Roles of Inflammasomes in Inflammatory Responses and Human Diseases
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Yi, Y.S. Roles of the Caspase-11 Non-Canonical Inflammasome in Rheumatic Diseases. Int. J. Mol. Sci. 2024, 25, 2091. https://doi.org/10.3390/ijms25042091.
- Chuang, H.H.; Huang, C.G.; Hsu, J.F.; Chuang, L.P.; Huang, Y.S.; Li, H.Y.; Lee, L.A. Weight Status, Autonomic Function, and Systemic Inflammation in Children with Obstructive Sleep Apnea. Int. J. Mol. Sci. 2024, 25, 8951. https://doi.org/10.3390/ijms25168951.
- Huang, C.G.; Hsieh, M.J.; Wu, Y.C.; Huang, P.W.; Lin, Y.J.; Tsao, K.C.; Shih, S.R.; Lee, L.A. Influence of Donor-Specific Characteristics on Cytokine Responses in H3N2 Influenza A Virus Infection: New Insights from an Ex Vivo Model. Int. J. Mol. Sci. 2024, 25, 10941. https://doi.org/10.3390/ijms252010941.
- Inigo-Catalina, L.; Linillos-Pradillo, B.; Schlumpf, M.; Lichtensteiger, W.; Paredes, S.D.; Rancan, L.; Tresguerres, J.A.F. DINCH Exposure Triggers Inflammatory, Oxidative, and Apoptotic Pathways in the Liver of Long-Evans Lactating Rats and Their Offspring. Int. J. Mol. Sci. 2024, 25, 13017. https://doi.org/10.3390/ijms252313017.
- D’Amico, R.C.; Nagashima, S.; Carstens, L.B.; Bertoldi, K.G.; Mataruco, S.; Honorio D’Agostini, J.C.; Hlatchuk, E.C.; da Silva, S.B.; de Noronha, L.; Baena, C.P. COVID-19 Induces Greater NLRP3 Inflammasome Activation in Obese Patients than Other Chronic Illnesses: A Case–Control Study. Int. J. Mol. Sci. 2025, 26, 1541. https://doi.org/10.3390/ijms26041541.
- Berk, B.C.; Chávez, C.L.; Hsu, C.G. PDE10A Inhibition Reduces NLRP3 Activation and Pyroptosis in Sepsis and Nerve Injury. Int. J. Mol. Sci. 2025, 26, 4498. https://doi.org/10.3390/ijms26104498.
References
- Janeway, C.A., Jr.; Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 2002, 20, 197–216. [Google Scholar] [CrossRef] [PubMed]
- Cicala, C.; Morello, S. Signaling Pathways in Inflammation and Its Resolution: New Insights and Therapeutic Challenges. Int. J. Mol. Sci. 2023, 24, 11055. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Sung, J.H.; Huh, J.Y. Diverse Functions of Macrophages in Obesity and Metabolic Dysfunction-Associated Steatotic Liver Disease: Bridging Inflammation and Metabolism. Immune Netw. 2025, 25, e12. [Google Scholar] [CrossRef] [PubMed]
- Srisai, P.; Hongsa, C.; Hinwan, Y.; Manbenmad, V.; Chetchotisakd, P.; Anunnatsiri, S.; Faksri, K.; Techo, T.; Salao, K.; Edwards, S.W.; et al. Increased Inflammatory Responses in Patients With Active Disseminated Non-Tuberculous Mycobacterial Infection and High Anti-Interferon-Gamma Autoantibodies. Immune Netw. 2024, 24, e36. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.S. Functional crosstalk between non-canonical caspase-11 and canonical NLRP3 inflammasomes during infection-mediated inflammation. Immunology 2020, 159, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.S. Caspase-11 non-canonical inflammasome: A critical sensor of intracellular lipopolysaccharide in macrophage-mediated inflammatory responses. Immunology 2017, 152, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Dawson, R.E.; Jenkins, B.J. The Role of Inflammasome-Associated Innate Immune Receptors in Cancer. Immune Netw. 2024, 24, e38. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Sterling, K.; Wang, Z.; Zhang, Y.; Song, W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct. Target. Ther. 2024, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Bulte, D.; Rigamonti, C.; Romano, A.; Mortellaro, A. Inflammasomes: Mechanisms of Action and Involvement in Human Diseases. Cells 2023, 12, 1766. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, H.; Liu, B.; Zhang, Y.; Pan, X.; Yu, X.Y.; Shen, Z.; Song, Y.H. Inflammasomes as therapeutic targets in human diseases. Signal Transduct. Target. Ther. 2021, 6, 247. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Y.-S. Roles of Inflammasomes in Inflammatory Responses and Human Diseases. Int. J. Mol. Sci. 2025, 26, 5016. https://doi.org/10.3390/ijms26115016
Yi Y-S. Roles of Inflammasomes in Inflammatory Responses and Human Diseases. International Journal of Molecular Sciences. 2025; 26(11):5016. https://doi.org/10.3390/ijms26115016
Chicago/Turabian StyleYi, Young-Su. 2025. "Roles of Inflammasomes in Inflammatory Responses and Human Diseases" International Journal of Molecular Sciences 26, no. 11: 5016. https://doi.org/10.3390/ijms26115016
APA StyleYi, Y.-S. (2025). Roles of Inflammasomes in Inflammatory Responses and Human Diseases. International Journal of Molecular Sciences, 26(11), 5016. https://doi.org/10.3390/ijms26115016