Regulation of Vascular Calcification by M1-Type Macrophage-Derived Semaphorin 4D
Abstract
1. Introduction
2. Results
2.1. Sema4D Expression Is Upregulated in Polarized M1 and M2 Macrophages
2.2. M1 Macrophages Promote VSMC Calcification via Co-Culture and Conditioned Medium
2.3. M1 Macrophages Promote Osteogenic Differentiation of VSMCs
2.4. Blockade of Sema4D Reduces VSMC Calcification Induced by Exposure to M1 Macrophage-Conditioned Medium
2.5. Exogenous Sema4D Enhances VSMC Calcification in the Presence of M1-Conditioned Medium
3. Discussion
4. Materials and Methods
4.1. Reagents and Antibodies
4.2. Cell Culture and Polarization
4.3. Induction and Quantification of Calcification
4.4. Co-Culture of VSMCs and Macrophage Subtypes in a Transwell System
4.5. Culture of VSMCs with Conditioned Medium from Polarized Macrophages
4.6. ARS Staining and Quantification
4.7. Quantitative Real-Time Reverse-Transcription PCR
4.8. Western Immunoblot Analysis
4.9. Flow Cytometry Analysis
4.10. ELISA
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
VSMCs | Vascular smooth muscle cells |
Sema4D | Semaphorin 4D |
LPS | Lipopolysaccharide |
IFN-γ | Interferon-gamma |
IL | Interleukin |
ARS | Alizarin red S |
ALP | Alkaline phosphatase |
GSK-3β | Glycogen synthase kinase-3β |
rSema4D | Recombinant semaphorin 4D |
TNF-α | Tumor necrosis factor-alpha |
BMP-2 | Bone morphogenic protein 2 |
ADAMTS-4 | Metalloproteinase with thrombospondin motif 4 |
DMEM | Dulbecco’s Modified Eagle’s Medium |
FBS | Fetal bovine serum |
PBS | Phosphate-buffered saline |
ELISA | Enzyme-linked immunosorbent assay |
Pi | Inorganic phosphate |
References
- Jiang, J.; Zhang, F.; Wan, Y.; Fang, K.; Yan, Z.; Ren, X.; Zhang, R. Semaphorins as Potential Immune Therapeutic Targets for Cancer. Front. Oncol. 2022, 12, 793805. [Google Scholar] [CrossRef] [PubMed]
- Qamar, T.; Misra, D.P.; Kar, S. Semaphorins and its Receptors: Emerging Cellular Biomarkers and Therapeutic Targets in Autoimmune and Inflammatory Disorders. Life Sci. 2025, 361, 123281. [Google Scholar] [CrossRef] [PubMed]
- Elhabazi, A.; Marie-Cardine, A.; Chabbert-de Ponnat, I.; Bensussan, A.; Boumsell, L. Structure and Function of the Immune Semaphorin CD100/SEMA4D. Crit. Rev. Immunol. 2003, 23, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Kuklina, E.M. Receptor Functions of Semaphorin 4D. Biochemistry 2019, 84, 1021–1027. [Google Scholar] [CrossRef]
- Luque, M.C.A.; Gutierrez, P.S.; Debbas, V.; Kalil, J.; Stolf, B.S. CD100 and Plexins B2 and B1 Mediate Monocyte-Endothelial Cell Adhesion and might Take Part in Atherogenesis. Mol. Immunol. 2015, 67, 559–567. [Google Scholar] [CrossRef]
- Pan, W.; Jie, W.; Huang, H. Vascular Calcification: Molecular Mechanisms and Therapeutic Interventions. MedComm (2020) 2023, 4, e200. [Google Scholar] [CrossRef]
- Park, H.; Kim, Y.; Kim, M.; Park, H.; Kim, H.; Bae, S.; Bae, M. Infection of Porphyromonas gingivalis Increases Phosphate-Induced Calcification of Vascular Smooth Muscle Cells. Cells 2020, 9, 2694. [Google Scholar] [CrossRef]
- Ding, N.; Lv, Y.; Su, H.; Wang, Z.; Kong, X.; Zhen, J.; Lv, Z.; Wang, R. Vascular Calcification in CKD: New Insights into its Mechanisms. J. Cell. Physiol. 2023, 238, 1160–1182. [Google Scholar] [CrossRef]
- Li, D.; Fan, C.; Li, X.; Zhao, L. The Role of Macrophage Polarization in Vascular Calcification. Biochem. Biophys. Res. Commun. 2024, 710, 149863. [Google Scholar] [CrossRef]
- Dong, R.; Ji, Z.; Wang, M.; Ma, G. Role of Macrophages in Vascular Calcification: From the Perspective of Homeostasis. Int. Immunopharmacol. 2025, 144, 113635. [Google Scholar] [CrossRef]
- Park, H.; Kim, Y.; Kim, M.; Kim, H.J.; Bae, S.; Bae, M. Inhibition of the Semaphorin 4D-Plexin-B1 Axis Prevents Calcification in Vascular Smooth Muscle Cells. BMB Rep. 2023, 56, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, X.; Song, Y.; Song, D.; Huang, D. The Emerging Roles of semaphorin4D/CD100 in Immunological Diseases. Biochem. Soc. Trans. 2020, 48, 2875–2890. [Google Scholar] [CrossRef]
- Luque, M.C.A.; Galuppo, M.K.; Capelli-Peixoto, J.; Stolf, B.S. CD100 Effects in Macrophages and its Roles in Atherosclerosis. Front. Cardiovasc. Med. 2018, 5, 136. [Google Scholar] [CrossRef]
- Tamagnone, L.; Franzolin, G. Targeting Semaphorin 4D in Cancer: A Look from Different Perspectives. Cancer Res. 2019, 79, 5146–5148. [Google Scholar] [CrossRef] [PubMed]
- Sierra, J.R.; Corso, S.; Caione, L.; Cepero, V.; Conrotto, P.; Cignetti, A.; Piacibello, W.; Kumanogoh, A.; Kikutani, H.; Comoglio, P.M.; et al. Tumor Angiogenesis and Progression are Enhanced by Sema4D Produced by Tumor-Associated Macrophages. J. Exp. Med. 2008, 205, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Takahata, Y.; Hata, K.; Ebina, K.; Hirose, K.; Ruengsinpinya, L.; Nakaminami, Y.; Etani, Y.; Kobayashi, S.; Maruyama, T.; et al. Semaphorin 4D Induces Articular Cartilage Destruction and Inflammation in Joints by Transcriptionally Reprogramming Chondrocytes. Sci. Signal. 2022, 15, eabl5304. [Google Scholar] [CrossRef]
- Yunna, C.; Mengru, H.; Lei, W.; Weidong, C. Macrophage M1/M2 Polarization. Eur. J. Pharmacol. 2020, 877, 173090. [Google Scholar] [CrossRef]
- O’Neill, W.C. Pyrophosphate, Alkaline Phosphatase, and Vascular Calcification. Circ. Res. 2006, 99, e2. [Google Scholar] [CrossRef]
- Miyazono, K. Signal Transduction by Bone Morphogenetic Protein Receptors: Functional Roles of Smad Proteins. Bone 1999, 25, 91–93. [Google Scholar] [CrossRef]
- Cai, T.; Sun, D.; Duan, Y.; Wen, P.; Dai, C.; Yang, J.; He, W. WNT/Β-Catenin Signaling Promotes VSMCs to Osteogenic Transdifferentiation and Calcification through Directly Modulating Runx2 Gene Expression. Exp. Cell Res. 2016, 345, 206–217. [Google Scholar] [CrossRef]
- Park, H.; Kim, M.; Kim, Y.; Kim, H.J.; Bae, S.; Bae, M. Neuromedin B Modulates Phosphate-Induced Vascular Calcification. BMB Rep. 2021, 54, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Zhao, F.; Cheng, H.; Su, M.; Wang, Y. Macrophage Polarization: An Important Role in Inflammatory Diseases. Front. Immunol. 2024, 15, 1352946. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Song, Y.; Ma, Q.; Fang, K.; Chang, X. M1-Type Macrophages Secrete TNF-A to Stimulate Vascular Calcification by Upregulating CA1 and CA2 Expression in VSMCs. J. Inflamm. Res. 2023, 16, 3019–3032. [Google Scholar] [CrossRef] [PubMed]
- Deuell, K.A.; Callegari, A.; Giachelli, C.M.; Rosenfeld, M.E.; Scatena, M. RANKL Enhances Macrophage Paracrine Pro-Calcific Activity in High Phosphate-Treated Smooth Muscle Cells: Dependence on IL-6 and TNF-A. J. Vasc. Res. 2012, 49, 510–521. [Google Scholar] [CrossRef]
- Villa-Bellosta, R.; Hamczyk, M.R.; André, V. Novel Phosphate-Activated Macrophages Prevent Ectopic Calcification by Increasing Extracellular ATP and Pyrophosphate. PLoS ONE 2017, 12, e0174998. [Google Scholar] [CrossRef]
- Dube, P.R.; Birnbaumer, L.; Vazquez, G. Evidence for Constitutive Bone Morphogenetic Protein-2 Secretion by M1 Macrophages: Constitutive Auto/Paracrine Osteogenic Signaling by BMP-2 in M1 Macrophages. Biochem. Biophys. Res. Commun. 2017, 491, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Souma, Y.; Akakabe, Y.; Kitamura, Y.; Matsuo, K.; Shimoda, Y.; Ueyama, T.; Matoba, S.; Yamada, H.; Okigaki, M.; et al. Macrophages Play a Unique Role in the Plaque Calcification by Enhancing the Osteogenic Signals Exerted by Vascular Smooth Muscle Cells. Biochem. Biophys. Res. Commun. 2012, 425, 39–44. [Google Scholar] [CrossRef]
- Hruska, K.A.; Mathew, S.; Saab, G. Bone Morphogenetic Proteins in Vascular Calcification. Circ. Res. 2005, 97, 105–114. [Google Scholar] [CrossRef]
- Zhou, J.; Mei, Y.; Qian, X.; Yao, Z.; Zhu, Y.; Wei, Y.; Qiu, J. Modulation of SEMA4D-Modified Titanium Surface on M2 Macrophage Polarization Via Activation of Rho/ROCK-Mediated Lactate Release of Endothelial Cells: In Vitro and in Vivo. Colloids Surf. B Biointerfaces 2024, 234, 113691. [Google Scholar] [CrossRef]
- Cui, Y.; Jiang, X.; Yang, M.; Yuan, Y.; Zhou, Z.; Gao, X.; Jia, G.; Cao, L.; Li, D.; Zhao, Y.; et al. SEMA4D/VEGF Surface Enhances Endothelialization by Diminished-Glycolysis-Mediated M2-Like Macrophage Polarization. Mater. Today Bio 2023, 23, 100832. [Google Scholar] [CrossRef]
- Cui, K.; Tang, X.; Yang, B.; Fan, M.; Hu, A.; Wu, P.; Yang, F.; Lin, J.; Kong, H.; Lu, X.; et al. Sema4D Knockout Attenuates Choroidal Neovascularization by Inhibiting M2 Macrophage Polarization Via Regulation of the RhoA/ROCK Pathway. Investig. Ophthalmol. Vis. Sci. 2024, 65, 34. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Jiang, H.; Luo, J.; Xi, J.; Wang, X.; Pan, Y.; Chen, J.; Zhao, Y.; Sun, Q. Regulatory Sequence Analysis of Semaphorin 4D 5’ Non-Coding Region. J. Cancer 2019, 10, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, H.; Ma, L.; Hou, Y.; Pan, J.; Sun, C.; Yang, Y.; Zhang, J. MiR-214 Suppressed Ovarian Cancer and Negatively Regulated Semaphorin 4D. Tumour Biol. 2016, 37, 8239–8248. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, H.; Zhi, W. SEMA4D Under the Posttranscriptional Regulation of HuR and miR-4319 Boosts Cancer Progression in Esophageal Squamous Cell Carcinoma. Cancer. Biol. Ther. 2020, 21, 122–129. [Google Scholar] [CrossRef]
- Yoshida, Y.; Ogata, A.; Kang, S.; Ebina, K.; Shi, K.; Nojima, S.; Kimura, T.; Ito, D.; Morimoto, K.; Nishide, M.; et al. Semaphorin 4D Contributes to Rheumatoid Arthritis by Inducing Inflammatory Cytokine Production: Pathogenic and Therapeutic Implications. Arthritis Rheumatol. 2015, 67, 1481–1490. [Google Scholar] [CrossRef]
- Maleki, K.T.; Cornillet, M.; Björkström, N.K. Soluble SEMA4D/CD100: A Novel Immunoregulator in Infectious and Inflammatory Diseases. Clin. Immunol. 2016, 163, 52–59. [Google Scholar] [CrossRef]
- Wågsäter, D.; Björk, H.; Zhu, C.; Björkegren, J.; Valen, G.; Hamsten, A.; Eriksson, P. ADAMTS-4 and -8 are Inflammatory Regulated Enzymes Expressed in Macrophage-Rich Areas of Human Atherosclerotic Plaques. Atherosclerosis 2008, 196, 514–522. [Google Scholar] [CrossRef]
- Sang, Y.; Tsuji, K.; Nakanoh, H.; Fukushima, K.; Kitamura, S.; Wada, J. Role of Semaphorin 3A in Kidney Development and Diseases. Diagnostics 2023, 13, 3038. [Google Scholar] [CrossRef]
- Xia, J.; Worzfeld, T. Semaphorins and Plexins in Kidney Disease. Nephron 2016, 132, 93–100. [Google Scholar] [CrossRef]
- Yin, Z.; Zhang, J.; Xu, S.; Liu, J.; Xu, Y.; Yu, J.; Zhao, M.; Pan, W.; Wang, M.; Wan, J. The Role of Semaphorins in Cardiovascular Diseases: Potential Therapeutic Targets and Novel Biomarkers. FASEB J. 2022, 36, e22509. [Google Scholar] [CrossRef]
- Hu, S.; Zhu, L. Semaphorins and their Receptors: From Axonal Guidance to Atherosclerosis. Front. Physiol. 2018, 9, 1236. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Dong, N.; Wang, Q.; Yi, W.; Wang, Y.; Zhang, S.; Gu, H.; Zhao, X.; Tang, X.; Jin, B.; et al. Increased Levels of Plasma Soluble Sema4D in Patients with Heart Failure. PLoS ONE 2013, 8, e64265. [Google Scholar]
- Yun, S.J.; Ha, J.M.; Kim, E.K.; Kim, Y.W.; Jin, S.Y.; Lee, D.H.; Song, S.H.; Kim, C.D.; Shin, H.K.; Bae, S.S. Akt1 Isoform Modulates Phenotypic Conversion of Vascular Smooth Muscle Cells. Biochim. Biophys. Acta 2014, 1842, 2184–2192. [Google Scholar] [CrossRef]
- Barrett, J.P.; Costello, D.A.; O’Sullivan, J.; Cowley, T.R.; Lynch, M.A. Bone Marrow-Derived Macrophages from Aged Rats are More Responsive to Inflammatory Stimuli. J. Neuroinflamm. 2015, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, S.; Wu, Y.; Lin, Y.; Tang, J.; Ding, S.; Shen, L.; Wang, R.; Hu, J.; Lü, H. Transcriptome Profile of Rat Genes in Bone Marrow-Derived Macrophages at Different Activation Statuses by RNA-Sequencing. Genomics 2019, 111, 986–996. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.-J.; Kim, Y.; Kim, M.-K.; Kim, H.J.; Bae, S.-K.; Bae, M.-K. Regulation of Vascular Calcification by M1-Type Macrophage-Derived Semaphorin 4D. Int. J. Mol. Sci. 2025, 26, 5071. https://doi.org/10.3390/ijms26115071
Park H-J, Kim Y, Kim M-K, Kim HJ, Bae S-K, Bae M-K. Regulation of Vascular Calcification by M1-Type Macrophage-Derived Semaphorin 4D. International Journal of Molecular Sciences. 2025; 26(11):5071. https://doi.org/10.3390/ijms26115071
Chicago/Turabian StylePark, Hyun-Joo, Yeon Kim, Mi-Kyoung Kim, Hyung Joon Kim, Soo-Kyung Bae, and Moon-Kyoung Bae. 2025. "Regulation of Vascular Calcification by M1-Type Macrophage-Derived Semaphorin 4D" International Journal of Molecular Sciences 26, no. 11: 5071. https://doi.org/10.3390/ijms26115071
APA StylePark, H.-J., Kim, Y., Kim, M.-K., Kim, H. J., Bae, S.-K., & Bae, M.-K. (2025). Regulation of Vascular Calcification by M1-Type Macrophage-Derived Semaphorin 4D. International Journal of Molecular Sciences, 26(11), 5071. https://doi.org/10.3390/ijms26115071