Biomarkers of Calcification, Endothelial Injury, and Platelet-Endothelial Interaction in Patients with Aortic Valve Stenosis
Abstract
1. Introduction
2. Results
2.1. Clinical Characteristics
2.2. Echocardiographic Characteristics of AS Group
2.3. Flow-Mediated Dilation
2.4. Biomarker Serum Levels: AS vs. Controls
2.5. Biomarker Serum Levels: Hemodynamic Subtypes of Patients with Severe AS
2.6. Correlations and Regression Analysis: Serum Biomarkers, FMD, and Parameters of AS Severity
2.7. 12-Month Follow-Up
2.8. Risk Factors for Total Mortality and MACCE
2.8.1. Mortality
2.8.2. MACCE
2.9. Main Findings
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Clinical Assessment
4.3. Transthoracic Echocardiography
4.4. Flow-Mediated Dilation
4.5. Laboratory Tests—Biomarkers
4.5.1. Fluorescent Bead-Based Luminex Assays
4.5.2. ELISA Assay
4.6. 12-Month Follow-Up
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AF | atrial fibrillation |
ALT | alanine aminotransferase |
AS | aortic stenosis |
ATX | autotaxin |
AVA | aortic valve area |
BMI | body mass index |
CAD | coronary artery disease |
CCS | Canadian Cardiovascular Society |
CD | cluster of differentiation |
COPD | chronic obstructive pulmonary disease |
E/E′ | ratio of early mitral inflow velocity to early diastolic mitral annular velocity |
EDD | end-diastolic diameter |
EDV | end-diastolic volume |
EF | ejection fraction |
ESD | end-systolic diameter |
ESV | end-systolic volume |
eGFR | estimated glomerular filtration rate |
FMD | flow-mediated dilatation |
GDF-15 | growth differentiation factor-15 |
GLS | global longitudinal strain |
HG | high gradient |
HDL | high-density lipoprotein |
IVS | interventricular septum thickness |
LA area | left atrium area |
LDL | low-density lipoprotein |
LG | low gradient |
LPA | lysophosphatidic acid |
LV | left ventricular |
MACCE | major adverse cardiovascular and cerebrovascular event |
MCV | mean corpuscular volume |
MPV | mean platelet volume |
NYHA | New York Heart Association |
PAD | peripheral artery disease |
PDW | platelet distribution width |
Pmax | maximum pressure gradient |
Pmean | mean pressure gradient |
PW | posterior wall thickness |
Q1 | first quartile |
Q3 | third quartile |
SVi | stroke volume index |
TM | thrombomodulin |
TSH | thyroid-stimulating hormone |
Vmax | maximum velocity |
VICs | valvular interstitial cells |
Zva | valvulo-arterial impedance |
References
- Martin, S.S.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Barone Gibbs, B.; Beaton, A.Z.; Boehme, A.K.; et al. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024, 149, e347–e913. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.S.; Duggan, J.P.; Trachiotis, G.D.; Antevil, J.L. Epidemiology of Valvular Heart Disease. Surg. Clin. N. Am. 2022, 102, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Bańka, P.; Wybraniec, M.; Bochenek, T.; Gruchlik, B.; Burchacka, A.; Swinarew, A.; Mizia-Stec, K. Influence of Aortic Valve Stenosis and Wall Shear Stress on Platelets Function. J. Clin. Med. 2023, 12, 6301. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, R.; Devillers, R.; Perrot, N.; Després, A.A.; Boulanger, M.C.; Mitchell, P.L.; Guertin, J.; Couture, P.; Boffa, M.B.; Scipione, C.A.; et al. Interaction of Autotaxin with Lipoprotein(a) in Patients with Calcific Aortic Valve Stenosis. J. Am. Coll. Cardiol. 2020, 5, 888–897. [Google Scholar] [CrossRef]
- Basmadjian, L.; Bouabdallaoui, N.; Simard, F.; O’Meara, E.; Ducharme, A.; Rouleau, J.L.; Racine, N.; White, M.; Sirois, M.G.; Asgar, A.; et al. Growth Differentiation Factor-15 as a Predictor of Functional Capacity, Frailty, and Ventricular Dysfunction in Patients with Aortic Stenosis and Preserved Left Ventricular Ejection Fraction. Am. J. Cardiol. 2023, 186, 11–16. [Google Scholar] [CrossRef]
- Natorska, J.; Bykowska, K.; Hlawaty, M.; Marek, G.; Sadowski, J.; Undas, A. Increased thrombin generation and platelet activation are associated with deficiency in high molecular weight multimers of von Willebrand factor in patients with moderate-to-severe aortic stenosis. Heart 2011, 97, 2023–2028. [Google Scholar] [CrossRef]
- Bouchareb, R.; Mahmut, A.; Nsaibia, M.J.; Boulanger, M.C.; Dahou, A.; Lépine, J.L.; Laflamme, M.H.; Hadji, F.; Couture, C.; Trahan, S.; et al. Autotaxin Derived From Lipoprotein(a) and Valve Interstitial Cells Promotes Inflammation and Mineralization of the Aortic Valve. Circulation 2015, 132, 677–690. [Google Scholar] [CrossRef]
- Bouchareb, R.; Boulanger, M.C.; Tastet, L.; Mkannez, G.; Nsaibia, M.J.; Hadji, F.; Dahou, A.; Messadeq, Y.; Arsenault, B.J.; Pibarot, P.; et al. Activated platelets promote an osteogenic programme and the progression of calcific aortic valve stenosis. Eur. Heart J. 2019, 40, 1362–1373. [Google Scholar] [CrossRef]
- Nsaibia, M.J.; Boulanger, M.C.; Bouchareb, R.; Mkannez, G.; Le Quang, K.; Hadji, F.; Argaud, D.; Dahou, A.; Bossé, Y.; Koschinsky, M.L.; et al. OxLDL-derived lysophosphatidic acid promotes the progression of aortic valve stenosis through a LPAR1-RhoA-NF-κB pathway. Cardiovasc. Res. 2017, 113, 1351–1363. [Google Scholar] [CrossRef]
- Venardos, N.; Nadlonek, N.A.; Zhan, Q.; Weyant, M.J.; Reece, T.B.; Meng, X.; Fullerton, D.A. Aortic valve calcification is mediated by a differential response of aortic valve interstitial cells to inflammation. J. Surg. Res. 2014, 190, 1–8. [Google Scholar] [CrossRef]
- Van de Wouwer, M.; Collen, D.; Conway, E.M. Thrombomodulin-protein C-EPCR system: Integrated to regulate coagulation and inflammation. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Giri, H.; Panicker, S.R.; Cai, X.; Biswas, I.; Weiler, H.; Rezaie, A.R. Thrombomodulin is essential for maintaining quiescence in vascular endothelial cells. Proc. Natl. Acad. Sci. USA 2021, 118, e2022248118. [Google Scholar] [CrossRef]
- Sarkar, A.; Chowdhury, S.; Kumar, A.; Khan, B.; Chowdhury, S.; Gupta, R.; Hajra, A.; Aronow, W.S. Biomarkers as Prognostic Markers for Aortic Stenosis: A Review. Am. J. Cardiol. 2023, 206, 53–59. [Google Scholar] [CrossRef] [PubMed]
- White, M.; Baral, R.; Ryding, A.; Tsampasian, V.; Ravindrarajah, T.; Garg, P.; Koskinas, K.C.; Clark, A.; Vassiliou, V.S. Biomarkers Associated with Mortality in Aortic Stenosis: A Systematic Review and Meta-Analysis. Med. Sci. 2021, 9, 29. [Google Scholar] [CrossRef]
- Schumm, J.; Luetzkendorf, S.; Rademacher, W.; Franz, M.; Schmidt-Winter, C.; Kiehntopf, M.; Figulla, H.R.; Brehm, B.R. In patients with aortic stenosis increased flow-mediated dilation is independently associated with higher peak jet velocity and lower asymmetric dimethylarginine levels. Am. Heart J. 2011, 161, 893–899. [Google Scholar] [CrossRef]
- Yoon, D.; Choi, B.; Kim, J.E.; Kim, E.Y.; Chung, S.H.; Min, H.J.; Sung, Y.; Chang, E.J.; Song, J.K. Autotaxin inhibition attenuates the aortic valve calcification by suppressing inflammation-driven fibro-calcific remodeling of valvular interstitial cells. BMC Med. 2024, 22, 122. [Google Scholar] [CrossRef]
- Magkrioti, C.; Galaris, A.; Kanellopoulou, P.; Stylianaki, E.A.; Kaffe, E.; Aidinis, V. Autotaxin and chronic inflammatory diseases. J. Autoimmun. 2019, 104, 102327. [Google Scholar] [CrossRef]
- Perrakis, A.; Moolenaar, W.H. Autotaxin: Structure-function and signaling. J. Lipid Res. 2014, 55, 1010–1018. [Google Scholar] [CrossRef]
- Mathieu, P.; Boulanger, M.C. Autotaxin and Lipoprotein Metabolism in Calcific Aortic Valve Disease. Front. Cardiovasc. Med. 2019, 6, 18. [Google Scholar] [CrossRef]
- Nsaibia, M.J.; Mahmut, A.; Boulanger, M.C.; Arsenault, B.J.; Bouchareb, R.; Simard, S.; Witztum, J.L.; Clavel, M.A.; Pibarot, P.; Bossé, Y.; et al. Autotaxin interacts with lipoprotein(a) and oxidized phospholipids in predicting the risk of calcific aortic valve stenosis in patients with coronary artery disease. J. Intern. Med. 2016, 280, 509–517. [Google Scholar] [CrossRef]
- Zhao, Y.; Hasse, S.; Zhao, C.; Bourgoin, S.G. Targeting the autotaxin–Lysophosphatidic acid receptor axis in cardiovascular diseases. Biochem. Pharmacol. 2019, 164, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Smyth, S.S.; Cheng, H.Y.; Miriyala, S.; Panchatcharam, M.; Morris, A.J. Roles of lysophosphatidic acid in cardiovascular physiology and disease. Biochim. Biophys. Acta 2008, 1781, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Smyth, S.S.; Kraemer, M.; Yang, L.; Van Hoose, P.; Morris, A.J. Roles for lysophosphatidic acid signaling in vascular development and disease. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2020, 1865, 158734. [Google Scholar] [CrossRef]
- Greenberg, H.Z.E.; Zhao, G.; Shah, A.M.; Zhang, M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc. Res. 2022, 118, 1433–1451. [Google Scholar] [CrossRef]
- Prabutzki, P.; Schiller, J.; Engel, K.M. Phospholipid-derived lysophospholipids in (patho) physiology. Atherosclerosis 2024, 398, 118569. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, H.; Li, M. Emerging Roles of Lysophosphatidic Acid in Macrophages and Inflammatory Diseases. Int. J. Mol. Sci. 2023, 24, 12524. [Google Scholar] [CrossRef]
- Giri, H.; Biswas, I.; Rezaie, A.R. Thrombomodulin: A multifunctional receptor modulating the endothelial quiescence. J. Thromb. Haemost. 2024, 22, 905–914. [Google Scholar] [CrossRef]
- Kempf, T.; Wollert, K.C. Growth differentiation factor-15: A new biomarker in cardiovascular disease. Herz 2009, 34, 594–599. [Google Scholar] [CrossRef]
- Wollert, K.C.; Kempf, T.; Wallentin, L. Growth Differentiation Factor 15 as a Biomarker in Cardiovascular Disease. Clin. Chem. 2017, 63, 140–151. [Google Scholar] [CrossRef]
- Desmedt, S.; Desmedt, V.; De Vos, L.; Delanghe, J.R.; Speeckaert, R.; Speeckaert, M.M. Growth differentiation factor 15: A novel biomarker with high clinical potential. Crit. Rev. Clin. Lab. Sci. 2019, 56, 333–350. [Google Scholar] [CrossRef]
- Fabiani, I.; Santoni, T.; Angelillis, M.; Petricciuolo, S.; Colli, A.; Pellegrini, G.; Mazzei, D.; Pugliese, N.R.; Petronio, A.S.; De Caterina, R. Growth Differentiation Factor 15 in Severe Aortic Valve Stenosis: Relationship with Left Ventricular Remodeling and Frailty. J. Clin. Med. 2020, 9, 2998. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71. [Google Scholar] [CrossRef]
- Lancellotti, P.; Zamorano, J.Z.; Habib, G.; Badano, L. (Eds.) The EACVI Textbook of Echocardiography, 2nd ed.; The European Society of Cardiology Textbooks: Oxford, UK, 2016; pp. 3–35, 123–192, 231–266. [Google Scholar] [CrossRef]
- Mizia-Stec, K.; Wieczorek, J.; Orszulak, M.; Mizia, M.; Gieszczyk-Strózik, K.; Sikora-Puz, A.; Haberka, M.; Lasota, B.; Chmiel, A. Flow-mediated dilatation (FMD) and prevalence of cardiovascular risk factors: The value of FMD assessment in high risk patients is limited. Kardiol. Pol. 2014, 72, 254–261. [Google Scholar] [CrossRef]
Patients with AS (N = 86) | Control Group (N = 63) | p Value | |
---|---|---|---|
Male (%), Female (%) | 44 (51.2%), 42 (48.8%) | 39 (61.9%), 24 (38.1%) | 0.192 |
Age (mean, SD) | 74.8 ± 12.2 | 73.1 ± 4.6 | 0.69 |
Height (cm) | 165.8 ± 8.9 | 167.9 ±13.4 | 0.077 |
BMI (kg/m2) | 27.7 ± 4.4 | 28.5 ± 4.5 | 0.337 |
NYHA class (mean, SD) | 2.5 ± 0.8 | 1.5 ± 1.1 | 0.001 |
CCS class (mean, SD) | 1.2 ± 1.1 | 2.2 ± 1.4 | 0.001 |
AF (%) | 16 (18,6%) | 1 (1,6%) | 0.001 |
Hypertension (%) | 76 (92.7%) | 57 (90.5%) | 0.633 |
CAD (%) | 58 (68.2%) | 54 (85.7%) | 0.027 |
Diabetes (%) | 18 (21.4%) | 22 (34.9%) | 0.069 |
Dyslipidemia (%) | 73 (88%) | 62 (98.4%) | 0.018 |
Hypothyroidism (%) | 15 (18.1%) | 6 (9.5%) | 0.145 |
Smoking (%) | 13 (15.7%) | 27 (42.9%) | 0.001 |
COPD (%) | 7 (8.5%) | 7 (11.1%) | 0.603 |
PAD (%) | 26 (31.3%) | 11 (17.5%) | 0.056 |
Creatinine [mg/dL] | 1.2 ± 1.0 | 0.9 ± 0.2 | 0.001 |
Sodium [mmol/L] | 138.9 ± 3.2 | 139.4 ± 2.1 | 0.832 |
Potassium [mmol/L] | 4,2 ± 0.4 | 4.1 ± 0.4 | 0.011 |
eGFR [mL/min] | 63.5 ± 22.3 | 75.5 ± 16 | 0.001 |
TSH [μIU/mL] | 1.9 ± 0.9 | 1.9 ± 1.5 | 0.234 |
Triglycerides [mg/dL] | 97.5 ± 32.5 | 118 ± 48.5 | 0.032 |
Total cholesterol [mg/dL] | 156.5 ± 39.5 | 150.9 ± 45 | 0.215 |
LDL [mg/dL] | 82.2 ± 33 | 78.9 ± 39.4 | 0.357 |
HDL [mg/dL] | 54.8 ± 17.9 | 48.5 ± 12.4 | 0.039 |
Patients with AS (N = 86) | Control Group (N = 63) | p Value | |
---|---|---|---|
Left Ventricular Parameters | |||
LV EDD [mm] | 47.8 ± 6.1 | 50.5 ±7.1 | 0.018 |
LV ESD [mm] | 30.6 ± 7.5 | 31.2 ± 6.6 | 0.32 |
IVS [mm] | 14.7 ± 3.2 | 11.9 ± 2.5 | 0.001 |
PW [mm] | 11.1 ± 2.0 | 9.6 ± 1.5 | 0.001 |
LV EDV [mL] | 113.4 ± 37.3 | 116.4 ± 27 | 0.298 |
LV ESV [mL] | 52.5 ± 31 | 55 ± 18.2 | 0.036 |
LV EF [%] | 54.6 ± 10.8 | 52.6 ± 7.7 | 0.023 |
LV SVi [mL/m2] | 35 ± 10.5 | 31.3 ± 6.8 | 0.057 |
LV GLS [%] | −14 ± 3.1 | −15.7 ± 3.7 | 0.015 |
Other Parameters | |||
Zva [mmHg/mL/m2] | 5.6 ± 1.7 | 4.8 ± 1.4 | 0.003 |
LA area [cm2] | 24.1 ± 6.2 | 21.3 ± 4.9 | 0.009 |
E/E′ | 15.6 ± 7 | 10 ± 3.9 | 0.001 |
Biomarker | Patients with AS (N = 86) | Control Group (N= 63) | p Value |
---|---|---|---|
ATX [ng/mL] | 112.07 ± 50.0 | 93.54 ± 27.2 | 0.003 |
LPA [ng/mL] | 842.7 ± 508.1 | 928.3 ± 534.0 | 0.278 |
GDF-15 [ng/mL] | 1.34 ± 1.4 (Q1: 0.64; Q3: 1.5) | 0.71 ± 0.5 (Q1: 0.32; Q3: 0.94) | 0.001 |
TM [ng/mL] | 7.76 ± 4.0 | 6.3 ± 1.9 | 0.005 |
Biomarker | HG AS (N = 53) | LG AS (N = 24) | p Value |
---|---|---|---|
ATX [ng/mL] | 111.89 ± 58.4 | 112.98 ± 34.07 | 0.55 |
LPA [ng/mL] | 945.06 ± 550.9 | 756.86 ± 384.6 | 0.207 |
GDF-15 [ng/mL] | 1.52 ± 1.7 (Q1: 0.81; Q3: 1.5) | 1.11 ± 0.72 (Q1: 0.46; Q3: 1.7) | 0.25 |
TM [ng/mL] | 8.05 ± 4.9 | 7.49 ± 1.9 | 0.535 |
AVA | Vmax | Pmean | ||||
---|---|---|---|---|---|---|
r | p | r | p | r | p | |
ATX | −0.386 | 0.001 | 0.224 | 0.006 | 0.231 | 0.005 |
LPA | 0.076 | 0.361 | −0.012 | 0.888 | 0.004 | 0.957 |
GDF-15 | −0.410 | 0.001 | 0.374 | 0.001 | 0.362 | 0.001 |
TM | −0.243 | 0.003 | 0.168 | 0.042 | 0.176 | 0.032 |
FMD | 0.327 | 0.001 | −0.310 | 0.001 | −0.327 | 0.001 |
LV GLS | −0.286 | 0.001 | 0.222 | 0.008 | 0.250 | 0.002 |
Dependent Variable | Independent Variable | R2 | Regression Coefficient (β) | p-Value |
---|---|---|---|---|
ATX [ng/mL] | AVA [cm2] | 0.145321 | −20.93 | 0.011 |
ATX [ng/mL] | FMD [%] | 0.145321 | −13.42 | 0.012 |
Variable | OR (95% CI) | p Value |
---|---|---|
Predictive Factors for Mortality | ||
Age | 1.0897 (1.0183–1.1662) | 0.013 |
AF | 4.4815 (1.0286–19.5246) | 0.046 |
NYHA | 2.6235 (1.2154–5.6629) | 0.014 |
eGFR | 0.9716 (0.9453–0.9986) | 0.040 |
RVSP | 1.0550 (1.0031–1.1097) | 0.038 |
GDF-15 | 1.0006 (1.0000–1.0011) | 0.036 |
Predictive Factors for MACCE | ||
Age | 1.0507 (1.0050–1.0984) | 0.029 |
Atherosclerotic plaque in ascending aorta | 8.4507 (1.9119–37.3520) | 0.005 |
eGFR | 0.9630 (0.9414–0.9851) | 0.001 |
GDF-15 | 1.0006 (1.0002–1.0011) | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bańka, P.; Męcka, K.; Berger-Kucza, A.; Wrona-Kolasa, K.; Rybicka-Musialik, A.; Nowak, B.; Elżbieciak, M.; Mizia-Szubryt, M.; Wróbel, W.; Francuz, T.; et al. Biomarkers of Calcification, Endothelial Injury, and Platelet-Endothelial Interaction in Patients with Aortic Valve Stenosis. Int. J. Mol. Sci. 2025, 26, 4873. https://doi.org/10.3390/ijms26104873
Bańka P, Męcka K, Berger-Kucza A, Wrona-Kolasa K, Rybicka-Musialik A, Nowak B, Elżbieciak M, Mizia-Szubryt M, Wróbel W, Francuz T, et al. Biomarkers of Calcification, Endothelial Injury, and Platelet-Endothelial Interaction in Patients with Aortic Valve Stenosis. International Journal of Molecular Sciences. 2025; 26(10):4873. https://doi.org/10.3390/ijms26104873
Chicago/Turabian StyleBańka, Paweł, Klaudia Męcka, Adrianna Berger-Kucza, Karolina Wrona-Kolasa, Anna Rybicka-Musialik, Beata Nowak, Marek Elżbieciak, Magdalena Mizia-Szubryt, Wojciech Wróbel, Tomasz Francuz, and et al. 2025. "Biomarkers of Calcification, Endothelial Injury, and Platelet-Endothelial Interaction in Patients with Aortic Valve Stenosis" International Journal of Molecular Sciences 26, no. 10: 4873. https://doi.org/10.3390/ijms26104873
APA StyleBańka, P., Męcka, K., Berger-Kucza, A., Wrona-Kolasa, K., Rybicka-Musialik, A., Nowak, B., Elżbieciak, M., Mizia-Szubryt, M., Wróbel, W., Francuz, T., Lelek, M., Kosowska, A., Garczorz, W., Bochenek, T., Swinarew, A., Paluch, J., Wybraniec, M., & Mizia-Stec, K. (2025). Biomarkers of Calcification, Endothelial Injury, and Platelet-Endothelial Interaction in Patients with Aortic Valve Stenosis. International Journal of Molecular Sciences, 26(10), 4873. https://doi.org/10.3390/ijms26104873