Plasma and Urine Circulating Tumor DNA Methylation Profiles for Non-Invasive Pancreatic Ductal Adenocarcinoma Detection: Significant Findings in Plasma Only
Abstract
1. Introduction
2. Results
2.1. Methylation Profiles of Plasma ctDNA Differ Between Patients with PDAC and Non-Cancer Controls
2.2. Differential Methylation Profiles of Plasma ctDNA Do Not Correlate with Existing Tumor Markers
2.3. Methylation Profiles of Urinary ctDNA Do Not Differ Between Patients with PDAC and Non-Cancer Controls
3. Discussion
3.1. Methylation Profiles of Plasma and Urinary ctDNA
3.2. Significance of Whole-Genome Bisulfite Sequencing (WGBS) in This Study
3.3. Biological Significance of Intergenic Methylation in PDAC
3.4. Challenges and Potential Strategies for Urine-Based Liquid Biopsy
- Different ctDNA shedding mechanisms: Although plasma ctDNA is largely derived from apoptotic and necrotic tumor cells, urine ctDNA reflects transrenal passage, which may affect methylation patterns [38].
- Technical limitations: current methodologies for ctDNA extraction and bisulfite conversion may lack optimization for urine-based assays [11].
3.5. Future Directions and Clinical Implications
3.6. Limitations
4. Materials and Methods
4.1. Patient Enrollment
4.2. Sample Processing
4.3. Extraction, Bisulfite Conversion Library Preparation, and Sequencing
4.4. Analysis of Sequence Data
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Talukdar, R. Complications of ERCP. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 793–805. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, B.K.; Seo, J.H.; Choi, J.; Choi, J.W.; Lee, C.K.; Chung, J.B.; Park, Y.; Kim, D.W. Carbohydrate antigen 19-9 elevation without evidence of malignant or pancreatobiliary diseases. Sci. Rep. 2020, 10, 8820. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.F.; Ye, Z.; Qin, Y.; Xu, X.W.; Yu, X.J.; Zhuo, Q.F.; Ji, S.R. Mutations in key driver genes of pancreatic cancer: Molecularly targeted therapies and other clinical implications. Acta Pharmacol. Sin. 2021, 42, 1725–1741. [Google Scholar] [CrossRef] [PubMed]
- Gorgannezhad, L.; Umer, M.; Islam, M.N.; Nguyen, N.T.; Shiddiky, M.J.A. Circulating tumor DNA and liquid biopsy: Opportunities, challenges, and recent advances in detection technologies. Lab Chip 2018, 18, 1174–1196. [Google Scholar] [CrossRef]
- Canzoniero, J.V.; Park, B.H. Use of cell free DNA in breast oncology. Biochim. Biophys. Acta 2016, 1865, 266–274. [Google Scholar] [CrossRef]
- Stewart, C.M.; Tsui, D.W.Y. Circulating cell-free DNA for non-invasive cancer management. Cancer Genet. 2018, 228–229, 169–179. [Google Scholar] [CrossRef]
- Volckmar, A.L.; Sültmann, H.; Riediger, A.; Fioretos, T.; Schirmacher, P.; Endris, V.; Stenzinger, A.; Dietz, S. A field guide for cancer diagnostics using cell-free DNA: From principles to practice and clinical applications. Genes Chromosomes Cancer 2018, 57, 123–139. [Google Scholar] [CrossRef]
- Buscail, E.; Maulat, C.; Muscari, F.; Chiche, L.; Cordelier, P.; Dabernat, S.; Alix-Panabières, C.; Buscail, L. Liquid biopsy approach for pancreatic ductal adenocarcinoma. Cancers 2019, 11, 852. [Google Scholar] [CrossRef]
- Cohen, J.D.; Javed, A.A.; Thoburn, C.; Wong, F.; Tie, J.; Gibbs, P.; Schmidt, C.M.; Yip-Schneider, M.T.; Allen, P.J.; Schattner, M.; et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc. Natl. Acad. Sci. USA 2017, 114, 10202–10207. [Google Scholar] [CrossRef]
- Oshi, M.; Murthy, V.; Takahashi, H.; Huyser, M.; Okano, M.; Tokumaru, Y.; Rashid, O.M.; Matsuyama, R.; Endo, I.; Takabe, K. Urine as a source of liquid biopsy for cancer. Cancers 2021, 13, 2652. [Google Scholar] [CrossRef]
- Jain, S.; Lin, S.Y.; Song, W.; Su, Y.H. Urine-based liquid biopsy for nonurological cancers. Genet. Test. Mol. Biomark. 2019, 23, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Salfer, B.; Li, F.; Wong, D.T.W.; Zhang, L. Urinary cell-free DNA in liquid biopsy and cancer management. Clin. Chem. 2022, 68, 1493–1501. [Google Scholar] [CrossRef]
- Chen, C.K.; Liao, J.; Li, M.S.; Khoo, B.L. Urine biopsy technologies: Cancer and beyond. Theranostics 2020, 10, 7872–7888. [Google Scholar] [CrossRef]
- Dermody, S.M.; Bhambhani, C.; Swiecicki, P.L.; Brenner, J.C.; Tewari, M. Trans-renal cell-free tumor DNA for urine-based liquid biopsy of cancer. Front. Genet. 2022, 13, 879108. [Google Scholar] [CrossRef]
- Di Meo, A.; Bartlett, J.; Cheng, Y.; Pasic, M.D.; Yousef, G.M. Liquid biopsy: A step forward towards precision medicine in urologic malignancies. Mol. Cancer 2017, 16, 80. [Google Scholar] [CrossRef] [PubMed]
- Terasawa, H.; Kinugasa, H.; Ako, S.; Hirai, M.; Matsushita, H.; Uchida, D.; Tomoda, T.; Matsumoto, K.; Horiguchi, S.; Kato, H.; et al. Utility of liquid biopsy using urine in patients with pancreatic ductal adenocarcinoma. Cancer Biol. Ther. 2019, 20, 1348–1353. [Google Scholar] [CrossRef]
- Baylin, S.B.; Jones, P.A. Epigenetic determinants of cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019505. [Google Scholar] [CrossRef]
- Down, T.A.; Rakyan, V.K.; Turner, D.J.; Flicek, P.; Li, H.; Kulesha, E.; Gräf, S.; Johnson, N.; Herrero, J.; Tomazou, E.M.; et al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol. 2008, 26, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Meissner, A.; Gnirke, A.; Bell, G.W.; Ramsahoye, B.; Lander, E.S.; Jaenisch, R. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 2005, 33, 5868–5877. [Google Scholar] [CrossRef]
- Ziller, M.J.; Hansen, K.D.; Meissner, A.; Aryee, M.J. Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. Nat. Methods 2015, 12, 230–232, 1 p following 232. [Google Scholar] [CrossRef]
- Herman, J.G.; Baylin, S.B. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 2003, 349, 2042–2054. [Google Scholar] [CrossRef] [PubMed]
- Das, P.M.; Singal, R. DNA methylation and cancer. J. Clin. Oncol. 2004, 22, 4632–4642. [Google Scholar] [CrossRef] [PubMed]
- van den Helder, R.; van Trommel, N.E.; van Splunter, A.P.; Lissenberg-Witte, B.I.; Bleeker, M.C.G.; Steenbergen, R.D.M. Methylation analysis in urine fractions for optimal CIN3 and cervical cancer detection. Papillomavirus Res. 2020, 9, 100193. [Google Scholar] [CrossRef] [PubMed]
- Amiot, A.; Mansour, H.; Baumgaertner, I.; Delchier, J.C.; Tournigand, C.; Furet, J.P.; Carrau, J.P.; Canoui-Poitrine, F.; Sobhani, I.; CRC group of Val De Marne. The detection of the methylated Wif-1 gene is more accurate than a fecal occult blood test for colorectal cancer screening. PLoS ONE 2014, 9, e99233. [Google Scholar] [CrossRef]
- van den Helder, R.; Wever, B.M.M.; van Trommel, N.E.; van Splunter, A.P.; Mom, C.H.; Kasius, J.C.; Bleeker, M.C.G.; Steenbergen, R.D.M. Non-invasive detection of endometrial cancer by DNA methylation analysis in urine. Clin. Epigenet. 2020, 12, 165. [Google Scholar] [CrossRef]
- Lin, S.Y.; Xia, W.; Kim, A.K.; Chen, D.; Schleyer, S.; Choi, L.; Wang, Z.; Hamilton, J.P.; Luu, H.; Hann, H.W.; et al. Novel urine cell-free DNA methylation markers for hepatocellular carcinoma. Sci. Rep. 2023, 13, 21585. [Google Scholar] [CrossRef]
- Liu, B.; Ricarte Filho, J.; Mallisetty, A.; Villani, C.; Kottorou, A.E.; Rodgers, K.P.; Chen, C.; Ito, T.; Holmes, K.; Gastala, N.; et al. Detection of promoter DNA methylation in urine and plasma aids the detection of non-small cell lung cancer. Clin. Cancer Res. 2020, 26, 4339–4348. [Google Scholar] [CrossRef]
- Valle, B.L.; Rodriguez-Torres, S.; Kuhn, E.; Díaz-Montes, T.; Parrilla-Castellar, E.; Lawson, F.P.; Folawiyo, O.; Ili-Gangas, C.; Brebi-Mieville, P.; Eshleman, J.R.; et al. HIST1H2BB and MAGI2 methylation and somatic mutations as precision medicine biomarkers for diagnosis and prognosis of high-grade serous ovarian cancer. Cancer Prev. Res. 2020, 13, 783–794. [Google Scholar] [CrossRef]
- Johnson, A.A.; Akman, K.; Calimport, S.R.G.; Wuttke, D.; Stolzing, A.; de Magalhães, J.P. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 2012, 15, 483–494. [Google Scholar] [CrossRef]
- Li, Q.; Hermanson, P.J.; Springer, N.M. Detection of DNA methylation by whole-genome bisulfite sequencing. Methods Mol. Biol. 2018, 1676, 185–196. [Google Scholar]
- Daviaud, C.; Renault, V.; Mauger, F.; Deleuze, J.F.; Tost, J. Whole-genome bisulfite sequencing using the Ovation® ultralow methyl-seq protocol. Methods Mol. Biol. 2018, 1708, 83–104. [Google Scholar] [PubMed]
- Ortega-Recalde, O.; Peat, J.R.; Bond, D.M.; Hore, T.A. Estimating global methylation and erasure using low-coverage whole-genome bisulfite sequencing (WGBS). Methods Mol. Biol. 2021, 2272, 29–44. [Google Scholar] [PubMed]
- Kulis, M.; Queirós, A.C.; Beekman, R.; Martín-Subero, J.I. Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim. Biophys. Acta 2013, 1829, 1161–1174. [Google Scholar] [CrossRef]
- Ling, H.; Vincent, K.; Pichler, M.; Fodde, R.; Berindan-Neagoe, I.; Slack, F.J.; Calin, G.A. Junk DNA and the long non-coding RNA twist in cancer genetics. Oncogene 2015, 34, 5003–5011. [Google Scholar] [CrossRef]
- Aran, D.; Hellman, A. DNA methylation of transcriptional enhancers and cancer predisposition. Cell 2013, 154, 11–13. [Google Scholar] [CrossRef]
- Ehrlich, M. DNA methylation in cancer: Too much, but also too little. Oncogene 2002, 21, 5400–5413. [Google Scholar] [CrossRef]
- Wever, B.M.M.; Steenbergen, R.D.M. Unlocking the potential of tumor-derived DNA in urine for cancer detection: Methodological challenges and opportunities. Mol. Oncol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Satyal, U.; Srivastava, A.; Abbosh, P.H. Urine biopsy-liquid gold for molecular detection and surveillance of bladder cancer. Front. Oncol. 2019, 9, 1266. [Google Scholar] [CrossRef]
- Cimmino, I.; Bravaccini, S.; Cerchione, C. Urinary biomarkers in tumors: An overview. Methods Mol. Biol. 2021, 2292, 3–15. [Google Scholar]
- Akalin, A.; Kormaksson, M.; Li, S.; Garrett-Bakelman, F.E.; Figueroa, M.E.; Melnick, A.; Mason, C.E. methylKit: A comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012, 13, R87. [Google Scholar] [CrossRef]
Characteristics | Pancreatic Ductal Adenocarcinoma Patients (n = 35) | Non-Cancerous Patients (n = 10) | p-Value |
---|---|---|---|
Age (years old), mean ± SD | 72.3 ± 10.5 | 72.3 ± 5.7 | N.S. |
Sex (male/female) | 18/17 | 8/2 | N.S. |
eGFR (mL/min/1.73 m2), mean ± SD | 74.4 ± 20.4 | 59.7 ± 12.7 | 0.01 |
CEA (ng/mL), mean ± SD | 13.3 ± 24.5 | N/A | |
CA19-9 (U/mL), mean ± SD | 1559.6 ± 4371.9 | N/A | |
DUPAN-2 (U/mL), mean ± SD | 1150.0 ± 2890.9 | N/A | |
SPan-1 (U/mL), mean ± SD | 870.5 ± 1863.2 | N/A | |
Method of final diagnosis | |||
EUS-FNA cytology | 2 | ||
EUS-FNA biopsy tissue | 3 | ||
Cytology of pancreatic juice | 1 | ||
Cytology of ascites | 1 | ||
Surgical specimen | 10 | ||
CT and/or PET | 18 | ||
Clinical stage (cStage) | |||
cStage I | 8 | ||
cStage II | 4 | ||
cStage III | 9 | ||
cStage IV | 14 | ||
Diagnosis for non-cancerous patients | |||
Cholelithiasis | 5 | ||
Cholecystitis | 4 | ||
Choledocholithiasis | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, T.; Iwasawa, T.; Sakuraba, S.; Tanaka, K. Plasma and Urine Circulating Tumor DNA Methylation Profiles for Non-Invasive Pancreatic Ductal Adenocarcinoma Detection: Significant Findings in Plasma Only. Int. J. Mol. Sci. 2025, 26, 4972. https://doi.org/10.3390/ijms26114972
Ito T, Iwasawa T, Sakuraba S, Tanaka K. Plasma and Urine Circulating Tumor DNA Methylation Profiles for Non-Invasive Pancreatic Ductal Adenocarcinoma Detection: Significant Findings in Plasma Only. International Journal of Molecular Sciences. 2025; 26(11):4972. https://doi.org/10.3390/ijms26114972
Chicago/Turabian StyleIto, Tomoaki, Takumi Iwasawa, Shunsuke Sakuraba, and Kenichiro Tanaka. 2025. "Plasma and Urine Circulating Tumor DNA Methylation Profiles for Non-Invasive Pancreatic Ductal Adenocarcinoma Detection: Significant Findings in Plasma Only" International Journal of Molecular Sciences 26, no. 11: 4972. https://doi.org/10.3390/ijms26114972
APA StyleIto, T., Iwasawa, T., Sakuraba, S., & Tanaka, K. (2025). Plasma and Urine Circulating Tumor DNA Methylation Profiles for Non-Invasive Pancreatic Ductal Adenocarcinoma Detection: Significant Findings in Plasma Only. International Journal of Molecular Sciences, 26(11), 4972. https://doi.org/10.3390/ijms26114972