Promising Vaccine Formulations for Emerging Infectious Diseases
Abstract
:1. Introduction
2. Current Trends in EIDs
3. Vaccine Platforms for EIDs
3.1. Live-Attenuated and Whole-Inactivated Vaccines
3.2. Protein Subunit Vaccines
3.3. Viral Vector Vaccines
3.4. Virus-like Particle (VLP) Vaccines
3.5. DNA Vaccines
3.6. mRNA Vaccines
3.6.1. Characteristics of mRNA Vaccine Formulations
3.6.2. Modified mRNA Vaccines
3.6.3. Current Status of mRNA Vaccine Development for Various EIDs
4. Conclusions and Perspective
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Bourrier, M.S.; Deml, M.J. The Legacy of the Pandemic Preparedness Regime: An Integrative Review. Int. J. Public Health 2022, 67, 1604961. [Google Scholar] [CrossRef]
- Le Sage, V.; Lowen, A.C.; Lakdawala, S.S. Block the Spread: Barriers to Transmission of Influenza Viruses. Annu. Rev. Virol. 2023, 10, 347–370. [Google Scholar] [CrossRef] [PubMed]
- Stephens, P.R.; Sundaram, M.; Ferreira, S.; Gottdenker, N.; Nipa, K.F.; Schatz, A.M.; Schmidt, J.P.; Drake, J.M. Drivers of African Filovirus (Ebola and Marburg) Outbreaks. Vector Borne Zoonotic Dis. 2022, 22, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Hawman, D.W.; Feldmann, H. Crimean-Congo haemorrhagic fever virus. Nat. Rev. Microbiol. 2023, 21, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Garry, R.F. Lassa fever—The road ahead. Nat. Rev. Microbiol. 2023, 21, 87–96. [Google Scholar] [CrossRef]
- Kotloff, K.L. Bacterial diarrhoea. Curr. Opin. Pediatr. 2022, 34, 147–155. [Google Scholar] [CrossRef]
- Bruno, L.; Nappo, M.A.; Ferrari, L.; Di Lecce, R.; Guarnieri, C.; Cantoni, A.M.; Corradi, A. Nipah Virus Disease: Epidemiological, Clinical, Diagnostic and Legislative Aspects of This Unpredictable Emerging Zoonosis. Animals 2022, 13, 159. [Google Scholar] [CrossRef]
- Pinapati, K.K.; Tandon, R.; Tripathi, P.; Srivastava, N. Recent advances to overcome the burden of Japanese encephalitis: A zoonotic infection with problematic early detection. Rev. Med. Virol. 2023, 33, e2383. [Google Scholar] [CrossRef]
- Trolle, H.; Forsberg, B.; King, C.; Akande, O.; Ayres, S.; Alfven, T.; Elimian, K. A scoping review of facilitators and barriers influencing the implementation of surveillance and oral cholera vaccine interventions for cholera control in lower- and middle-income countries. BMC Public Health 2023, 23, 455. [Google Scholar] [CrossRef]
- Slusher, T.M.; Kiragu, A.W.; Day, L.T.; Bjorklund, A.R.; Shirk, A.; Johannsen, C.; Hagen, S.A. Pediatric Critical Care in Resource-Limited Settings-Overview and Lessons Learned. Front. Pediatr. 2018, 6, 49. [Google Scholar] [CrossRef]
- Linn, A.R.; Dubois, M.M.; Steenhoff, A.P. Under-Reporting of Tuberculosis Disease among Children and Adolescents in Low and Middle-Income Countries: A Systematic Review. Trop. Med. Infect. Dis. 2023, 8, 300. [Google Scholar] [CrossRef] [PubMed]
- Beasley, R.P.; Hwang, L.Y.; Lin, C.C.; Chien, C.S. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet 1981, 2, 1129–1133. [Google Scholar] [CrossRef] [PubMed]
- Wright, R. Viral hepatitis comparative epidemiology. Br. Med. Bull. 1990, 46, 548–558. [Google Scholar] [CrossRef]
- Zur Hausen, H. Human papillomaviruses and their possible role in squamous cell carcinomas. In Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 1977; Volume 78, pp. 1–30. [Google Scholar] [CrossRef]
- Epstein, M.A.; Achong, B.G.; Barr, Y.M. Virus Particles in Cultured Lymphoblasts from Burkitt’s Lymphoma. Lancet 1964, 1, 702–703. [Google Scholar] [CrossRef]
- Hayward, C.M.; Griffin, G.E. Antibiotic resistance: The current position and the molecular mechanisms involved. Br. J. Hosp. Med. 1994, 52, 473–478. [Google Scholar]
- Bavinger, J.C.; Shantha, J.G.; Yeh, S. Ebola, COVID-19, and emerging infectious disease: Lessons learned and future preparedness. Curr. Opin. Ophthalmol. 2020, 31, 416–422. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.C.; Bartlett, A.W.; Howard-Jones, A.; McMullan, B.; Khatami, A.; Britton, P.N.; Marais, B.J. Impact of climate change and biodiversity collapse on the global emergence and spread of infectious diseases. J. Paediatr. Child Health 2021, 57, 1811–1818. [Google Scholar] [CrossRef]
- Sabin, N.S.; Calliope, A.S.; Simpson, S.V.; Arima, H.; Ito, H.; Nishimura, T.; Yamamoto, T. Implications of human activities for (re)emerging infectious diseases, including COVID-19. J. Physiol. Anthr. 2020, 39, 29. [Google Scholar] [CrossRef]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 1 April 2025).
- Brockwell-Staats, C.; Webster, R.G.; Webby, R.J. Diversity of influenza viruses in swine and the emergence of a novel human pandemic influenza A (H1N1). Influenza Other Respir. Viruses 2009, 3, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Lowen, A.C. Constraints, Drivers, and Implications of Influenza A Virus Reassortment. Annu. Rev. Virol. 2017, 4, 105–121. [Google Scholar] [CrossRef]
- Languon, S.; Quaye, O. Filovirus Disease Outbreaks: A Chronological Overview. Virology 2019, 10, 1178122X19849927. [Google Scholar] [CrossRef]
- World Health Organization. 2018 Annual Review of Diseases Prioritized Under the Research and Development Blueprint. 2018. Available online: https://www.who.int/docs/default-source/blue-print/2018-annual-review-of-diseases-prioritized-under-the-research-and-development-blueprint.pdf?sfvrsn=4c22e36_2 (accessed on 1 April 2025).
- Kelly-Cirino, C.D.; Nkengasong, J.; Kettler, H.; Tongio, I.; Gay-Andrieu, F.; Escadafal, C.; Piot, P.; Peeling, R.W.; Gadde, R.; Boehme, C. Importance of diagnostics in epidemic and pandemic preparedness. BMJ Glob. Health 2019, 4, e001179. [Google Scholar] [CrossRef] [PubMed]
- Letafati, A.; Salahi Ardekani, O.; Karami, H.; Soleimani, M. Ebola virus disease: A narrative review. Microb. Pathog. 2023, 181, 106213. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Salsabil, L.; Hossain, M.J.; Shahriar, M.; Bhuiyan, M.A.; Islam, M.R. The recent outbreaks of Marburg virus disease in African countries are indicating potential threat to the global public health: Future prediction from historical data. Health Sci. Rep. 2023, 6, e1395. [Google Scholar] [CrossRef]
- Basinski, A.J.; Fichet-Calvet, E.; Sjodin, A.R.; Varrelman, T.J.; Remien, C.H.; Layman, N.C.; Bird, B.H.; Wolking, D.J.; Monagin, C.; Ghersi, B.M.; et al. Bridging the gap: Using reservoir ecology and human serosurveys to estimate Lassa virus spillover in West Africa. PLoS Comput. Biol. 2021, 17, e1008811. [Google Scholar] [CrossRef] [PubMed]
- Thulaseedaran, N.K.; Kumar, K.G.S.; Kumar, J.; Geetha, P.; Jayachandran, N.V.; Kamalasanan, C.G.; Mathew, S.; Pv, S. A Case Series on the Recent Nipah Epidemic in Kerala. J. Assoc. Physicians India 2018, 66, 63–67. [Google Scholar]
- Kabami, Z.; Ario, A.R.; Migisha, R.; Naiga, H.N.; Nankya, A.M.; Ssebutinde, P.; Nahabwe, C.; Omia, S.; Mugabi, F.; Muwanguzi, D.; et al. Notes from the Field: Rift Valley Fever Outbreak—Mbarara District, Western Uganda, January–March 2023. Morb. Mortal. Wkly. Rep. 2023, 72, 639–640. [Google Scholar] [CrossRef]
- Khan, E.; Jindal, H.; Mishra, P.; Suvvari, T.K.; Jonna, S. The 2021 Zika outbreak in Uttar Pradesh state of India: Tackling the emerging public health threat. Trop. Dr. 2022, 52, 474–478. [Google Scholar] [CrossRef]
- Coalition for Epidemic Preparedness Innovations. Delivering Pandemic Vaccines in 100 Days. 2020. Available online: https://static.cepi.net/downloads/2024-02/CEPI-100-Days-Report-Digital-Version_29-11-22.pdf (accessed on 1 April 2025).
- Pavli, A.; Maltezou, H.C. Travel vaccines throughout history. Travel Med. Infect. Dis. 2022, 46, 102278. [Google Scholar] [CrossRef]
- Wintermeyer, S.M.; Nahata, M.C.; Kyllonen, K.S. Whole-cell and acellular pertussis vaccines. Ann. Pharmacother. 1994, 28, 925–939. [Google Scholar] [CrossRef]
- Srivastava, S.; Dey, S.; Mukhopadhyay, S. Vaccines against Tuberculosis: Where Are We Now? Vaccines 2023, 11, 1013. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Tsuge, S.; Shimizu, K.; Miyazaki, Y. Promising whole-cell vaccines against cryptococcosis. Microbiol. Immunol. 2023, 67, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Y.; Gao, G.F.; Tan, W.; Wu, G.; Xu, M.; Lou, Z.; et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 2021, 21, 39–51. [Google Scholar] [CrossRef]
- Wu, Z.; Hu, Y.; Xu, M.; Chen, Z.; Yang, W.; Jiang, Z.; Li, M.; Jin, H.; Cui, G.; Chen, P.; et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2021, 21, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Ella, R.; Reddy, S.; Jogdand, H.; Sarangi, V.; Ganneru, B.; Prasad, S.; Das, D.; Raju, D.; Praturi, U.; Sapkal, G.; et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: Interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial. Lancet Infect. Dis. 2021, 21, 950–961. [Google Scholar] [CrossRef]
- Gordeychuk, I.V.; Kozlovskaya, L.I.; Siniugina, A.A.; Yagovkina, N.V.; Kuzubov, V.I.; Zakharov, K.A.; Volok, V.P.; Dodina, M.S.; Gmyl, L.V.; Korotina, N.A.; et al. Safety and Immunogenicity of Inactivated Whole Virion COVID-19 Vaccine CoviVac in Clinical Trials in 18-60 and 60+ Age Cohorts. Viruses 2023, 15, 1828. [Google Scholar] [CrossRef]
- Zuo, F.; Abolhassani, H.; Du, L.; Piralla, A.; Bertoglio, F.; de Campos-Mata, L.; Wan, H.; Schubert, M.; Cassaniti, I.; Wang, Y.; et al. Heterologous immunization with inactivated vaccine followed by mRNA-booster elicits strong immunity against SARS-CoV-2 Omicron variant. Nat. Commun. 2022, 13, 2670. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Song, Y.; Coleman, J.R.; Stawowczyk, M.; Tafrova, J.; Tasker, S.; Boltz, D.; Baker, R.; Garcia, L.; et al. Scalable live-attenuated SARS-CoV-2 vaccine candidate demonstrates preclinical safety and efficacy. Proc. Natl. Acad. Sci. USA 2021, 118, e2102775118. [Google Scholar] [CrossRef]
- Victoria, J.G.; Wang, C.; Jones, M.S.; Jaing, C.; McLoughlin, K.; Gardner, S.; Delwart, E.L. Viral nucleic acids in live-attenuated vaccines: Detection of minority variants and an adventitious virus. J. Virol. 2010, 84, 6033–6040. [Google Scholar] [CrossRef]
- Doyon-Plourde, P.; Przepiorkowski, J.; Young, K.; Zhao, L.; Sinilaite, A. Intraseasonal waning immunity of seasonal influenza vaccine—A systematic review and meta-analysis. Vaccine 2023, 41, 4462–4471. [Google Scholar] [CrossRef]
- Das, S.; Ramakrishnan, K.; Behera, S.K.; Ganesapandian, M.; Xavier, A.S.; Selvarajan, S. Hepatitis B Vaccine and Immunoglobulin: Key Concepts. J. Clin. Transl. Hepatol. 2019, 7, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Edelman, R. Vaccine adjuvants. Rev. Infect. Dis. 1980, 2, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.; Anjum, K.M.; Iqbal, R.; Jaffar, G.; Ashraf, Z.; Khalid, M.S.; Taj, M.U.; Zainab, S.W.; Umair, M.; Zohaib, M.; et al. Vaccine Adjuvants: Selection Criteria, Mechanism of Action Associated with Immune Responses and Future Directions. Iran. J. Immunol. 2023, 20, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Pulendran, B.; Arunachalam, P.S.; O’Hagan, D.T. Emerging concepts in the science of vaccine adjuvants. Nat. Rev. Drug Discov. 2021, 20, 454–475. [Google Scholar] [CrossRef]
- Heath, P.T.; Galiza, E.P.; Baxter, D.N.; Boffito, M.; Browne, D.; Burns, F.; Chadwick, D.R.; Clark, R.; Cosgrove, C.A.; Galloway, J.; et al. Safety and Efficacy of the NVX-CoV2373 Coronavirus Disease 2019 Vaccine at Completion of the Placebo-Controlled Phase of a Randomized Controlled Trial. Clin. Infect. Dis. 2023, 76, 398–407. [Google Scholar] [CrossRef]
- Song, J.Y.; Choi, W.S.; Heo, J.Y.; Lee, J.S.; Jung, D.S.; Kim, S.W.; Park, K.H.; Eom, J.S.; Jeong, S.J.; Lee, J.; et al. Safety and immunogenicity of a SARS-CoV-2 recombinant protein nanoparticle vaccine (GBP510) adjuvanted with AS03: A randomised, placebo-controlled, observer-blinded phase 1/2 trial. EClinicalMedicine 2022, 51, 101569. [Google Scholar] [CrossRef]
- Travieso, T.; Li, J.; Mahesh, S.; Mello, J.; Blasi, M. The use of viral vectors in vaccine development. NPJ Vaccines 2022, 7, 75. [Google Scholar] [CrossRef]
- Wang, S.; Liang, B.; Wang, W.; Li, L.; Feng, N.; Zhao, Y.; Wang, T.; Yan, F.; Yang, S.; Xia, X. Viral vectored vaccines: Design, development, preventive and therapeutic applications in human diseases. Signal Transduct. Target. Ther. 2023, 8, 149. [Google Scholar] [CrossRef]
- Hassan, A.O.; Kafai, N.M.; Dmitriev, I.P.; Fox, J.M.; Smith, B.K.; Harvey, I.B.; Chen, R.E.; Winkler, E.S.; Wessel, A.W.; Case, J.B.; et al. A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2. Cell 2020, 183, 169–184.e113. [Google Scholar] [CrossRef]
- Hotez, P.J.; Gilbert, S.; Saville, M.; Privor-Dumm, L.; Abdool-Karim, S.; Thompson, D.; Excler, J.L.; Kim, J.H. COVID-19 vaccines and the pandemic: Lessons learnt for other neglected diseases and future threats. Bmj Glob. Health 2023, 8, e011883. [Google Scholar] [CrossRef]
- Greenberg, R.N.; Schmidt, D.; Reichhardt, D.; Roesch, S.; Vidojkovic, S.; Maclennan, J.; Chen, L.M.; Gruenert, R.; Kreusel, C.; Weidenthaler, H.; et al. Equivalence of freeze-dried and liquid-frozen formulations of MVA-BN as smallpox and mpox vaccine. Hum. Vaccines Immunother. 2024, 20, 2384189. [Google Scholar] [CrossRef] [PubMed]
- Henao-Restrepo, A.M.; Camacho, A.; Longini, I.M.; Watson, C.H.; Edmunds, W.J.; Egger, M.; Carroll, M.W.; Dean, N.E.; Diatta, I.; Doumbia, M.; et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ca Suffit!). Lancet 2017, 389, 505–518. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ebola Vaccines, Therapies, and Diagnostics. Available online: https://web.archive.org/web/20141014191846/http://www.who.int/medicines/emp_ebola_q_as/en/ (accessed on 1 April 2025).
- Pollard, A.J.; Launay, O.; Lelievre, J.D.; Lacabaratz, C.; Grande, S.; Goldstein, N.; Robinson, C.; Gaddah, A.; Bockstal, V.; Wiedemann, A.; et al. Safety and immunogenicity of a two-dose heterologous Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in adults in Europe (EBOVAC2): A randomised, observer-blind, participant-blind, placebo-controlled, phase 2 trial. Lancet Infect. Dis. 2021, 21, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Cao, W.; Salawudeen, A.; Zhu, W.; Emeterio, K.; Safronetz, D.; Banadyga, L. Vesicular Stomatitis Virus: From Agricultural Pathogen to Vaccine Vector. Pathogens 2021, 10, 1092. [Google Scholar] [CrossRef]
- Mire, C.E.; Geisbert, J.B.; Agans, K.N.; Satterfield, B.A.; Versteeg, K.M.; Fritz, E.A.; Feldmann, H.; Hensley, L.E.; Geisbert, T.W. Durability of a vesicular stomatitis virus-based marburg virus vaccine in nonhuman primates. PLoS ONE 2014, 9, e94355. [Google Scholar] [CrossRef]
- Rodriguez, S.E.; Cross, R.W.; Fenton, K.A.; Bente, D.A.; Mire, C.E.; Geisbert, T.W. Vesicular Stomatitis Virus-Based Vaccine Protects Mice against Crimean-Congo Hemorrhagic Fever. Sci. Rep. 2019, 9, 7755. [Google Scholar] [CrossRef]
- Sumida, S.M.; Truitt, D.M.; Lemckert, A.A.; Vogels, R.; Custers, J.H.; Addo, M.M.; Lockman, S.; Peter, T.; Peyerl, F.W.; Kishko, M.G.; et al. Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J. Immunol. 2005, 174, 7179–7185. [Google Scholar] [CrossRef]
- Geisbert, T.W.; Bailey, M.; Hensley, L.; Asiedu, C.; Geisbert, J.; Stanley, D.; Honko, A.; Johnson, J.; Mulangu, S.; Pau, M.G.; et al. Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge. J. Virol. 2011, 85, 4222–4233. [Google Scholar] [CrossRef]
- Kheirvari, M.; Liu, H.; Tumban, E. Virus-like Particle Vaccines and Platforms for Vaccine Development. Viruses 2023, 15, 1109. [Google Scholar] [CrossRef]
- Mohsen, M.O.; Bachmann, M.F. Virus-like particle vaccinology, from bench to bedside. Cell. Mol. Immunol. 2022, 19, 993–1011. [Google Scholar] [CrossRef]
- Chang, L.J.; Dowd, K.A.; Mendoza, F.H.; Saunders, J.G.; Sitar, S.; Plummer, S.H.; Yamshchikov, G.; Sarwar, U.N.; Hu, Z.; Enama, M.E.; et al. Safety and tolerability of chikungunya virus-like particle vaccine in healthy adults: A phase 1 dose-escalation trial. Lancet 2014, 384, 2046–2052. [Google Scholar] [CrossRef] [PubMed]
- Ward, B.J.; Gobeil, P.; Seguin, A.; Atkins, J.; Boulay, I.; Charbonneau, P.Y.; Couture, M.; D’Aoust, M.A.; Dhaliwall, J.; Finkle, C.; et al. Phase 1 randomized trial of a plant-derived virus-like particle vaccine for COVID-19. Nat. Med. 2021, 27, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Tripathi, L.; Raut, R.; Tyagi, P.; Arora, U.; Barman, T.; Sood, R.; Galav, A.; Wahala, W.; de Silva, A.; et al. Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies. PLoS ONE 2013, 8, e64595. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, S.; Zhang, Y.; Mo, R.; Yan, F.; Wang, H.; Wong, G.; Chi, H.; Wang, T.; Feng, N.; et al. A Chimeric Sudan Virus-Like Particle Vaccine Candidate Produced by a Recombinant Baculovirus System Induces Specific Immune Responses in Mice and Horses. Viruses 2020, 12, 64. [Google Scholar] [CrossRef] [PubMed]
- Vang, L.; Morello, C.S.; Mendy, J.; Thompson, D.; Manayani, D.; Guenther, B.; Julander, J.; Sanford, D.; Jain, A.; Patel, A.; et al. Zika virus-like particle vaccine protects AG129 mice and rhesus macaques against Zika virus. PLoS Neglected Trop. Dis. 2021, 15, e0009195. [Google Scholar] [CrossRef]
- Sunay, M.M.E.; Martins, K.A.O.; Steffens, J.T.; Gregory, M.; Vantongeren, S.A.; Van Hoeven, N.; Garnes, P.G.; Bavari, S. Glucopyranosyl lipid adjuvant enhances immune response to Ebola virus-like particle vaccine in mice. Vaccine 2019, 37, 3902–3910. [Google Scholar] [CrossRef]
- Walpita, P.; Cong, Y.; Jahrling, P.B.; Rojas, O.; Postnikova, E.; Yu, S.; Johns, L.; Holbrook, M.R. A VLP-based vaccine provides complete protection against Nipah virus challenge following multiple-dose or single-dose vaccination schedules in a hamster model. NPJ Vaccines 2017, 2, 21. [Google Scholar] [CrossRef]
- Jazayeri, S.D.; Poh, C.L. Recent advances in delivery of veterinary DNA vaccines against avian pathogens. Vet. Res. 2019, 50, 78. [Google Scholar] [CrossRef]
- Mauro, V.P.; Chappell, S.A. A critical analysis of codon optimization in human therapeutics. Trends Mol. Med. 2014, 20, 604–613. [Google Scholar] [CrossRef]
- Cheng, L.; Ziegelhoffer, P.R.; Yang, N.S. In vivo promoter activity and transgene expression in mammalian somatic tissues evaluated by using particle bombardment. Proc. Natl. Acad. Sci. USA 1993, 90, 4455–4459. [Google Scholar] [CrossRef]
- Duan, B.; Cheng, L.; Gao, Y.; Yin, F.X.; Su, G.H.; Shen, Q.Y.; Liu, K.; Hu, X.; Liu, X.; Li, G.P. Silencing of fat-1 transgene expression in sheep may result from hypermethylation of its driven cytomegalovirus (CMV) promoter. Theriogenology 2012, 78, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Valentin, A.; Kulkarni, V.; Rosati, M.; Beach, R.K.; Alicea, C.; Hannaman, D.; Reed, S.G.; Felber, B.K.; Pavlakis, G.N. HIV/SIV DNA vaccine combined with protein in a co-immunization protocol elicits highest humoral responses to envelope in mice and macaques. Vaccine 2013, 31, 3747–3755. [Google Scholar] [CrossRef] [PubMed]
- Morelli, M.P.; Del Medico Zajac, M.P.; Pellegrini, J.M.; Amiano, N.O.; Tateosian, N.L.; Calamante, G.; Gherardi, M.M.; Garcia, V.E. IL-12 DNA Displays Efficient Adjuvant Effects Improving Immunogenicity of Ag85A in DNA Prime/MVA Boost Immunizations. Front. Cell. Infect. Microbiol. 2020, 10, 581812. [Google Scholar] [CrossRef]
- Garrett, N.; Dintwe, O.; Monaco, C.L.; Jones, M.; Seaton, K.E.; Church, E.C.; Grunenberg, N.; Hutter, J.; deCamp, A.; Huang, Y.; et al. Safety and Immunogenicity of a DNA Vaccine with Subtype C gp120 Protein Adjuvanted With MF59 or AS01B: A Phase 1/2a HIV-1 Vaccine Trial. J. Acquir. Immune Defic. Syndr. 2024, 96, 350–360. [Google Scholar] [CrossRef]
- Gaudinski, M.R.; Houser, K.V.; Morabito, K.M.; Hu, Z.; Yamshchikov, G.; Rothwell, R.S.; Berkowitz, N.; Mendoza, F.; Saunders, J.G.; Novik, L.; et al. Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: Randomised, open-label, phase 1 clinical trials. Lancet 2018, 391, 552–562. [Google Scholar] [CrossRef]
- Tebas, P.; Roberts, C.C.; Muthumani, K.; Reuschel, E.L.; Kudchodkar, S.B.; Zaidi, F.I.; White, S.; Khan, A.S.; Racine, T.; Choi, H.; et al. Safety and Immunogenicity of an Anti-Zika Virus DNA Vaccine. N. Engl. J. Med. 2021, 385, e35. [Google Scholar] [CrossRef] [PubMed]
- Hooper, J.W.; Kwilas, S.A.; Josleyn, M.; Norris, S.; Hutter, J.N.; Hamer, M.; Livezey, J.; Paolino, K.; Twomey, P.; Koren, M.; et al. Phase 1 clinical trial of Hantaan and Puumala virus DNA vaccines delivered by needle-free injection. NPJ Vaccines 2024, 9, 221. [Google Scholar] [CrossRef]
- Ledgerwood, J.E.; Pierson, T.C.; Hubka, S.A.; Desai, N.; Rucker, S.; Gordon, I.J.; Enama, M.E.; Nelson, S.; Nason, M.; Gu, W.; et al. A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J. Infect. Dis. 2011, 203, 1396–1404. [Google Scholar] [CrossRef]
- Pagliari, S.; Dema, B.; Sanchez-Martinez, A.; Montalvo Zurbia-Flores, G.; Rollier, C.S. DNA Vaccines: History, Molecular Mechanisms and Future Perspectives. J. Mol. Biol. 2023, 435, 168297. [Google Scholar] [CrossRef]
- Lu, B.; Lim, J.M.; Yu, B.; Song, S.; Neeli, P.; Sobhani, N.; K, P.; Bonam, S.R.; Kurapati, R.; Zheng, J.; et al. The next-generation DNA vaccine platforms and delivery systems: Advances, challenges and prospects. Front. Immunol. 2024, 15, 1332939. [Google Scholar] [CrossRef]
- Sumirtanurdin, R.; Barliana, M.I. Coronavirus Disease 2019 Vaccine Development: An Overview. Viral Immunol. 2021, 34, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Echaide, M.; Chocarro de Erauso, L.; Bocanegra, A.; Blanco, E.; Kochan, G.; Escors, D. mRNA Vaccines against SARS-CoV-2: Advantages and Caveats. Int. J. Mol. Sci. 2023, 24, 5944. [Google Scholar] [CrossRef]
- Li, C.; Lee, A.; Grigoryan, L.; Arunachalam, P.S.; Scott, M.K.D.; Trisal, M.; Wimmers, F.; Sanyal, M.; Weidenbacher, P.A.; Feng, Y.; et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 2022, 23, 543–555. [Google Scholar] [CrossRef]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature 2020, 586, 594–599. [Google Scholar] [CrossRef]
- Jahanafrooz, Z.; Baradaran, B.; Mosafer, J.; Hashemzaei, M.; Rezaei, T.; Mokhtarzadeh, A.; Hamblin, M.R. Comparison of DNA and mRNA vaccines against cancer. Drug Discov. Today 2020, 25, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Deviatkin, A.A.; Simonov, R.A.; Trutneva, K.A.; Maznina, A.A.; Khavina, E.M.; Volchkov, P.Y. Universal Flu mRNA Vaccine: Promises, Prospects, and Problems. Vaccines 2022, 10, 709. [Google Scholar] [CrossRef] [PubMed]
- Boyoglu-Barnum, S.; Ellis, D.; Gillespie, R.A.; Hutchinson, G.B.; Park, Y.J.; Moin, S.M.; Acton, O.J.; Ravichandran, R.; Murphy, M.; Pettie, D.; et al. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 2021, 592, 623–628. [Google Scholar] [CrossRef]
- Bouzeyen, R.; Javid, B. Therapeutic Vaccines for Tuberculosis: An Overview. Front. Immunol. 2022, 13, 878471. [Google Scholar] [CrossRef]
- Larsen, S.E.; Baldwin, S.L.; Coler, R.N. Tuberculosis vaccines update: Is an RNA-based vaccine feasible for tuberculosis? Int. J. Infect. Dis. 2023, 130 (Suppl. S1), S47–S51. [Google Scholar] [CrossRef]
- Chen, T.; Ding, Z.; Lan, J.; Wong, G. Advances and perspectives in the development of vaccines against highly pathogenic bunyaviruses. Front. Cell Infect. Microbiol. 2023, 13, 1174030. [Google Scholar] [CrossRef]
- Aligholipour Farzani, T.; Foldes, K.; Ergunay, K.; Gurdal, H.; Bastug, A.; Ozkul, A. Immunological Analysis of a CCHFV mRNA Vaccine Candidate in Mouse Models. Vaccines 2019, 7, 115. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ma, W.; Fu, X.; Qi, Y.; Zhao, Y.; Zhang, S. Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnol. Adv. 2023, 65, 108130. [Google Scholar] [CrossRef] [PubMed]
- Reichmuth, A.M.; Oberli, M.A.; Jaklenec, A.; Langer, R.; Blankschtein, D. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 2016, 7, 319–334. [Google Scholar] [CrossRef]
- Wang, J.; Ding, Y.; Chong, K.; Cui, M.; Cao, Z.; Tang, C.; Tian, Z.; Hu, Y.; Zhao, Y.; Jiang, S. Recent Advances in Lipid Nanoparticles and Their Safety Concerns for mRNA Delivery. Vaccines 2024, 12, 1148. [Google Scholar] [CrossRef] [PubMed]
- Kafle, U.; Truong, H.Q.; Nguyen, C.T.G.; Meng, F. Development of Thermally Stable mRNA-LNP Delivery Systems: Current Progress and Future Prospects. Mol. Pharm. 2024, 21, 5944–5959. [Google Scholar] [CrossRef]
- Fatima, M.; An, T.; Hong, K.J. Revolutionizing mRNA Vaccines Through Innovative Formulation and Delivery Strategies. Biomolecules 2025, 15, 359. [Google Scholar] [CrossRef]
- Ulmer, J.B.; Mansoura, M.K.; Geall, A.J. Vaccines ‘on demand’: Science fiction or a future reality. Expert Opin. Drug Discov. 2015, 10, 101–106. [Google Scholar] [CrossRef]
- Stokes, A.; Pion, J.; Binazon, O.; Laffont, B.; Bigras, M.; Dubois, G.; Blouin, K.; Young, J.K.; Ringenberg, M.A.; Ben Abdeljelil, N.; et al. Nonclinical safety assessment of repeated administration and biodistribution of a novel rabies self-amplifying mRNA vaccine in rats. Regul. Toxicol. Pharmacol. 2020, 113, 104648. [Google Scholar] [CrossRef]
- Kimura, T.; Leal, J.M.; Simpson, A.; Warner, N.L.; Berube, B.J.; Archer, J.F.; Park, S.; Kurtz, R.; Hinkley, T.; Nicholes, K.; et al. A localizing nanocarrier formulation enables multi-target immune responses to multivalent replicating RNA with limited systemic inflammation. Mol. Ther. 2023, 31, 2360–2375. [Google Scholar] [CrossRef]
- Fatima, M.; Park, P.G.; Hong, K.J. Clinical advancements in mRNA vaccines against viral infections. Clin. Immunol. 2025, 271, 110424. [Google Scholar] [CrossRef]
- Beissert, T.; Perkovic, M.; Vogel, A.; Erbar, S.; Walzer, K.C.; Hempel, T.; Brill, S.; Haefner, E.; Becker, R.; Tureci, O.; et al. A Trans-amplifying RNA Vaccine Strategy for Induction of Potent Protective Immunity. Mol. Ther. 2020, 28, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Perkovic, M.; Gawletta, S.; Hempel, T.; Brill, S.; Nett, E.; Sahin, U.; Beissert, T. A trans-amplifying RNA simplified to essential elements is highly replicative and robustly immunogenic in mice. Mol. Ther. 2023, 31, 1636–1646. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Yi, Z.; Shen, Y.; Lin, L.; Chen, F.; Xu, Y.; Wu, Z.; Tang, H.; Zhang, X.; Tian, F.; et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 2022, 185, 1728–1744.e1716. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Liu, D.; He, Q.; Liu, J.; Mao, Q.; Liang, Z. Research progress on circular RNA vaccines. Front. Immunol. 2022, 13, 1091797. [Google Scholar] [CrossRef]
Disease | Fatality Rate (%) | Recent Outbreak | References |
---|---|---|---|
CCHF | >30 | Uganda, 2018–2019 | [4] |
Ebola viral disease | 32–90 | Uganda and Democratic Republic of Congo, 2022 | [26] |
Marburg viral disease | 23–90 | Tanzania, 2023 | [27] |
Lassa fever | ~1 (infected cases) ~20 (hospitalized cases) | Annually recurring outbreaks in West Africa | [28] |
MERS | ~35 | Saudi Arabia, 2013–2018 South Korea, 2015 | [25] |
SARS | ~10 | Global, 2003 | [25] |
Nipah and henipaviral diseases | ~30 | India, 2018 | [29] |
RVF | <1 | Uganda, 2022–2023 | [30] |
Zika disease | Not fatal | India, 2021 | [31] |
Disease X | [25] |
Type of mRNA Vaccine | Description | Advantages | Disadvantages |
---|---|---|---|
Non-replicating mRNA (nrRNA) | Basic formulation of mRNA vaccine | Relatively simple structure | Requires a high dose for induction of sufficient immune response and vulnerable to degradation by RNase |
Self-amplifying RNA (saRNA) | Expresses enzymes involved in self-amplification | High antigen expression with low-dose vaccination | Increases the size of the mRNA due to the ORF for replication, resulting in reduced encapsulation and translation efficiency |
Trans-amplifying RNA (taRNA) | Self-replicating mRNA in which the replication ORF and antigen ORF are separated | Reduction in individual mRNA size through separation of ORF for antigen and replication enzyme expression | The complexity of mRNA design and the need to confirm the proper content ratio of individual RNAs |
Circular mRNA (cirRNA) | Circular nucleic acids for enhanced intracellular stability | Relatively stable from degradation by RNase | Requires additional research on expression and encapsulation efficacy |
Developer | Target Infectious Disease | Vaccine Name (Temporary Name) | Development Stage | Clinicaltrials.Gov ID (in Case of Clinical Trials in Progress) |
---|---|---|---|---|
Moderna (Cambridge, MA, USA) | COVID-19 (adults/adolescents) | Spikevax® | Registration | - |
COVID-19 (pediatrics) | mRNA-1273.815 | Registration | ||
COVID-19 (adults) | mRNA-1283 | Phase 3 | NCT05815498 | |
COVID-19 (adolescents) | mRNA-1273/mRNA-1273.214/.222 | Registration | - | |
COVID-19 (pediatrics) | mRNA-1273/mRNA-1273.214/.222 | Registration | - | |
Influenza | mRNA-1010 | Phase 3 | NCT05827978 | |
Influenza | mRNA-1020 | Phase 1/2 | NCT05333289 | |
Influenza | mRNA-1030 | Phase 1/2 | ||
Influenza | mRNA-1011 | Phase 1/2 | NCT05827068 | |
Influenza | mRNA-1012 | Phase 1/2 | ||
RSV (older adults) | mRESVIA® | Registration | ||
RSV | mRNA-1345 | Phase 3 | NCT06067230 | |
RSV + HMPV | mRNA-1365 | Phase 1 (Child) | NCT05743881 | |
Flu + COVID-19 | mRNA-1083 | Phase 3 | NCT06694389 | |
Flu + COVID-19 + RSV | mRNA-1230 | Phase 1 (Adult, Older Adult) | NCT05585632 | |
Flu + RSV | mRNA-1045 | Phase 1 | NCT05585632 NCT05972174 | |
Pandemic flu | mRNA-1018 | Phase 1/2 | ||
CMV | mRNA-1647 | Phase 3 | NCT05085366 | |
EBV (prevent infectious mononucleosis) | mRNA-1189 | Phase 1 | NCT05164094 | |
EBV (prevent long-term EBV sequelae) | mRNA-1195 | Phase 1 | NCT05831111 | |
HSV-2 | mRNA-1608 | Phase 1/2 | NCT06033261 | |
VZV | mRNA-1468 | Phase 1/2 | NCT05701800 | |
HIV | mRNA-1644 | Phase 1 | NCT05414786, NCT05001373 | |
HIV | mRNA-1574 | Phase 1/2 | NCT03619278 | |
Norovirus | mRNA-1403 | Phase 3 | NCT06592794 | |
Norovirus | mRNA-1405 | Phase 2 | NCT05992935 | |
Lyme disease | mRNA-1975 | Phase 1/2 | NCT05975099 | |
Lyme disease | mRNA-1982 | Phase 1/2 | NCT05975099 NCT04917861 | |
Zika | mRNA-1893 | Phase 2 | ||
Nipah | mRNA-1215 | Phase 1 | NCT05398796 | |
Mpox | mRNA-1982 | Phase 1/2 | NCT05975099 | |
Chikungunya | mRNA-1944 | Phase 1 | NCT03829384 | |
Chikungunya | VAL-181388 | Phase 1 | NCT03325075 | |
COVID-19 | COMIRNATY® (BNT162b2) | Registration | - | |
Pfizer (Manhattan, NY, USA) and/or BioNTech (Mainz, Germany) | COVID-19 | BNT162b2 bivalent (BA.4/BA.5) | Registration | - |
COVID-19 | BNT162b2 bivalent (BA.4/BA.5) | Registration | - | |
COVID-19 | Omicron XBB.1.5-Adapted Monovalent | Registration | - | |
Influenza | PF-07252220 | Phase 3 | NCT05540522 | |
Influenza | 9 kinds of influenza saRNA | Phase 1 | NCT05227001 | |
COVID-19 + flu | BNT162b2 + BNT161 | Phase 1/2 | NCT05596734 | |
Varicella | PF-07911145 (BNT167) | Phase 1/2 | NCT05703607 | |
HSV-2 | BNT163 | Phase 1 | NCT05432583 | |
Tuberculosis | BNT164a1, BNT164b1 | Phase 1/2 | NCT05537038, NCT05547464 | |
HPV | BNT113 | Phase 2 | NCT04534205 | |
Malaria | BNT165b1 | Phase 1/2 | NCT05581641 | |
Mpox | BNT166 | Phase 1/2 | NCT05988203 | |
Shingles | BNT167 | Phase 2 | NCT05703607 | |
Influenza | CVSQIV | Phase 1 | NCT05252338 | |
CureVac (Tuebingen Germany) and/or Glaxo SmithKline (London, UK) | COVID-19 | CV0501 | Phase 1 | NCT05477186 |
COVID-19 | CV2CoV (GSK4396687) | Phase 1 | NCT05260437 | |
Rabies | CV7202 | Phase 1 | NCT03713086 | |
Avian influenza | GSK4382276 | Phase 1/2 | NCT05823974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, P.-G.; Lee, S.-Y.; Youn, H.; Hong, K.-J. Promising Vaccine Formulations for Emerging Infectious Diseases. Int. J. Mol. Sci. 2025, 26, 4893. https://doi.org/10.3390/ijms26104893
Park P-G, Lee S-Y, Youn H, Hong K-J. Promising Vaccine Formulations for Emerging Infectious Diseases. International Journal of Molecular Sciences. 2025; 26(10):4893. https://doi.org/10.3390/ijms26104893
Chicago/Turabian StylePark, Pil-Gu, Seok-Yong Lee, Hyewon Youn, and Kee-Jong Hong. 2025. "Promising Vaccine Formulations for Emerging Infectious Diseases" International Journal of Molecular Sciences 26, no. 10: 4893. https://doi.org/10.3390/ijms26104893
APA StylePark, P.-G., Lee, S.-Y., Youn, H., & Hong, K.-J. (2025). Promising Vaccine Formulations for Emerging Infectious Diseases. International Journal of Molecular Sciences, 26(10), 4893. https://doi.org/10.3390/ijms26104893