammation 2016, 39, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Odhiambo, J.F.; Farooq, U.; Lam, T.; Dunn, S.M.; Gänzle, M.G.; Ametaj, B.N. Intravaginally administered lactic acid bacteria expedited uterine involution and modulated hormonal profiles of transition dairy cows. J. Dairy Sci. 2015, 98, 6018–6028. [Google Scholar] [CrossRef]
- Ametaj, B.N.; Iqbal, S.; Selami, F.; Odhiambo, J.F.; Wang, Y.; Gänzle, M.G.; Dunn, S.M.; Zebeli, Q. Intravaginal administration of lactic acid bacteria modulated the incidence of purulent vaginal discharges, plasma haptoglobin concentrations, and milk production in dairy cows. Res. Vet. Sci. 2014, 96, 365–370. [Google Scholar] [CrossRef]
- El-Garhi, M.S.; El-Bordeny, N.E. Impact of intravaginal probiotics inoculation on reproductive performance of Holstein dairy cattle during transition period. Assiut Vet. Med. J. 2019, 65, 63–70. [Google Scholar]
- Xu, H.; Huang, W.; Hou, Q.; Kwok, L.Y.; Sun, Z.; Ma, H.; Zhao, F.; Lee, Y.K.; Zhang, H. The effects of probiotics administration on the milk production, milk components and fecal bacteria microbiota of dairy cows. Sci. Bull. 2017, 62, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Jatkauskas, J.; Vrotniakiene, V. Effects of Probiotic Dietary Supplementation on Diarrhoea Patterns, Faecal Microbiota and Performance of Early Weaned Calves. Vet. Med. 2010, 55, 494–503. [Google Scholar] [CrossRef]
- Azzaz, H.H.; Kholif, A.E.; Murad, H.A.; Vargas-Bello-Pérez, E. A Newly Developed Strain of Enterococcus faecium Isolated from Fresh Dairy Products to Be Used as a Probiotic in Lactating Holstein Cows. Front. Vet. Sci. 2022, 9, 989606. [Google Scholar] [CrossRef]
- Yasmin, F.; Alam, M.J.; Kabir, M.E.; Maruf, A.A.; Islam, M.A.; Hossain, M.M. Influence of Probiotics Supplementation on Growth and Haemato-Biochemical Parameters in Growing Cattle. Int. J. Livest. Res. 2021, 11, 36–42. [Google Scholar] [CrossRef]
- Luan, S.; Duersteler, M.; Galbraith, E.A.; Cardoso, F.C. Effects of Direct-Fed Bacillus pumilus 8G-134 on Feed Intake, Milk Yield, Milk Composition, Feed Conversion, and Health Condition of Pre- and Postpartum Holstein Cows. J. Dairy Sci. 2015, 98, 6423–6432. [Google Scholar] [CrossRef]
- Sun, H.; Zhao, F.; Liu, Y.; Ma, T.; Jin, H.; Quan, K.; Leng, B.; Zhao, J.; Yuan, X.; Li, Z.; et al. Probiotics synergized with conventional regimen in managing Parkinson’s disease. NPJ Park. Dis. 2022, 8, 62. [Google Scholar] [CrossRef]
- Goldin, B.R.; Gorbach, S.L. The Effect of Milk and Lactobacillus Feeding on Human Intestinal Bacterial Enzyme Activity. Am. J. Clin. Nutr. 1984, 39, 756–761. [Google Scholar] [CrossRef]
- Al-Salami, H.; Butt, G.; Fawcett, J.P.; Tucker, I.G.; Golocorbin-Kon, S.; Mikov, M. Probiotic Treatment Reduces Blood Glucose Levels and Increases Systemic Absorption of Gliclazide in Diabetic Rats. Eur. J. Drug Metab. Pharm. 2008, 33, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Matuskova, Z.; Anzenbacher, P.; Vecera, R.; Siller, M.; Tlaskalova-Hogenova, H.; Strojil, J.; Anzenbacherova, E. Effect of Lactobacillus casei on the Pharmacokinetics of Amiodarone in Male Wistar Rats. Eur. J. Drug Metab. Pharm. 2017, 42, 29–36. [Google Scholar] [CrossRef]
- Saputri, F.A.; Kang, D.; Kusuma, A.S.W.; Rusdiana, T.; Hasanah, A.N.; Mutakin; Surono, I.S.; Koyama, H.; Abdulah, R. Lactobacillus plantarum IS-10506 Probiotic Administration Increases Amlodipine Absorption in a Rabbit Model. J. Int. Med. Res. 2018, 46, 5004–5010. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, J.; Ji, R.; Zhou, Y.; Shao, L.; Chen, D.; Tan, J. Preventative Effects of Selenium-Enriched. Benef. Microbes 2019, 10, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Zhang, X.; Jiang, Z.; Wang, T.; Wu, Q.; Wang, J. LA14 Alleviates Liver Injury. mSystems 2021, 6, e0038421. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cai, H.; Zhang, A.; Chen, Z.; Chang, W.; Liu, G.; Deng, X.; Bryden, W.L.; Zheng, A. Enterococcus faecium Modulates the Gut Microbiota of Broilers and Enhances Phosphorus Absorption and Utilization. Animals 2020, 10, 1232. [Google Scholar] [CrossRef] [PubMed]
- Gebrayel, P.; Nicco, C.; Al Khodor, S.; Bilinski, J.; Caselli, E.; Comelli, E.M.; Egert, M.; Giaroni, C.; Karpinski, T.M.; Loniewski, I.; et al. Microbiota medicine: Towards clinical revolution. J. Transl. Med. 2022, 20, 111. [Google Scholar] [CrossRef]
- Latif, A.; Shehzad, A.; Niazi, S.; Zahid, A.; Ashraf, W.; Iqbal, M.W.; Rehman, A.; Riaz, T.; Aadil, R.M.; Khan, I.M.; et al. Probiotics: Mechanism of Action, Health Benefits and Their Application in Food Industries. Front. Microbiol. 2023, 14, 1216674. [Google Scholar] [CrossRef]
- Katoh, T.; Ojima, M.N.; Sakanaka, M.; Ashida, H.; Gotoh, A.; Katayama, T. Enzymatic Adaptation of Bifidobacterium bifidum to Host Glycans, Viewed from Glycoside Hydrolyases and Carbohydrate-Binding Modules. Microorganisms 2020, 8, 481. [Google Scholar] [CrossRef]
- Barkhidarian, B.; Roldos, L.; Iskandar, M.M.; Saedisomeolia, A.; Kubow, S. Probiotic Supplementation and Micronutrient Status in Healthy Subjects: A Systematic Review of Clinical Trials. Nutrients 2021, 13, 3001. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Zhang, R.; Jia, H.; Liu, X.; Zhu, Z. Effects of three probiotics and their interactions on the growth performance of and nutrient absorption in broilers. PeerJ 2022, 10, e13308. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barone, M.; D’Amico, F.; Brigidi, P.; Turroni, S. Gut Microbiome–Micronutrient Interaction: The Key to Controlling the Bioavailability of Minerals and Vitamins? BioFactors 2022, 48, 307–314. [Google Scholar] [CrossRef]
- Giri, S.S.; Sen, S.; Jun, J.W.; Sukumaran, V.; Park, S.C. Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. Fermentation 2021, 7, 63. [Google Scholar] [CrossRef]
- Gong, P.; Tang, X. The impact of probiotic supplementation on gastric motility and nutrient absorption in elderly patients with Gastrointestinal disorders. BMC Gastroenterol. 2025, 25, 192. [Google Scholar] [CrossRef]
- Harutyunyan, N.; Kushugulova, A.; Hovhannisyan, N.; Pepoyan, A. One Health Probiotics as Biocontrol Agents: One Health Tomato Probiotics. Plants 2022, 11, 1334. [Google Scholar] [CrossRef] [PubMed]
- Ouwehand, A.C.; Forssten, S.; Hibberd, A.A.; Lyra, A.; Stahl, B. Probiotic approach to prevent antibiotic resistance. Ann Med. 2016, 48, 246–255. [Google Scholar] [CrossRef]
- Raman, J.; Kim, J.-S.; Choi, K.R.; Eun, H.; Yang, D.; Ko, Y.-J.; Kim, S.-J. Application of Lactic Acid Bacteria (LAB) in Sustainable Agriculture: Advantages and Limitations. Int. J. Mol. Sci. 2022, 23, 7784. [Google Scholar] [CrossRef]
- Ma, L.-C.; Zhao, H.-Q.; Wu, L.B.; Cheng, Z.-L.; Liu, C. Impact of the Microbiome on Human, Animal, and Environmental Health from a One Health Perspective. Sci. One Health 2023, 2, 100037. [Google Scholar] [CrossRef] [PubMed]
- Melara, E.G.; Avellaneda, M.C.; Valdivié, M.; García-Hernández, Y.; Aroche, R.; Martínez, Y. Probiotics: Symbiotic Relationship with the Animal Host. Animals 2022, 12, 719. [Google Scholar] [CrossRef]
- Wendel, U. Assessing Viability and Stress Tolerance of Probiotics—A Review. Front Microbiol. 2022, 12, 818468. [Google Scholar] [CrossRef] [PubMed]
- Kolaček, S.; Hojsak, I.; Berni Canani, R.; Guarino, A.; Indrio, F.; Orel, R.; Pot, B.; Shamir, R.; Szajewska, H.; Vandenplas, Y.; et al. Commercial probiotic products: A call for improved quality control. A position paper by the ESPGHAN working group for probiotics and prebiotics. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 117–124. [Google Scholar] [CrossRef]
- Fenster, K.; Freeburg, B.; Hollard, C.; Wong, C.; Laursen, R.R. Ouwehand AC. The production and delivery of probiotics: A review of a practical approach. Microorganisms 2019, 7, 83. [Google Scholar] [CrossRef]
- Broeckx, G.; Vandenheuvel, D.; Claes, I.J.J.; Lebeer, S.; Kiekens, F. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. Int. J. Pharm. 2016, 505, 303–318. [Google Scholar] [CrossRef]
- Pérez, H.A.; Bustos, A.Y.; Taranto, M.P.; Frías, M.D.L.A.; Ledesma, A.E. Effects of lysozyme on the activity of ionic fluoroquinolone species. Molecules 2018, 23, 741. [Google Scholar] [CrossRef] [PubMed]
- Castro-López, C.; Romero-Luna, H.E.; García, H.S.; Vallejo-Cordoba, B.; González-Córdova, A.F.; Hernández-Mendoza, A. Key Stress Response Mechanisms of Probiotics During Their Journey Through the Digestive System: A Review. Probiotics Antimicrob. Proteins 2023, 15, 1250–1270. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y. F1F0-ATPase functions under markedly acidic conditions in bacteria. In Regulation of Ca2+-ATPases, V-ATPases and F-ATPases; Chakraborti, S., Dhalla, N.S., Eds.; Springer International Publishing: New York, NY, USA, 2016; pp. 459–468. [Google Scholar]
- Kadja, L.; Dib, A.L.; Lakhdara, N.; Bouaziz, A.; Espigares, E.; Gagaoua, M. Influence of Three Probiotics Strains, Lactobacillus rhamnosus GG, Bifidobacterium animalis subsp. Lactis BB-12 and Saccharomyces boulardii CNCM I-745 on the Biochemical and Haematological Profiles and Body Weight of Healthy Rabbits. Biology 2021, 10, 1194. [Google Scholar] [CrossRef] [PubMed]
- García-Hernández, Y.; Rodríguez, Z.; Brandão, L.R.; Rosa, C.A.; Nicoli, J.R.; Elías Iglesias, A.; Peréz-Sanchez, T.; Salabarría, R.B.; Halaihel, N. Identification and in vitro screening of avian yeasts for use as probiotic. Res. Vet. Sci. 2012, 93, 798–802. [Google Scholar] [CrossRef]
- Fernandes, T.; Carvalho, B.F.; Mantovani, H.C.; Schwan, R.F.; Ávila, C.L.S. Identification and characterization of yeasts from bovine rumen for potential use as probiotics. J. Appl. Microbiol. 2019, 127, 845–855. [Google Scholar] [CrossRef]
- Angulo, M.; Reyes-Becerril, M.; Medina-Córdova, N.; Tovar-Ramírez, D.; Angulo, C. Probiotic and Nutritional Effects of Debaryomyces hansenii on Animals. Appl. Microbiol. Biotechnol. 2020, 104, 7689–7699. [Google Scholar] [CrossRef]
- Mbye, M.; Baig, M.A.; AbuQamar, S.F.; El-Tarabily, A.K.; Obaid, R.S.; Osaili, T.M.; Al-Nabulsi, A.A.; Turner, M.S.; Shah, N.P.; Ayyash, M.M. Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1110–1124. [Google Scholar] [CrossRef]
- Sensoy, I. A review on the food digestion in the digestive tract and the used in vitro models. Curr. Res. Food Sci. 2021, 4, 308–319. [Google Scholar] [CrossRef]
- Yang, F.; Hou, C.; Zeng, X.; Qiao, S. The Use of Lactic Acid Bacteria as a Probiotic in Swine Diets. Pathogens 2015, 4, 34–45. [Google Scholar] [CrossRef]
- Kelly, S.M.; Lanigan, N.; O’Neill, I.J.; Bottacini, F.; Lugli, G.A.; Viappiani, A.; Turroni, F.; Ventura, M.; van Sinderen, D. Bifidobacterial Biofilm Formation Is a Multifactorial Adaptive Phenomenon in Response to Bile Exposure. Sci. Rep. 2020, 10, 11598. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, J.; Wang, M.; Du, G.; Chen, J. Lactobacillus casei combats acid stress by maintaining cell membrane functionality. J. Ind. Microbiol. Biotechnol. 2012, 39, 1031–1039. [Google Scholar] [CrossRef] [PubMed]
- Anjana, T.; Tiwari, S.K. Bacteriocin-Producing Probiotic Lactic Acid Bacteria in Controlling Dysbiosis of the Gut Microbiota. Front. Cell Infect. Microbiol. 2022, 12, 851140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, Y.; Li, N.; Xie, J.; Wang, L.; Xu, Y.; Zhang, M.; Yang, X.; Zheng, Y. Antimicrobial Activity against Shigella sonnei and Probiotic Properties of Wild Lactobacilli from Fermented Food. Microbiol. Res. 2011, 167, 27–31. [Google Scholar] [CrossRef]
- Stern, N.; Eruslanov, B.; Pokhilenko, V.; Kovalev, Y.; Volodina, L.; Vladimir, P.; Mitsevich, E.; Mitsevich, I.; Borzenkov, V.; Levchuk, V.; et al. Bacteriocins reduce Campylobacter jejuni colonization while bacteria producing bacteriocins are ineffective. Microb. Ecol. Health. Dis. 2008, 20, 74–79. [Google Scholar]
- Rainard, P.; Foucras, G. A critical appraisal of probiotics for mastitis control. Front. Vet. Sci. 2018, 5, 251. [Google Scholar] [CrossRef]
- Sevillano, E.; Lafuente, I.; Peña, N.; Cintas, L.M.; Muñoz-Atienza, E.; Hernández, P.E.; Borrero, J. Isolation, Genomics-Based and Biochemical Characterization of Bacteriocinogenic Bacteria and Their Bacteriocins, Sourced from the Gastrointestinal Tract of Meat-Producing Pigs. Int. J. Mol. Sci. 2024, 25, 12210. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.S.; Han, S.K.; Ji, A.R.; Kim, K.S.; Lee, W.K. Isolation and characterization of bacteriocin-producing bacteria from the gastrointestinal tract of broiler chickens for probiotic use. J. Appl. Microbiol. 2008, 105, 2203–2212. [Google Scholar] [CrossRef]
- Kuznetsova, M.V.; Mihailovskaya, V.S.; Remezovskaya, N.B.; Starčič Erjavec, M. Bacteriocin-Producing Escherichia coli Isolated from the Gastrointestinal Tract of Farm Animals: Prevalence, Molecular Characterization and Potential for Application. Microorganisms 2022, 10, 1558. [Google Scholar] [CrossRef]
- Öztürk, H.; Geniş, B.; Özden Tuncer, B.; Tuncer, Y. Bacteriocin Production and Technological Properties of Enterococcus mundtii and Enterococcus faecium Strains Isolated from Sheep and Goat Colostrum. Vet. Res. Commun. 2023, 47, 1321–1345. [Google Scholar] [CrossRef]
- Feng, W.; Ao, H.; Peng, C. Gut Microbiota, Short-Chain Fatty Acids, and Herbal Medicines. Front. Pharmacol. 2018, 9, 1354. [Google Scholar] [CrossRef]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut Microbiota Functions: Metabolism of Nutrients and Other Food Components. Front. Nutr. 2017, 57, 1354. [Google Scholar] [CrossRef] [PubMed]
- De Keersmaecker, S.C.J.; Verhoeven, T.L.A.; Desair, J.; Marchal, K.; Vanderleyden, J.; Nagy, I. Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol. Lett. 2006, 259, 89–96. [Google Scholar] [CrossRef]
- Masuda, M.; Ide, M.; Utsumi, H.; Niiro, T.; Shimamura, Y.; Murata, M. Production potency of folate, vitamin B12, and thiamine by lactic acid bacteria isolated from Japanese pickles. Biosci. Biotechnol. Biochem. 2012, 76, 2061–2067. [Google Scholar] [CrossRef] [PubMed]
- Dalto, D.; Matte, J.J. Pyridoxine (Vitamin B6) and the glutathione peroxidase system: A link between one-carbon metabolism and anti-oxidation. Nutrients 2017, 9, 189. [Google Scholar] [CrossRef]
- Patel, A.; Shah, N.; Prajapati, J.B. Biosynthesis of vitamins and enzymes in fermented foods by lactic acid bacteria and related genera: A promising approach. Croat. J. Food Sci. Technol. 2013, 5, 85–91. [Google Scholar]
- Mohammed, Y.; Lee, B.; Kang, Z.; Du, G. Capability of Lactobacillus reuteri to produce an active form of vitamin B12 under optimized fermentation conditions. J. Acad. Ind. Res. 2014, 2, 617–621. [Google Scholar]
- Piwowarek, K.; Lipińska, E.; Hać-Szymańczuk, E.; Kieliszek, M.; Ścibisz, I. Propionibacterium spp.—Source of propionic acid, vitamin B12, and other metabolites important for the industry. Appl. Microbiol. Biotechnol. 2018, 102, 515–538. [Google Scholar] [CrossRef]
- Indira, M.; Venkateswarulu, T.C.; Peele, K.A.; Bobby, M.N.; Krupanidhi, S. Bioactive molecules of probiotic bacteria and their mechanism of action: A review. 3 Biotech 2019, 9, 306. [Google Scholar] [CrossRef]
- Chatterjee, K.; Mitra Mazumder, P.; Roy Sarkar, S.; Saha, R.; Chatterjee, A.; Sarkar, B.; Banerjee, S. Neuroprotective effect of Vitamin K2 against gut dysbiosis associated cognitive decline. Physiol. Behav. 2023, 269, 114252. [Google Scholar] [CrossRef]
- Blaner, W.S.; Shmarakov, I.O.; Traber, M.G. Vitamin A and Vitamin E: Will the Real Antioxidant Please Stand Up? Annu. Rev. Nutr. 2021, 41, 105–131. [Google Scholar] [CrossRef]
- Miller, J.K.; Harrison, M.T.; D’Andrea, A.; Endsley, A.N.; Yin, F.; Kodukula, K.; Watson, D.S. β-Carotene biosynthesis in probiotic bacteria. Probiotics Antimicrob. Proteins 2013, 5, 69–80. [Google Scholar] [CrossRef]
- Ates, O. Systems biology of microbial exopolysaccharides production. Front. Bioeng. Biotechnol. 2015, 3, 200. [Google Scholar] [CrossRef]
- Li, W.; Xia, X.; Tang, W.; Ji, J.; Rui, X.; Chen, X.; Jiang, M.; Zhou, J.; Zhang, Q.; Dong, M. Structural characterization and anticancer activity of cell-bound exopolysaccharide from Lactobacillus helveticus MB2-1. J. Agric. Food Chem. 2015, 63, 3454–3463. [Google Scholar] [CrossRef] [PubMed]
- Minoda Sada, R.; Matsuo, H.; Motooka, D.; Kutsuna, S.; Hamaguchi, S.; Yamamoto, G.; Ueda, A. Clostridium butyricum Bacteremia Associated with Probiotic Use, Japan. Emerg. Infect. Dis. 2024, 30, 655. [Google Scholar] [CrossRef]
- Pararajasingam, A.; Uwagwu, J. Lactobacillus: The Not So Friendly Bacteria. Case Rep. 2017, 2017, bcr-2016-218423. [Google Scholar] [CrossRef] [PubMed]
- Madella, A.M.; Van Bergenhenegouwen, J.; Garssen, J.; Masereeuw, R.; Overbeek, S.A. Microbial-Derived Tryptophan Catabolites, Kidney Disease and Gut Inflammation. Toxins 2022, 14, 645. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Rudiansyah, M.; Jasim, S.A.; Renuka, J.S.; Kumar, A.; Yumashev, A.; Mohammed, J.S.; Sinha, A.; Alizadeh, F.; Tesfaye, A. Clinical Efficacy of Probiotics, Prebiotics, and Synbiotics on Uremic Toxins and Renal Function in Patients with Kidney Disease: An Umbrella Meta-Analysis. Front. Med. 2024, 11, 1475145. [Google Scholar]
- Ribeiro, F.P.B.; Freire, M.O.L.; Coutinho, D.O.; Cirilo, M.A.S.; Alves, J.L.B. Gut Dysbiosis and Probiotic Therapy in Chronic Kidney Disease: A Comprehensive Review. Probiotics Antimicrob. Proteins 2024, in press. [Google Scholar] [CrossRef]
- D’Agostin, M.; Squillaci, D.; Lazzerini, M.; Barbi, E.; Wijers, L.; Da Lozzo, P. Invasive Infections Associated with the Use of Probiotics in Children: A Systematic Review. Children 2021, 8, 924. [Google Scholar] [CrossRef]
- Huys, G.; Vancanneyt, M.; D’Haene, K.; Vankerckhoven, V.; Goossens, H.; Swings, J. Accuracy of Species Identity of Commercial Bacterial Cultures Intended for Probiotic or Nutritional Use. Res. Microbiol. 2006, 157, 803–810. [Google Scholar] [CrossRef]
- Lahtinen, S.J.; Boyle, R.J.; Margolles, A.; Frias, R.; Gueimonde, M. Safety Assessment of Probiotics. In Prebiotics and Probiotics Science and Technology; Charalampopoulos, D., Rastall, R.A., Eds.; Springer: New York, NY, USA, 2009; pp. 1–20. [Google Scholar] [CrossRef]
- Thumu, S.C.R.; Halami, P.M. In Vivo Safety Assessment of Lactobacillus fermentum Strains, Evaluation of Their Cholesterol-Lowering Ability and Intestinal Microbial Modulation. J. Sci. Food Agric. 2020, 100, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Liong, M.-T. Safety of Probiotics: Translocation and Infection. Nutr. Rev. 2008, 66, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Kailasapathy, K.; Chin, J. Survival and Therapeutic Potential of Probiotic Organisms with Reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol. Cell Biol. 2000, 78, 80–88. [Google Scholar] [CrossRef]
- Al-Madhagi, H.; Alramo, A. Clinical Trials of Probiotics: Current Outlook. Food Sci. Nutr. 2023, 12, 2192–2194. [Google Scholar] [CrossRef]
- FAO/WHO. Guidelines for the Evaluation of Probiotics in Food; EHPM: 2022; International Probiotics Association: Dollard-des-Ormeaux, QC, Canada, 2021. [Google Scholar]
- Al-Fakhrany, O.; Elekhnawy, E. Next-Generation Probiotics: The Upcoming Biotherapeutics. Mol. Biol. Rep. 2024, 51, 505. [Google Scholar] [CrossRef]
- Ertem, H.; Çakmakçı, S. Shelf Life and Quality of Probiotic Yogurt Produced with Lactobacillus acidophilus and Gobdin. Int. J. Food Sci. Technol. 2018, 53, 776–783. [Google Scholar] [CrossRef]
- Liu, M.; Chen, J.; Dharmasiddhi, I.P.W.; Chen, S.; Liu, Y.; Liu, H. Review of the Potential of Probiotics in Disease Treatment: Mechanisms, Engineering, and Applications. Processes 2024, 12, 316. [Google Scholar] [CrossRef]
- McFarland, L.V.; Evans, C.T.; Goldstein, E.J.C. Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front. Med. 2018, 5, 124. [Google Scholar] [CrossRef]
- Pramanik, S.; Venkatraman, S.; Karthik, P.; Vaidyanathan, V.K. A Systematic Review on Selection, Characterization, and Implementation of Probiotics in Human Health. Food Sci. Biotechnol. 2023, 32, 423–440. [Google Scholar] [CrossRef]
- Evrard, B.; Coudeyras, S.; Dosgilbert, A.; Charbonnel, N.; Alamé, J.; Tridon, A.; Forestier, C. Dose-Dependent Immunomodulation of Human Dendritic Cells by the Probiotic Lactobacillus rhamnosus Lcr35. PLoS ONE 2011, 6, e18735. [Google Scholar] [CrossRef]
Probiotic Strain | Effect on Host Organism | Origin of Isolation |
---|---|---|
Bifidobacterium animalis AHC7 (2 × 1010 CFU/day) | In young adult dogs with acute diarrhea, supplementation with B. animalis AHC7 resulted in a significant reduction in diarrhea compared to the placebo group | Canine source [96] |
Bifidobacterium animalis B/12 (1 mL of 1.04 × 109 CFU/mL) | When administered to healthy dogs, decreased serum triglyceride and albumin concentrations while increasing ALT and ALP levels. It also resulted in an increase in acetic, acetoacetic, and valeric acids in the feces | Canine source [97] |
Enterococcus faecium DSM 32820 (109 CFU/day) | In healthy dogs, supplementation resulted in a decrease in serum glucose concentration, indicating a potential role in metabolic health | Canine source [98] |
Enterococcus faecium SF68 (5 × 109 CFU/day): | In kittens, supplementation resulted in a significant increase in the percentage of CD4+ lymphocytes, suggesting a role in immune function enhancement | Feline source [99] |
Enterococcus hirae (2.85–4.28 × 108 CFU/day) | In kittens, it promoted intestinal colonization and fecal shedding of live E. hirae. This strain ameliorated the effects of atypical Enteropathogenic E. coli (EPEC) infection, improving intestinal function and reducing water loss | Feline source [100] |
Enterococcus faecium SF68 (5 × 108 CFU/day) | In dogs with diarrhea, the exact probiotic strain combined with metronidazole improved diarrhea and eliminated Giardia cysts more effectively than metronidazole alone | Feline source [99] |
Lactobacillus acidophilus D2/CSL (CECT 4529) (5 × 109 CFU/kg of food) | In healthy adult cats, supplementation improved fecal quality and increased Lactobacillus species while reducing coliform bacteria counts. | Conventional foods such as milk, yogurt, and dietary supplements [101] |
Lactobacillus casei Zhang, Lactobacillus plantarum * P-8, and Bifidobacterium animalis subsp. Lactis V9 (2 × 109 CFU/g) | In dogs across various age groups, these probiotics significantly promoted feed intake and weight gain. They enhanced serum IgG levels, increased fecal sIgA, and reduced TNF-α levels. They also contributed to a better balance of gut bacteria | Lactobacillus casei Zhang (koumiss) Lactobacillus plantarum * P-8 (fermented dairy products in China); Bifidobacterium animalis subsp. Lactis V9 (feces of a healthy Mongolian child) [102] |
Lactobacillus fermentum AD1 (3 mL of 109 CFU/mL) | In healthy dogs, supplementation significantly increased blood lipid and protein levels, lowered blood glucose, and increased the abundance of lactobacilli and enterococci in feces | Canine source [103] |
Lactobacillus fermentum CCM 7421 (107–109 CFU/day) | In dogs with gastrointestinal disorders, improved blood parameters, including total protein, cholesterol, and ALT levels. This strain also increased lactic acid bacteria populations and reduced clostridia levels while normalizing fecal consistency | Canine source [98] |
Lactobacillus johnsonii CPN23 (2.3 × 108 CFU/day) | In adult female Labrador dogs, supplementation enhanced nutrient digestibility, increased SCFA concentrations, and reduced fecal ammonia levels, indicating benefits for gastrointestinal health | Canine source [104] |
Lactobacillus johnsonii CPN23 (108 CFU/mL, 0.1 mL/kg BW) | In adult female dogs, supplementation decreased plasma glucose and cholesterol levels and improved the HDL/LDL ratio | Canine source [105] |
Lactobacillus murinus LbP2 (5 × 109 CFU/day) | In dogs suffering from canine distemper virus (CDV)-associated diarrhea, supplementation led to improvements in fecal consistency, mental status, and appetite | Canine source [106] |
Lactobacillus plantarum * (1 × 108 CFU/mL) | Administered through mare’s milk; improved symptoms of chronic gingivostomatitis in cats, reducing inflammation and oral pain | Mare’s milk [107] |
Proviable®-DC (7 bacterial species) | This multistrain probiotic product, containing seven bacterial species, improved stool consistency and alleviated diarrhea symptoms in both cats and dogs. It also increased the abundance of probiotic bacteria in the feces of healthy cats | Multistrain probiotic product [108] |
Probiotic Strain and Dosage | Host’s Specie and Age | Effect on Host Organism | Origin of the Probiotic Strain |
---|---|---|---|
Bifidobacterium animalis subsp. lactis JYBR-190, 1 × 109 CFU/kg of feed | Piglets, 21 days old | Improved intestinal development, enhanced antioxidant activity, modulated gut microbiota (increase in beneficial bacteria; decrease in pathogens), and reduced incidence of diarrhea in weaned piglets | Swine gastrointestinal tract [152] |
Bacillus subtilis PB6, 4 × 108 CFU/kg of feed | Sows and piglets, precise age not specified | Increased the litter sizes, litter weights, lactation survival rate, and litter weight gains at weaning | Intestines of healthy chickens [153] |
P. acidilactici FT28, 200 g fermented feed/pig/day | Female piglets, 28 days old | Increased feed intake, decreased serum concentration of glucose, decreased serum concen- tration of triglycerides and cholesterol, | Weaned pig- let feces [154] |
Bokashi ® (S. cerevisiae, L. casei, L. plantarum, E. faecium, E. faecalis, Bifidobacterium bifidum, Bifidobacterium pseudolongum, B. licheniformis, B. cereus var toyoi, B. subtilis, C. butyricum), dosage not specified | Sows, precise age not specified | Significantly higher concentration of IL-2, IL-4, IL-6, and IL-10 * in colostrum; increased litter size, lactation length; higher birth weight of newly born piglets | Multistrain preparation [155] |
Probiotic Strain and Dosage | Host’s Specie and Age | Effect on Host Organism | Origin |
---|---|---|---|
Enterococcus faecium PNC01, 1 × 109 CFU/kg feed | Broiler chickens (1 to 42 days old) | Increased villus height and crypt depth, altered cecal microbiota (increased Firmicutes and Lactobacillus; decreased Bacteroides), inhibited Salmonella typhimurium invasion of intestinal epithelial cells | Intestinal mucosa of broiler chickens [160] |
Enterococcus faecium AL41, 1 × 109 CFU/day per bird | 7-day-old broilers | Produced bacteriocin (Enterocin M); administration resulted in higher percentage of phagocytic activity in the gastrointestinal tract | Poultry gut isolate [161] |
Bacillus subtilis PB6, 1 × 108 CFU/kg feed | Broiler chickens (1 to 42 days old) | Increase in body weight and daily weight gain, improved villus height and crypt depth | Chicken’s gastrointestinal tract [158] |
Bacillus subtilis DSM29784, 1 × 109 CFU/kg feed | Broiler chickens, precise age not specified | Low levels of lesion scores (in correlation to necrotic enteritis), improved villus height | Avian gastrointestinal tract [162] |
Probiotic Preparation and Dosage | Host’s Specie and Age | Effect on Host Organism | Origin |
---|---|---|---|
Lactobacillus casei Zhang and Lactobacillus plantarum P-8, 109 CFU/day | Lactating Holstein cows, ~3–5 years old | Increased milk yield while reduced somatic cell count by positively affecting the composition of the rumen microbiota | Human gastrointestinal tract and bovine gastrointestinal tract [175] |
Enterococcus faecium M74, 1 × 109 CFU/day | Piglets, ~3–8 weeks old | Positive effect with significant improvements in body weight and daily weight gain over the entire study period of probiotic treatment (62 days); reduced incidence of diarrhea | Swine intestines [176] |
Enterococcus faecium EGY_NRC1, 2 × 109 CFU/head | Lactating Holstein cows, ~4–6 years old | Improved digestibility of dry matter, neutral detergent fiber (NDF), and acid detergent fiber; increased glucose levels and reduced cholesterol | Bovine milk and fermented milky products [177] |
Lactobacillus gallinarum JCM 2011(T), Streptococcus infantarius subsp. coli HDP90246 (T), Streptococcus salivarius subsp. thermophilus ATCC 19258(T), Streptococcus equinus ATCC 9812(T), Saccharomyces cerevisiae_1, 5 × 108 CFU/kg | Cattle, ~6–12 months old | Increased body weight and daily weight gain, increase in hemoglobin, packed cell volume (PCV), red blood cells count, and mean corpuscular volume (MCV) | Bovine milk and milk products [178] |
Megasphaera elsdenii SA3, 1 × 109 CFU/cow/day | Lactating cows, ~3–5 years old | Decreased plasma lactate dehydrogenase | Bovine rumen [179] |
Bacterial Strain | Animal Source | Bacteriocins Produced | Target Pathogens |
---|---|---|---|
Ligilactobacillus salivarius P1CEA3, PG21 | Swine (gastrointestinal tract) | P1CEA3: Salivaricin B, Abp118α, Nisin S (class I), Abp118β; PG21: Bactofencin A, Salivaricin Tα LP, Salivaricin Tβ LP, Gassericin T/LactacinF lafA LP, Plantaricin NC8α LP, Plantaricin NC8β LP, Plantaricin Sα LP, Plantaricin Sβ LP | Staphylococcus aureus, S. suis [221] |
Enterococcus faecium SH528, SH632 | Chicken (gut) | Enterocin A, B, L50, P | Listeria monocytogenes, Clostridium perfringens [222] |
Pediococcus pentosaceus SH740 | Chicken (gut) | Pediocin PA-1 | Listeria monocytogenes, C. perfringens [222] |
Escherichia coli (72 various strains) | Fecal samples obtained from various livestock (cows, pigs, rabbits, poultry) | Colicins and microcins (including mccV, mccL, Ia, Ib, E1, B, K, A, Y, N, U, S4, mccB17, mccC7) | E. coli, Salmonella enterica [223] |
E. faecium HC121.4, HC161.1, E. mundtii HC26.1, HC56.3, HC73.1, HC73.2, HC112.1, HC121.4, HC147.1, HC155.2, HC161.1, HC165.3, HC166.3, HC166.5, and HC166.8 | Sheep and goat colostrum | Mundticin, enterocins | L. monocytogenes, S. aureus, E. coli, P. aeruginosa, S. typhimurium, B. cereus, as well as LAB [224] |
Vitamin | Function | Bacterial Origin |
---|---|---|
Thiamine (Vitamin B1) | Needed for nucleic acid, fatty acid, and aromatic amino acid synthesis | Produced by Bifidobacterium species [228] |
Pyridoxine (Vitamin B6) | Crucial for early nervous system development | Produced by Bifidobacterium species [229] |
Folic acid (Vitamin B9) | Essential for nucleic acid synthesis, amino acid conversions, and antioxidant functions | Produced in large quantities by gut microbiota; however, not all probiotic strains can synthesize folate, as Lactiplantibacillus plantarum * lacks this ability [230] |
Vitamin B12 | Important for blood formation and nervous system function | Primarily produced by bacteria such as Lactobacillus reuteri [231] and Propionibacterium shermani [232] |
Menaquinone (Vitamin K2) | Crucial for blood clotting | Produced by intestinal bacteria [233]: E. coli, Bacteroides species, and some Gram-positive, anaerobic, non-spore-forming bacilli [234] |
Vitamin A | Supports vision, immune function, cell growth, and skin health [235] | Escherichia coli Nissle 1917 (EcN) has been genetically engineered to produce β-carotene, increasing vitamin A levels in the intestine [236] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorzelanna, Z.; Mamrot, A.; Będkowska, D.; Bubak, J.; Miszczak, M. Exploring the Potential of Novel Animal-Origin Probiotics as Key Players in One Health: Opportunities and Challenges. Int. J. Mol. Sci. 2025, 26, 5143. https://doi.org/10.3390/ijms26115143
Gorzelanna Z, Mamrot A, Będkowska D, Bubak J, Miszczak M. Exploring the Potential of Novel Animal-Origin Probiotics as Key Players in One Health: Opportunities and Challenges. International Journal of Molecular Sciences. 2025; 26(11):5143. https://doi.org/10.3390/ijms26115143
Chicago/Turabian StyleGorzelanna, Zofia, Aleksandra Mamrot, Daria Będkowska, Joanna Bubak, and Marta Miszczak. 2025. "Exploring the Potential of Novel Animal-Origin Probiotics as Key Players in One Health: Opportunities and Challenges" International Journal of Molecular Sciences 26, no. 11: 5143. https://doi.org/10.3390/ijms26115143
APA StyleGorzelanna, Z., Mamrot, A., Będkowska, D., Bubak, J., & Miszczak, M. (2025). Exploring the Potential of Novel Animal-Origin Probiotics as Key Players in One Health: Opportunities and Challenges. International Journal of Molecular Sciences, 26(11), 5143. https://doi.org/10.3390/ijms26115143