Challenges of Studying Amelogenesis in Gene-Targeted Mouse Models
Abstract
:1. Introduction
1.1. Scope of This Review
1.2. Ameloblast Lifecycle
2. Assessing the Mutational Effect: Direct or Indirect Impact and Phenotypic Variations
3. Response of Ameloblasts to Loss of Function Mutations
3.1. Basic Factors Affecting Gene Alterations
3.2. Basement Membrane and Basal Lamina Essential to Enamel Formation
3.3. Key Indicators of Changes in Ameloblast Polarity
3.4. Ameloblasts Maintaining Cell Contact While Moving Spatially
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
Am | Ameloblast(s), highly specialized tall columnar epithelial cells that form and help mature the enamel layer |
BL | Basal lamina |
BM | Basement membrane, which initially separates IDE cells from developing odontoblasts during the presecretory stage of amelogenesis |
CKI | Conditional knockin mouse model (no expression of mutant protein until the conditional allele is activated) |
CKO | Conditional knockout mouse model (no expression of native protein until the conditional allele is removed) |
DEJ | Dentinoenamel junction, which starts as a basement membrane separating epithelium from mesenchyme, then becomes the union between enamel and dentin |
EO | Enamel organ, a stratified epithelium initially comprising IDE/Am+SI+SR+ODE cells and Am and papillary layer cells (PL) during the maturation stage (Am+PL) |
FEL | Final enamel layer |
FIB-SEM | Focused ion beam scanning electron microscopy, a technique for obtaining very high-resolution imaging of object surfaces |
IDE | Inner dental epithelium, a layer of low columnar epithelial cells that differentiate into Am |
IEL | Initial enamel layer |
IR | Interrod enamel |
KO | Knockout mouse model with both genes silenced [homozygous null] |
Mat | Maturation stage of amelogenesis |
Mut | Gene mutation |
ODE | Outer dental epithelium, a layer of polygonal-shaped epithelial cells at the surface of the EO |
PST | Postsecretory transition stage of amelogenesis |
SEC | Secretory stage of amelogenesis |
SI | Stratum intermedium, a layer of cuboidal epithelial cells attached to the proximal ends of IDE then AM; the layer appears early in the presecretory stage and is lost as a distinct layer during postsecretory transition into the maturation stage |
SR | Stellate reticulum, a variably thick layer of star-shaped epithelial cells positioned between SI and ODE |
TEM | Transmission electron microscopy, a high-resolution imaging technique usually carried out on ultrathin sections cut from a sample with a diamond knife |
References
- Smith, C.E.; Hu, Y.; Hu, J.C.; Simmer, J.P. Ultrastructure of early amelogenesis in wild-type, Amelx−/−, and Enam−/− mice: Enamel ribbon initiation on dentin mineral and ribbon orientation by ameloblasts. Mol. Genet. Genom. Med. 2016, 4, 662–683. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.D.; Smith, C.E.; Hu, Y.; Ikeda, A.; Strauss, M.; Liang, T.; Hsu, Y.H.; Trout, A.H.; McComb, D.W.; Freeman, R.C.; et al. MMP20-generated amelogenin cleavage products prevent formation of fan-shaped enamel malformations. Sci. Rep. 2021, 11, 10570. [Google Scholar] [CrossRef] [PubMed]
- Buckley, C.E.; St Johnston, D. Apical–basal polarity and the control of epithelial form and function. Nat. Rev. Mol. Cell Biol. 2022, 23, 559–577. [Google Scholar] [CrossRef]
- Breitkreutz, D.; Mirancea, N.; Nischt, R. Basement membranes in skin: Unique matrix structures with diverse functions? Histochem. Cell Biol. 2009, 132, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, L.; Le, M.; Nakano, Y.; Chan, B.; Huang, Y.; Torbaty, P.M.; Kohwi, Y.; Marcucio, R.; Habelitz, S.; et al. SATB1 establishes ameloblast cell polarity and regulates directional amelogenin secretion for enamel formation. BMC Biol. 2019, 17, 104. [Google Scholar] [CrossRef]
- Lacruz, R.S.; Habelitz, S.; Wright, J.T.; Paine, M.L. Dental Enamel Formation and Implications for Oral Health and Disease. Physiol. Rev. 2017, 97, 939–993. [Google Scholar] [CrossRef]
- Gil-Bona, A.; Bidlack, F.B. Tooth Enamel and Its Dynamic Protein Matrix. Int. J. Mol. Sci. 2020, 21, 4458. [Google Scholar] [CrossRef]
- Dong, J.; Ruan, W.; Duan, X. Molecular-based phenotype variations in amelogenesis imperfecta. Oral Dis. 2023, 29, 2334–2365. [Google Scholar] [CrossRef]
- Smith, C.E.L.; Poulter, J.A.; Antanaviciute, A.; Kirkham, J.; Brookes, S.J.; Inglehearn, C.F.; Mighell, A.J. Amelogenesis Imperfecta; Genes, Proteins, and Pathways. Front. Physiol. 2017, 8, 435. [Google Scholar] [CrossRef]
- Wright, J.T. Enamel Phenotypes: Genetic and Environmental Determinants. Genes 2023, 14, 545. [Google Scholar] [CrossRef]
- Duverger, O.; Lee, J.S. The intricacies of tooth enamel: Embryonic origin, development and human genetics. J. Struct. Biol. 2024, 216, 108135. [Google Scholar] [CrossRef] [PubMed]
- Gabe, C.M.; Bui, A.T.; Lukashova, L.; Verdelis, K.; Vasquez, B.; Beniash, E.; Margolis, H.C. Role of amelogenin phosphorylation in regulating dental enamel formation. Matrix Biol. 2024, 131, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Bronckers, A.L.J.J. Ion Transport by Ameloblasts during Amelogenesis. J. Dent. Res. 2017, 96, 243–253. [Google Scholar] [CrossRef]
- Simmer, J.P.; Hu, J.C.; Hu, Y.; Zhang, S.; Liang, T.; Wang, S.K.; Kim, J.W.; Yamakoshi, Y.; Chun, Y.H.; Bartlett, J.D.; et al. A genetic model for the secretory stage of dental enamel formation. J. Struct. Biol. 2021, 213, 107805. [Google Scholar] [CrossRef]
- Chen, J.; Sun, T.; You, Y.; Lin, B.; Wu, B.; Wu, J. Genome-wide identification of potential odontogenic genes involved in the dental epithelium-mesenchymal interaction during early odontogenesis. BMC Genom. 2023, 24, 163. [Google Scholar] [CrossRef]
- Krivanek, J.; Soldatov, R.A.; Kastriti, M.E.; Chontorotzea, T.; Herdina, A.N.; Petersen, J.; Szarowska, B.; Landova, M.; Matejova, V.K.; Holla, L.I.; et al. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat. Commun. 2020, 11, 4816. [Google Scholar] [CrossRef]
- Hermans, F.; Hemeryck, L.; Lambrichts, I.; Bronckaers, A.; Vankelecom, H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front. Cell Dev. Biol. 2021, 9, 758203. [Google Scholar] [CrossRef]
- Jheon, A.H.; Seidel, K.; Biehs, B.; Klein, O.D. From molecules to mastication: The development and evolution of teeth. Wiley Interdiscip. Rev. Dev. Biol. 2013, 2, 165–182. [Google Scholar] [CrossRef]
- Smith, C.E.; Hu, Y.; Hu, J.C.-C.; Simmer, J.P. Characteristics of the transverse 2D uniserial arrangement of rows of decussating enamel rods in the inner enamel layer of mouse mandibular incisors. J. Anat. 2019, 235, 912–930. [Google Scholar] [CrossRef]
- Cox, B.N. How the tooth got its stripes: Patterning via strain-cued motility. J. R. Soc. Interface 2013, 10, 20130266. [Google Scholar] [CrossRef]
- Alloing-Séguier, L.; Marivaux, L.; Barczi, J.-F.; Lihoreau, F.; Martinand-Mari, C. Relationships Between Enamel Prism Decussation and Organization of the Ameloblast Layer in Rodent Incisors. Anat. Rec. 2019, 302, 1195–1209. [Google Scholar] [CrossRef]
- Guo, Z.; Guillen, D.P.; Grimm, J.R.; Renteria, C.; Marsico, C.; Nikitin, V.; Arola, D. High throughput automated characterization of enamel microstructure using synchrotron tomography and optical flow imaging. Acta Biomater. 2024, 181, 263–271. [Google Scholar] [CrossRef]
- Glentis, A.; Gurchenkov, V.; Vignjevic, D.M. Assembly, heterogeneity, and breaching of the basement membranes. Cell Adhes. Migr. 2014, 8, 236–245. [Google Scholar] [CrossRef]
- Sawada, T.; Yamamoto, T.; Yanagisawa, T.; Takuma, S.; Hasegawa, H.; Watanabe, K. Evidence for uptake of basement membrane by differentiating ameloblasts in the rat incisor enamel organ. J. Dent. Res. 1990, 69, 1508–1511. [Google Scholar] [CrossRef]
- Khaddam, M.; Huet, E.; Vallée, B.; Bensidhoum, M.; Le Denmat, D.; Filatova, A.; Jimenez-Rojo, L.; Ribes, S.; Lorenz, G.; Morawietz, M.; et al. EMMPRIN/CD147 deficiency disturbs ameloblast–odontoblast cross-talk and delays enamel mineralization. Bone 2014, 66, 256–266. [Google Scholar] [CrossRef]
- Shahid, S.; Hu, Y.; Mohamed, F.; Rizzotto, L.; Layana, M.C.; Fleming, D.T.; Papagerakis, P.; Foster, B.L.; Simmer, J.P.; Bartlett, J.D. ADAM10 Expression by Ameloblasts Is Essential for Proper Enamel Formation. Int. J. Mol. Sci. 2024, 25, 13184. [Google Scholar] [CrossRef]
- Smith, C.E. Cellular and Chemical Events During Enamel Maturation. Crit. Rev. Oral Biol. Med. 1998, 9, 128–161. [Google Scholar] [CrossRef]
- Al Kawas, S.; Warshawsky, H. Ultrastructure and composition of basement membrane separating mature ameloblasts from enamel. Arch. Oral Biol. 2008, 53, 310–317. [Google Scholar] [CrossRef]
- Nanci, A.; Zalzal, S.; Kogaya, Y. Cytochemical characterization of basement membranes in the enamel organ of the rat incisor. Histochemistry 1993, 99, 321–331. [Google Scholar] [CrossRef]
- Liu, H.; Yan, X.; Pandya, M.; Luan, X.; Diekwisch, T.G. Daughters of the Enamel Organ: Development, Fate, and Function of the Stratum Intermedium, Stellate Reticulum, and Outer Enamel Epithelium. Stem Cells Dev. 2016, 25, 1580–1590. [Google Scholar] [CrossRef]
- Bartlett, J.D.; Dobeck, J.M.; Tye, C.E.; Perez-Moreno, M.; Stokes, N.; Reynolds, A.B.; Fuchs, E.; Skobe, Z. Targeted p120-catenin ablation disrupts dental enamel development. PLoS ONE 2010, 5, 12703. [Google Scholar] [CrossRef] [PubMed]
- Barron, M.J.; Brookes, S.J.; Draper, C.E.; Garrod, D.; Kirkham, J.; Shore, R.C.; Dixon, M.J. The cell adhesion molecule nectin-1 is critical for normal enamel formation in mice. Hum. Mol. Genet. 2008, 17, 3509–3520. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ma, Z.; Xie, F.; Wang, J. ASH2L, Core Subunit of H3K4 Methylation Complex, Regulates Amelogenesis. J. Dent. Res. 2023, 103, 81–90. [Google Scholar] [CrossRef]
- Thyagarajan, T.; Totey, S.; Danton, M.J.S.; Kulkarni, A.B. Genetically Altered Mouse Models: The Good, the Bad, and the Ugly. Crit. Rev. Oral Biol. Med. 2003, 14, 154–174. [Google Scholar] [CrossRef]
- Bei, M. Molecular genetics of tooth development. Curr. Opin. Genet. Dev. 2009, 19, 504–510. [Google Scholar] [CrossRef]
- Goldberg, M.; Kellermann, O.; Dimitrova-Nakov, S.; Harichane, Y.; Baudry, A. Comparative studies between mice molars and incisors are required to draw an overview of enamel structural complexity. Front. Physiol. 2014, 5, 359. [Google Scholar] [CrossRef]
- Laugel-Haushalter, V.; Paschaki, M.; Thibault-Carpentier, C.; Dembelé, D.; Dollé, P.; Bloch-Zupan, A. Molars and incisors: Show your microarray IDs. BMC Res. Notes 2013, 6, 113. [Google Scholar] [CrossRef]
- Tang, L.; Chen, M.; Wu, M.; Liang, H.; Ge, H.; Ma, Y.; Shen, Y.; Lu, S.; Shen, C.; Zhang, H.; et al. Fgf9 promotes incisor dental epithelial stem cell survival and enamel formation. Stem Cell Res. Ther. 2024, 15, 293. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, C.; Zhao, H.; Zhou, Y.; Hu, Y.; Yan, G.; Liu, C.; Li, D.; Hao, X.; Mishina, Y.; et al. Distinctive role of ACVR1 in dentin formation: Requirement for dentin thickness in molars and prevention of osteodentin formation in incisors of mice. J. Mol. Histol. 2019, 50, 43–61. [Google Scholar] [CrossRef]
- Møinichen, C.B.; Lyngstadaas, S.P.; Risnes, S. Morphological characteristics of mouse incisor enamel. J. Anat. 1996, 189 Pt 2, 325–333. [Google Scholar]
- Lyngstadaas, S.P.; Møinichen, C.B.; Risnes, S. Crown morphology, enamel distribution, and enamel structure in mouse molars. Anat. Rec. 1998, 250, 268–280. [Google Scholar] [CrossRef]
- Srot, V.; Houari, S.; Kapun, G.; Bussmann, B.; Predel, F.; Pokorny, B.; Bužan, E.; Salzberger, U.; Fenk, B.; Kelsch, M.; et al. Ingenious Architecture and Coloration Generation in Enamel of Rodent Teeth. ACS Nano 2024, 18, 11270–11283. [Google Scholar] [CrossRef]
- Pugach, M.K.; Gibson, C.W. Analysis of enamel development using murine model systems: Approaches and limitations. Front. Physiol. 2014, 5, 313. [Google Scholar] [CrossRef]
- Wang, X.P.; Aberg, T.; James, M.J.; Levanon, D.; Groner, Y.; Thesleff, I. Runx2 (Cbfa1) inhibits Shh signaling in the lower but not upper molars of mouse embryos and prevents the budding of putative successional teeth. J. Dent. Res. 2005, 84, 138–143. [Google Scholar] [CrossRef]
- Yoshizaki, K.; Hu, L.; Nguyen, T.; Sakai, K.; He, B.; Fong, C.; Yamada, Y.; Bikle, D.D.; Oda, Y. Ablation of coactivator Med1 switches the cell fate of dental epithelia to that generating hair. PLoS ONE 2014, 9, e99991. [Google Scholar] [CrossRef]
- Ida-Yonemochi, H. Role of perlecan, a basement membrane-type heparan sulfate proteoglycan, in enamel organ morphogenesis. J. Oral Biosci. 2013, 55, 23–28. [Google Scholar] [CrossRef]
- Inubushi, T.; Nag, P.; Sasaki, J.-I.; Shiraishi, Y.; Yamashiro, T. The significant role of glycosaminoglycans in tooth development. Glycobiology 2024, 34, cwae024. [Google Scholar] [CrossRef]
- Chen, J.; Sun, T.; Lin, B.; Wu, B.; Wu, J. The Essential Role of Proteoglycans and Glycosaminoglycans in Odontogenesis. J. Dent. Res. 2024, 103, 345–358. [Google Scholar] [CrossRef]
- Fontaine, D.A.; Davis, D.B. Attention to Background Strain Is Essential for Metabolic Research: C57BL/6 and the International Knockout Mouse Consortium. Diabetes 2016, 65, 25–33. [Google Scholar] [CrossRef]
- Li, Y.; Konicki, W.S.; Wright, J.T.; Suggs, C.; Xue, H.; Kuehl, M.A.; Kulkarni, A.B.; Gibson, C.W. Mouse genetic background influences the dental phenotype. Cells Tissues Organs 2013, 198, 448–456. [Google Scholar] [CrossRef]
- Natsuga, K.; Shinkuma, S.; Nishie, W.; Shimizu, H. Animal models of epidermolysis bullosa. Dermatol. Clin. 2010, 28, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, J.; Peng, B.; Tian, D.; Zhang, D.; Li, Y.; Feng, X.; Liu, J.; Li, J.; Zhang, T.; et al. Generating viable mice with heritable embryonically lethal mutations using the CRISPR-Cas9 system in two-cell embryos. Nat. Commun. 2019, 10, 2883. [Google Scholar] [CrossRef]
- Chen, X.; Shi, C.; He, M.; Xiong, S.; Xia, X. Endoplasmic reticulum stress: Molecular mechanism and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 352. [Google Scholar] [CrossRef]
- Brookes, S.J.; Barron, M.J.; Smith, C.E.L.; Poulter, J.A.; Mighell, A.J.; Inglehearn, C.F.; Brown, C.J.; Rodd, H.; Kirkham, J.; Dixon, M.J. Amelogenesis imperfecta caused by N-terminal enamelin point mutations in mice and men is driven by endoplasmic reticulum stress. Hum. Mol. Genet. 2017, 26, 1863–1876. [Google Scholar] [CrossRef]
- Said, R.; Mortazavi, H.; Cooper, D.; Ovens, K.; McQuillan, I.; Papagerakis, S.; Papagerakis, P. Deciphering the functions of Stromal Interaction Molecule-1 in amelogenesis using AmelX-iCre mice. Front. Physiol. 2023, 14, 1100714. [Google Scholar] [CrossRef]
- Simmer, J.P.; Papagerakis, P.; Smith, C.E.; Fisher, D.C.; Rountrey, A.N.; Zheng, L.; Hu, J.C. Regulation of dental enamel shape and hardness. J. Dent. Res. 2010, 89, 1024–1038. [Google Scholar] [CrossRef]
- Lesot, H.; Hovorakova, M.; Peterka, M.; Peterkova, R. Three-dimensional analysis of molar development in the mouse from the cap to bell stage. Aust. Dent. J. 2014, 59, 81–100. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Xu, X.; Mayo, J.; Bringas, P., Jr.; Jiang, R.; Wang, S.; Chai, Y. SMAD4-mediated WNT signaling controls the fate of cranial neural crest cells during tooth morphogenesis. Development 2011, 138, 1977–1989. [Google Scholar] [CrossRef]
- Hermyt, M.; Metscher, B.; Rupik, W. Ultrastructural studies of developing egg tooth in grass snake Natrix natrix (Squamata, Serpentes) embryos, supported by X-ray microtomography analysis. Zoology 2021, 146, 125913. [Google Scholar] [CrossRef]
- Wang, X.; Fan, J.-L.; Ito, Y.; Luan, X.; Diekwisch, T.G.H. Identification and characterization of a squamate reptilian amelogenin gene: Iguana iguana. J. Exp. Zool. Part B Mol. Dev. Evol. 2006, 306B, 393–406. [Google Scholar] [CrossRef]
- Kawasaki, K.; Sasagawa, I.; Mikami, M.; Nakatomi, M.; Ishiyama, M. Ganoin and acrodin formation on scales and teeth in spotted gar: A vital role of enamelin in the unique process of enamel mineralization. J. Exp. Zool. Part B Mol. Dev. Evol. 2023, 340, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Hu, Y.; Smith, C.E.; Richardson, A.S.; Zhang, H.; Yang, J.; Lin, B.; Wang, S.K.; Kim, J.W.; Chun, Y.H.; et al. AMBN mutations causing hypoplastic amelogenesis imperfecta and Ambn knockout-NLS-lacZ knockin mice exhibiting failed amelogenesis and Ambn tissue-specificity. Mol. Genet. Genom. Med. 2019, 7, e929. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Li, C.; Tian, Y.; Gao, Y.; Dong, Z.; Xiang, L.; Xu, Z.; Gao, Y.; Zhang, L. Maturation stage enamel defects in Odontogenesis-associated phosphoprotein (Odaph) deficient mice. Dev. Dyn. 2021, 250, 1505–1517. [Google Scholar] [CrossRef]
- Wazen, R.M.; Moffatt, P.; Ponce, K.J.; Kuroda, S.; Nishio, C.; Nanci, A. Inactivation of the Odontogenic ameloblast-associated gene affects the integrity of the junctional epithelium and gingival healing. Eur. Cell Mater. 2015, 30, 187–199. [Google Scholar] [CrossRef]
- Chang, B.; Svoboda, K.K.H.; Liu, X. Cell polarization: From epithelial cells to odontoblasts. Eur. J. Cell Biol. 2019, 98, 1–11. [Google Scholar] [CrossRef]
- Nishikawa, S. Cytoskeleton, intercellular junctions, planar cell polarity, and cell movement in amelogenesis. J. Oral Biosci. 2017, 59, 197–204. [Google Scholar] [CrossRef]
- Nanci, A.; Bendayan, M.; Slavkin, H.C. Enamel protein biosynthesis and secretion in mouse incisor secretory ameloblasts as revealed by high-resolution immunocytochemistry. J. Histochem. Cytochem. 1985, 33, 1153–1160. [Google Scholar] [CrossRef]
- Mill, P.; Christensen, S.T.; Pedersen, L.B. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat. Rev. Genet. 2023, 24, 421–441. [Google Scholar] [CrossRef]
- Couve, E.; Osorio, R.; Schmachtenberg, O. The Amazing Odontoblast: Activity, Autophagy, and Aging. J. Dent. Res. 2013, 92, 765–772. [Google Scholar] [CrossRef]
- Sasano, Y. Dynamic Behavior of Ciliated Centrioles in Rat Incisor Ameloblasts during Cell Differentiation. Arch. Histol. Jpn. Nihon Soshikigaku Kiroku 1986, 49, 437–448. [Google Scholar] [CrossRef]
- Hisamoto, M.; Goto, M.; Muto, M.; Nio-Kobayashi, J.; Iwanaga, T.; Yokoyama, A. Developmental changes in primary cilia in the mouse tooth germ and oral cavity. Biomed. Res. 2016, 37, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Hilgendorf, K.I.; Myers, B.R.; Reiter, J.F. Emerging mechanistic understanding of cilia function in cellular signalling. Nat. Rev. Mol. Cell Biol. 2024, 25, 555–573. [Google Scholar] [CrossRef] [PubMed]
- Hampl, M.; Cela, P.; Szabo-Rogers, H.L.; Bosakova, M.K.; Dosedelova, H.; Krejci, P.; Buchtova, M. Role of Primary Cilia in Odontogenesis. J. Dent. Res. 2017, 96, 965–974. [Google Scholar] [CrossRef]
- Kim, J.W.; Seymen, F.; Lee, K.E.; Ko, J.; Yildirim, M.; Tuna, E.B.; Gencay, K.; Shin, T.J.; Kyun, H.K.; Simmer, J.P.; et al. LAMB3 mutations causing autosomal-dominant amelogenesis imperfecta. J. Dent. Res. 2013, 92, 899–904. [Google Scholar] [CrossRef]
- Fukumoto, S.; Nakamura, T.; Yamada, A.; Arakaki, M.; Saito, K.; Xu, J.; Fukumoto, E.; Yamada, Y. New insights into the functions of enamel matrices in calcified tissues. Jpn. Dent. Sci. Rev. 2014, 50, 47–54. [Google Scholar] [CrossRef]
- Simmer, J.P.; Richardson, A.S.; Hu, Y.Y.; Smith, C.E.; Ching-Chun Hu, J. A post-classical theory of enamel biomineralization… and why we need one. Int. J. Oral Sci. 2012, 4, 129–134. [Google Scholar] [CrossRef]
- Sahlberg, C.; Hormia, M.; Airenne, T.; Thesleff, I. Laminin gamma2 expression is developmentally regulated during murine tooth morphogenesis and is intense in ameloblasts. J. Dent. Res. 1998, 77, 1589–1596. [Google Scholar] [CrossRef]
- Shah, M.; Kale, H.; Ranginwala, A.; Patel, G. Glandular odontogenic cyst: A rare entity. J. Oral Maxillofac. Pathol. 2014, 18, 89–92. [Google Scholar] [CrossRef]
- Mohazab, L.; Koivisto, L.; Jiang, G.; Kytömäki, L.; Haapasalo, M.; Owen, G.R.; Wiebe, C.; Xie, Y.; Heikinheimo, K.; Yoshida, T.; et al. Critical role for αvβ6 integrin in enamel biomineralization. J. Cell Sci. 2013, 126, 732–744. [Google Scholar] [CrossRef]
- Reibring, C.-G.; El Shahawy, M.; Hallberg, K.; Harfe, B.D.; Linde, A.; Gritli-Linde, A. Loss of BMP2 and BMP4 Signaling in the Dental Epithelium Causes Defective Enamel Maturation and Aberrant Development of Ameloblasts. Int. J. Mol. Sci. 2022, 23, 6095. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, J.; Zeng, X.; Wang, Z.; Chen, C.; Rong, C.; Li, S.; Cai, L.; Wang, L.; Zhang, L.; et al. A novel Cdc42-YAP-fibronectin signaling axis regulates ameloblast differentiation during early enamel formation. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2025, 1871, 167570. [Google Scholar] [CrossRef] [PubMed]
- Li, L.L.; Liu, P.H.; Xie, X.H.; Ma, S.; Liu, C.; Chen, L.; Qin, C.L. Loss of epithelial FAM20A in mice causes amelogenesis imperfecta, tooth eruption delay and gingival overgrowth. Int. J. Oral Sci. 2016, 8, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Nakatomi, M.; Ida-Yonemochi, H.; Nakatomi, C.; Saito, K.; Kenmotsu, S.; Maas, R.L.; Ohshima, H. Msx2 Prevents Stratified Squamous Epithelium Formation in the Enamel Organ. J. Dent. Res. 2018, 97, 1355–1364. [Google Scholar] [CrossRef]
- Walko, G.; Castañón, M.J.; Wiche, G. Molecular architecture and function of the hemidesmosome. Cell Tissue Res. 2015, 360, 363–378. [Google Scholar] [CrossRef]
- Kieffer-Combeau, S.; Meyer, J.M.; Lesot, H. Cell-matrix interactions and cell-cell junctions during epithelial histo-morphogenesis in the developing mouse incisor. Int. J. Dev. Biol. 2001, 45, 733–742. [Google Scholar] [CrossRef]
- Fausser, J.L.; Schlepp, O.; Aberdam, D.; Meneguzzi, G.; Ruch, J.V.; Lesot, H. Localization of antigens associated with adherens junctions, desmosomes, and hemidesmosomes during murine molar morphogenesis. Differentiation 1998, 63, 1–11. [Google Scholar] [CrossRef]
- Yoshiba, N.; Yoshiba, K.; Aberdam, D.; Meneguzzi, G.; Perrin-Schmitt, F.; Stoetzel, C.; Ruch, J.V.; Lesot, H. Expression and localization of laminin-5 subunits in the mouse incisor. Cell Tissue Res. 1998, 292, 143–149. [Google Scholar] [CrossRef]
- Wang, W.; Zuidema, A.; Te Molder, L.; Nahidiazar, L.; Hoekman, L.; Schmidt, T.; Coppola, S.; Sonnenberg, A. Hemidesmosomes modulate force generation via focal adhesions. J. Cell Biol. 2020, 219, 201904137. [Google Scholar] [CrossRef]
- Töpfer, U. Basement membrane dynamics and mechanics in tissue morphogenesis. Biol. Open 2023, 12, 59980. [Google Scholar] [CrossRef]
- Garcia, M.A.; Nelson, W.J.; Chavez, N. Cell-Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harb. Perspect. Biol. 2018, 10, a029181. [Google Scholar] [CrossRef]
- Legerstee, K.; Houtsmuller, A.B. A Layered View on Focal Adhesions. Biology 2021, 10, 1189. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.D.; Smith, C.E. Modulation of cell-cell junctional complexes by matrix metalloproteinases. J. Dent. Res. 2013, 92, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Inai, T.; Sengoku, A.; Hirose, E.; Iida, H.; Shibata, Y. Differential expression of the tight junction proteins, claudin-1, claudin-4, occludin, ZO-1, and PAR3, in the ameloblasts of rat upper incisors. Anat. Rec. 2008, 291, 577–585. [Google Scholar] [CrossRef]
- Miyazaki, K.; Yoshizaki, K.; Arai, C.; Yamada, A.; Saito, K.; Ishikawa, M.; Xue, H.; Funada, K.; Haruyama, N.; Yamada, Y.; et al. Plakophilin-1, a Novel Wnt Signaling Regulator, Is Critical for Tooth Development and Ameloblast Differentiation. PLoS ONE 2016, 11, e0152206. [Google Scholar] [CrossRef]
- Yamada, A.; Yoshizaki, K.; Ishikawa, M.; Saito, K.; Chiba, Y.; Fukumoto, E.; Hino, R.; Hoshikawa, S.; Chiba, M.; Nakamura, T.; et al. Connexin 43-Mediated Gap Junction Communication Regulates Ameloblast Differentiation via ERK1/2 Phosphorylation. Front. Physiol. 2021, 12, 748574. [Google Scholar] [CrossRef]
- Müller, L.; Hatzfeld, M.; Keil, R. Desmosomes as Signaling Hubs in the Regulation of Cell Behavior. Front. Cell Dev. Biol. 2021, 9, 745670. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Knaut, H. Focal adhesion-mediated cell anchoring and migration: From in vitro to in vivo. Development 2022, 149, 200647. [Google Scholar] [CrossRef]
- Wang, S.K.; Choi, M.; Richardson, A.S.; Reid, B.M.; Lin, B.P.; Wang, S.J.; Kim, J.W.; Simmer, J.P.; Hu, J.C. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta. Hum. Mol. Genet. 2014, 23, 2157–2163. [Google Scholar] [CrossRef]
- Nag, P.; Inubushi, T.; Sasaki, J.I.; Murotani, T.; Kusano, S.; Nakanishi, Y.; Shiraishi, Y.; Kurosaka, H.; Imazato, S.; Yamaguchi, Y.; et al. Tmem2 Deficiency Leads to Enamel Hypoplasia and Soft Enamel in Mouse. J. Dent. Res. 2023, 102, 1162–1171. [Google Scholar] [CrossRef]
- Shin, M.; Matsushima, A.; Nagao, J.I.; Tanaka, Y.; Harada, H.; Okabe, K.; Bartlett, J.D. Mobility gene expression differences among wild-type, Mmp20 null and Mmp20 over-expresser mice plus visualization of 3D mouse ameloblast directional movement. Sci. Rep. 2023, 13, 18829. [Google Scholar] [CrossRef]
- Chun, Y.-H.P.; Tan, C.; Villanueva, O.; Colley, M.E.; Quintanilla, T.J.; Basiouny, M.S.; Hartel, C.A.; Critchfield, C.S.; Bach, S.B.H.; Fajardo, R.J.; et al. Overexpression of ameloblastin in secretory ameloblasts results in demarcated, hypomineralized opacities in enamel. Front. Physiol. 2024, 14, 1233391. [Google Scholar] [CrossRef]
- Hermans, F.; Hasevoets, S.; Vankelecom, H.; Bronckaers, A.; Lambrichts, I. From Pluripotent Stem Cells to Organoids and Bioprinting: Recent Advances in Dental Epithelium and Ameloblast Models to Study Tooth Biology and Regeneration. Stem Cell Rev. Rep. 2024, 20, 1184–1199. [Google Scholar] [CrossRef]
A. | No Enamel Forms |
---|---|
Ambn KO | Gja1 Mut |
Ash2l CKO (Krt14) | Nog CKO (Krt14) |
Bmpr1a CKO (Krt5-rtTa) | RhoA CKO (Krt14) |
Chip2/Bcl11b locus KO | Rock CKO (Krt14) |
Eda CKO (KRT14) | Smo CKO (Krt14) |
Enam KO | Sp6 KO |
Fst CKO (Krt14) | Sp7 KO |
Gdnf KO | Wnt3 CKO (Krt14) |
B. | Severe Hypoplasia (−50% or less normal thickness) Often with Poor-Quality Mineralized Material Covering Dentin |
Acp4 Mut | Kmt2b CKO (Krt14) |
Acvr1 CKO (Sp7) | Ltbp3 KO |
Amelx KO+KI+Mut | Mmp20 Mut |
Ctnnb1 CKO (Krt5-rtTa) | Msx2 KO |
Ctnnd1 CKO (Krt14) | Pitx2 CKO (Krt14-Hmgn2) |
Dlx3 CKO (Krt14) | Postn KO [incisors only] |
Enam Mut | Satb1 KO |
Evc1 KO | Slc13a5 KO+Mut |
Fam20a KO+CKO (Krt14) | Stim1 CKO (Amelx) |
Fam20c KO+CKO (Sox2) | Tbx1 KO |
C. | Enamel Thickness Near Normal but with Mineralization Problems Primarily Associated with the Maturation Stage |
Adam10 CKO (Amelx) | Lamc2 CKO (Krt14-Dox |
Atg7 CKO (Krt14) | Lpar6 KO |
Bcar1 CKO (Krt14) | Mast4 KO |
Bmp2+Bmp4 CKO (Shh) | Memo1 CKO (Krt14)(Pit2) |
Cftr KO | Nectin1 KO |
Cnnm4 KO | Odaph KO+Mut |
Ctnnb1 (CKI (Amelx) | Rogdi KO |
Gja1 CKO (Dmp1) | Runx2 CKO (Krt14) |
Irf6 CKO (Pitx2) | Slc4a2 KO [rods abnormal] |
Itgb1 CKO (Krt14) | Stim1 CKO (Krt14) |
Kdf1 Mut | Trpm7 CKO (Krt14) |
Klk4 KO | Wdr72 KO |
D. | EO Cells Depolarize and Become Dysplastic, Often Having Cysts With/Without Ectopic Mineralization |
Acp4 Mut | Lama3 KO |
Acvr1 CKO (Sp7) | Lamc2 CKO (Krt14-Dox) |
Ambn KO | Lpar6 KO |
Amelx Mut | Mmp20 Mut |
Bcar1 CKO (Krt14) | Msx2 KO |
Bmp2+Bmp4 CKO (Shh) | Nectin1 KO |
Cdc42 CKO (Krt14) | Odaph KO+Mut |
Enam KO+Mut | Postn KO [incisors only] |
Fam20a KO+CKO (Krt14) | RhoA CKO (Krt14) |
Fam20c KO+CKO (Sox2) | Rock1 or 2 CKO (Krt14) |
Gja1 Mut | Slc13a5 KO+Mut |
Itgb1 CKO (Krt14) | Wdr72 KO |
Itgb6 KO | |
E. | Phenotype of EO Cell Changes |
Bmpr1a CKO (Krt5-rtTa): EO switches to making cementum rather than enamel | |
Bsg KO: removal of BM is delayed in presecretory stage | |
Fam20b CKO (Krt14): EO induces the formation of supernumerary incisors | |
Fst CKO (Krt14): EO takes on phenotype typical of Hertwig’s epithelial root sheath | |
Isl1 CKO (Krt14): enamel forms on the lingual side of incisors | |
Med1 CKO (Krt14): EO switches to making hair | |
Msx2 KO: EO starts to form keratin internally | |
Smad4 CKO (Ors2): enamel forms on top of bone rather than dentin | |
Smo CKO (Krt14): EO becomes flattened and is squamous in appearance | |
Sox21 KO: EO starts to form keratin internally | |
Sp6 CKO (Krt5): enamel forms on lingual side of incisors | |
F. | Loss of Gene Function Causes Only Minor Effects on Amelogenesis |
Adgrf2 KO | Kdf1 Mut |
Adgrf4 KO | Lama2 KO |
Aire KO | Lamc2 mut |
Amtn KO | Odam KO |
Ascl5 KO | Orai1 CKO (Krt14) |
Atg3 CKO (Krt14) | Orai2 KO |
Atg7 CKO (Krt14) | Phex Mut |
Cd63 KO | Pitx2 CKO (Krt14-Dicer1) |
Cdh2 CKO (Krt14) | Rac1 CKO (Krt14) |
Cldn3 KO | Relt KO |
Cldn16 KO | Slc10a7 KO |
Col7a1 KO [rod paths affected] | Slc13a5 CKO (Bglap) |
Col17a1 KO [rod paths affected] | Slc20a2 KO |
Dspp KO+Mut | Slc26a1/Slc26a7 KO (double) |
Fam83h KO | Smad3 KO |
Fgf9 KO | Sod1 KO |
Gpr68 KO | Sp7 CKO (Col1a1) |
Ift88 CKO (Krt14) | Trpm7 Mut |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, C.E.; Bartlett, J.D.; Simmer, J.P.; Hu, J.C.-C. Challenges of Studying Amelogenesis in Gene-Targeted Mouse Models. Int. J. Mol. Sci. 2025, 26, 4905. https://doi.org/10.3390/ijms26104905
Smith CE, Bartlett JD, Simmer JP, Hu JC-C. Challenges of Studying Amelogenesis in Gene-Targeted Mouse Models. International Journal of Molecular Sciences. 2025; 26(10):4905. https://doi.org/10.3390/ijms26104905
Chicago/Turabian StyleSmith, Charles E., John D. Bartlett, James P. Simmer, and Jan C.-C. Hu. 2025. "Challenges of Studying Amelogenesis in Gene-Targeted Mouse Models" International Journal of Molecular Sciences 26, no. 10: 4905. https://doi.org/10.3390/ijms26104905
APA StyleSmith, C. E., Bartlett, J. D., Simmer, J. P., & Hu, J. C.-C. (2025). Challenges of Studying Amelogenesis in Gene-Targeted Mouse Models. International Journal of Molecular Sciences, 26(10), 4905. https://doi.org/10.3390/ijms26104905