DDM1 Maintains Heterochromatin by Regulating Histone Variants
Abstract
1. Introduction
2. The Main Histone Variants Associated with Chromatin States in Plants
2.1. Euchromatin Histone Variants
2.2. Heterochromatin Histone Variants
3. DDM1 Is Important for the Deposition of Heterochromatin Histone Variants
3.1. DDM1 Excludes H2A.Z and Deposits H2A.W in Heterochromatin
3.2. DDM1 Promotes the Deposition of H3.1 in Heterochromatin
4. DDM1 Has Other Remodeling Functions
5. The Core Function of DDM1 Is the Regulation of Histone Variant Distribution
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
DDM1 | DECREASE in DNA METHYLATION 1 |
TEs | transposable elements |
TSS | transcription start site |
H3K4me3 | histone H3 lysine 4 trimethylation |
H3K36me3 | histone H3 lysine 36 trimethylation |
H3K27me3 | histone H3 lysine 27 trimethylation |
FLC | FLOWERING LOCUS C |
H3K36 | histone H3 lysine 36 |
H3K37 | histone H3 lysine 37 |
TSK | TONSOKU |
H3K9me2 | histone H3 lysine 9 dimethylation |
H3K27me1 | histone H3 lysine 27 monomethylation |
HIRA | histone cell cycle regulator |
ATRX | Alpha-Thalassemia X-Linked Intellectual Disability Syndrome |
SHL2 | superhelical location 2 |
LSH | lymphoid-specific helicase |
INO80 | inositol requiring 80 |
SWR1 | SWI2/SNF2-related 1 |
CHD1 | chromodomain helicase DNA-binding |
EP400 | E1A binding protein p400 |
References
- Niu, Y.; Bai, J.; Zheng, S. The Regulation and Function of Histone Methylation. J. Plant Biol. 2018, 61, 347–357. [Google Scholar] [CrossRef]
- Zhao, T.; Zhan, Z.; Jiang, D. Histone modifications and their regulatory roles in plant development and environmental memory. J. Genet. Genom. 2019, 46, 467–476. [Google Scholar] [CrossRef]
- Talbert, P.B.; Henikoff, S. Histone variants at a glance. J. Cell Sci. 2021, 134, jcs244749. [Google Scholar] [CrossRef]
- Jamge, B.; Lorkovic, Z.J.; Axelsson, E.; Osakabe, A.; Shukla, V.; Yelagandula, R.; Akimcheva, S.; Kuehn, A.L.; Berger, F. Histone variants shape chromatin states in Arabidopsis. Elife 2023, 12, RP87714. [Google Scholar] [CrossRef]
- Knizewski, L.; Ginalski, K.; Jerzmanowski, A. Snf2 proteins in plants: Gene silencing and beyond. Trends Plant Sci. 2008, 13, 557–565. [Google Scholar] [CrossRef]
- Reyes, A.A.; Marcum, R.D.; He, Y. Structure and Function of Chromatin Remodelers. J. Mol. Biol. 2021, 433, 166929. [Google Scholar] [CrossRef]
- Ryan, D.P.; Owen-Hughes, T. Snf2-family proteins: Chromatin remodellers for any occasion. Curr. Opin. Chem. Biol. 2011, 15, 649–656. [Google Scholar] [CrossRef]
- Guo, J.; He, X.J. Composition and function of plant chromatin remodeling complexes. Curr. Opin. Plant Biol. 2024, 81, 102613. [Google Scholar] [CrossRef]
- Vongs, A.; Kakutani, T.; Martienssen, R.A.; Richards, E.J. Arabidopsis thaliana DNA methylation mutants. Science 1993, 260, 1926–1928. [Google Scholar] [CrossRef]
- Jeddeloh, J.A.; Stokes, T.L.; Richards, E.J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat. Genet. 1999, 22, 94–97. [Google Scholar] [CrossRef]
- Zemach, A.; Kim, M.Y.; Hsieh, P.H.; Coleman-Derr, D.; Eshed-Williams, L.; Thao, K.; Harmer, S.L.; Zilberman, D. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 2013, 153, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, A.; Jamge, B.; Axelsson, E.; Montgomery, S.A.; Akimcheva, S.; Kuehn, A.L.; Pisupati, R.; Lorkovic, Z.J.; Yelagandula, R.; Kakutani, T.; et al. The chromatin remodeler DDM1 prevents transposon mobility through deposition of histone variant H2A.W. Nat. Cell Biol. 2021, 23, 391–400. [Google Scholar] [CrossRef]
- Lee, S.C.; Adams, D.W.; Ipsaro, J.J.; Cahn, J.; Lynn, J.; Kim, H.S.; Berube, B.; Major, V.; Calarco, J.P.; Leblanc, C.; et al. Chromatin remodeling of histone H3 variants by DDM1 underlies epigenetic inheritance of DNA methylation. Cell 2023, 186, 4100–4116. [Google Scholar] [CrossRef]
- Brzeski, J.; Jerzmanowski, A. Deficient in DNA Methylation 1 (DDM1) Defines a Novel Family of Chromatin-remodeling Factors. J. Biol. Chem. 2003, 278, 823–828. [Google Scholar] [CrossRef]
- Flaus, A.; Martin, D.M.A.; Barton, G.J.; Owen-Hughes, T. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res. 2006, 34, 2887–2905. [Google Scholar] [CrossRef]
- He, L.; Zhao, C.; Zhang, Q.; Zinta, G.; Wang, D.; Lozano-Durán, R.; Zhu, J.-K. Pathway conversion enables a double-lock mechanism to maintain DNA methylation and genome stability. Proc. Natl. Acad. Sci. USA 2021, 118, e2107320118. [Google Scholar] [CrossRef]
- Osakabe, A.; Takizawa, Y.; Horikoshi, N.; Hatazawa, S.; Negishi, L.; Sato, S.; Berger, F.; Kakutani, T.; Kurumizaka, H. Molecular and structural basis of the chromatin remodeling activity by DDM1. Nat. Commun. 2024, 15, 5187. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Z.H.; Hu, H.M.; Chen, W.; Zhang, F.; Wang, Q.; Wang, C.S.; Yan, K.G.; Du, J.M. Molecular basis of chromatin remodelling by DDM1 involved in plant DNA methylation. Nat. Plants 2024, 10, 374–380. [Google Scholar] [CrossRef]
- Zhang, H.W.; Gu, Z.X.; Zeng, Y.; Zhang, Y. Mechanism of heterochromatin remodeling revealed by the DDM1 bound nucleosome structures. Structure 2024, 32, 1222–1230. [Google Scholar] [CrossRef]
- Zhou, J.C.; Lei, X.; Shafiq, S.; Zhang, W.F.; Li, Q.; Li, K.; Zhu, J.F.; Dong, Z.C.; He, X.J.; Sun, Q.W. DDM1-mediated R-loop resolution and H2A.Z exclusion facilitates heterochromatin formation in Arabidopsis. Sci. Adv. 2023, 9, eadg2699. [Google Scholar] [CrossRef]
- Borg, M.; Jiang, D.H.; Berger, F. Histone variants take center stage in shaping the epigenome. Curr. Opin. Plant Biol. 2021, 61, 101991. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, A.; Lorkovic, Z.J.; Kobayashi, W.; Tachiwana, H.; Yelagandula, R.; Kurumizaka, H.; Berger, F. Histone H2A variants confer specific properties to nucleosomes and impact on chromatin accessibility. Nucleic Acids Res. 2018, 46, 7675–7685. [Google Scholar] [CrossRef]
- Martire, S.; Banaszynski, L.A. The roles of histone variants in fine-tuning chromatin organization and function. Nat. Rev. Mol. Cell Biol. 2020, 21, 522–541. [Google Scholar] [CrossRef]
- Flury, V.; Reverón-Gómez, N.; Alcaraz, N.; Stewart-Morgan, K.R.; Wenger, A.; Klose, R.J.; Groth, A. Recycling of modified H2A-H2B provides short-term memory of chromatin states. Cell 2023, 186, 1050–1065. [Google Scholar] [CrossRef]
- Jung, H.; Sokolova, V.; Lee, G.; Stevens, V.R.; Tan, D. Structural and Biochemical Characterization of the Nucleosome Containing Variants H3.3 and H2A.Z. Epigenomes 2024, 8, 21. [Google Scholar] [CrossRef]
- Candela-Ferre, J.; Diego-Martin, B.; Pérez-Alemany, J.; Gallego-Bartolomé, J. Mind the gap: Epigenetic regulation of chromatin accessibility in plants. Plant Physiol. 2024, 194, 1998–2016. [Google Scholar] [CrossRef] [PubMed]
- Lewis, T.S.; Sokolova, V.; Jung, H.; Ng, H.; Tan, D. Structural basis of chromatin regulation by histone variant H2A.Z. Nucleic Acids Res. 2021, 49, 11379–11391. [Google Scholar] [CrossRef]
- Merini, W.; Romero-Campero, F.J.; Gomez-Zambrano, A.; Zhou, Y.; Turck, F.; Calonje, M. The Arabidopsis Polycomb Repressive Complex 1 (PRC1) Components AtBMI1A, B, and C Impact Gene Networks throughout All Stages of Plant Development. Plant Physiol. 2016, 173, 627–641. [Google Scholar] [CrossRef]
- Bieluszewski, T.; Sura, W.; Dziegielewski, W.; Bieluszewska, A.; Lachance, C.; Kabza, M.; Szymanska-Lejman, M.; Abram, M.; Wlodzimierz, P.; De Winne, N.; et al. NuA4 and H2A.Z control environmental responses and autotrophic growth in Arabidopsis. Nat. Commun. 2022, 13, 277. [Google Scholar] [CrossRef]
- Gómez-Zambrano, Á.; Merini, W.; Calonje, M. The repressive role of Arabidopsis H2A.Z in transcriptional regulation depends on AtBMI1 activity. Nat. Commun. 2019, 10, 2828. [Google Scholar] [CrossRef]
- Zilberman, D.; Coleman-Derr, D.; Ballinger, T.; Henikoff, S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 2008, 456, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.; Nakamura, M.; Siretskiy, A.; Borghi, L.; Moraes, I.; Wildhaber, T.; Gruissem, W.; Hennig, L. Arabidopsis replacement histone variant H3.3 occupies promoters of regulated genes. Genome Biol. 2014, 15, R62. [Google Scholar] [CrossRef] [PubMed]
- Otero, S.; Desvoyes, B.; Peiró, R.; Gutierrez, C. Histone H3 Dynamics Reveal Domains with Distinct Proliferation Potential in the Arabidopsis Root. Plant Cell 2016, 28, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Wollmann, H.; Stroud, H.; Yelagandula, R.; Tarutani, Y.; Jiang, D.; Jing, L.; Jamge, B.; Takeuchi, H.; Holec, S.; Nie, X.; et al. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana. Genome Biol. 2017, 18, 94. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, H.; Zhao, T.; Li, Z.; Jiang, D. The histone variant H3.3 promotes the active chromatin state to repress flowering in Arabidopsis. Plant Physiol. 2021, 186, 2051–2063. [Google Scholar] [CrossRef]
- Yadav, V.K.; Sawant, S.V.; Yadav, A.; Jalmi, S.K.; Kerkar, S. Genome-wide analysis of long non-coding RNAs under diel light exhibits role in floral development and the circadian clock in Arabidopsis thaliana. Int. J. Biol. Macromol. 2022, 223, 1693–1704. [Google Scholar] [CrossRef]
- Jiang, D.; Berger, F. DNA replication–coupled histone modification maintains Polycomb gene silencing in plants. Science 2017, 357, 1146–1149. [Google Scholar] [CrossRef]
- Nie, X.; Wang, H.; Li, J.; Holec, S.; Berger, F. The HIRA complex that deposits the histone H3.3 is conserved in Arabidopsis and facilitates transcriptional dynamics. Biol. Open 2014, 3, 794–802. [Google Scholar] [CrossRef]
- Duc, C.; Benoit, M.; Détourné, G.; Simon, L.; Poulet, A.; Jung, M.; Veluchamy, A.; Latrasse, D.; Le Goff, S.; Cotterell, S.; et al. Arabidopsis ATRX Modulates H3.3 Occupancy and Fine-Tunes Gene Expression. Plant Cell 2017, 29, 1773–1793. [Google Scholar] [CrossRef]
- Wang, L.; Xue, M.; Zhang, H.; Ma, L.; Jiang, D. TONSOKU is required for the maintenance of repressive chromatin modifications in Arabidopsis. Cell Rep. 2023, 42, 112738. [Google Scholar] [CrossRef]
- Davarinejad, H.; Huang, Y.-C.; Mermaz, B.; LeBlanc, C.; Poulet, A.; Thomson, G.; Joly, V.; Muñoz, M.; Arvanitis-Vigneault, A.; Valsakumar, D.; et al. The histone H3.1 variant regulates TONSOKU-mediated DNA repair during replication. Science 2022, 375, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Nakajima, S.; Inagaki, S.; Hirano-Nakakita, M.; Matsuoka, K.; Demura, T.; Fukuda, H.; Morikami, A.; Nakamura, K. TONSOKU is Expressed in S Phase of the Cell Cycle and its Defect Delays Cell Cycle Progression in Arabidopsis. Plant Cell Physiol. 2005, 46, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; LeBlanc, C.; Poulet, A.; Mermaz, B.; Villarino, G.; Webb, K.M.; Joly, V.; Mendez, J.; Voigt, P.; Jacob, Y. H3.1K27me1 maintains transcriptional silencing and genome stability by preventing GCN5-mediated histone acetylation. Plant Cell 2021, 33, 961–979. [Google Scholar] [CrossRef]
- Yelagandula, R.; Stroud, H.; Holec, S.; Zhou, K.; Feng, S.H.; Zhong, X.H.; Muthurajan, U.M.; Nie, X.; Kawashima, T.; Groth, M.; et al. The Histone Variant H2A. W Defines Heterochromatin and Promotes Chromatin Condensation in. Cell 2014, 158, 98–109. [Google Scholar] [CrossRef]
- Bourguet, P.; Picard, C.L.; Yelagandula, R.; Pélissier, T.; Lorkovic, Z.J.; Feng, S.H.; Pouch-Pélissier, M.N.; Schmücker, A.; Jacobsen, S.E.; Berger, F.; et al. The histone variant H2A.W and linker histone H1 co-regulate heterochromatin accessibility and DNA methylation. Nat. Commun. 2021, 12, 2683. [Google Scholar] [CrossRef]
- Li, M.; Xia, X.; Tian, Y.; Jia, Q.; Liu, X.; Lu, Y.; Li, M.; Li, X.; Chen, Z. Mechanism of DNA translocation underlying chromatin remodelling by Snf2. Nature 2019, 567, 409–413. [Google Scholar] [CrossRef]
- Yan, L.; Chen, Z. A Unifying Mechanism of DNA Translocation Underlying Chromatin Remodeling. Trends Biochem. Sci. 2020, 45, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Muegge, K. LSH catalyzes ATP-driven exchange of histone variants macroH2A1 and macroH2A2. Nucleic Acids Res. 2021, 49, 8024–8036. [Google Scholar] [CrossRef]
- Myant, K.; Stancheva, I. LSH cooperates with DNA methyltransferases to repress transcription. Mol. Cell Biol. 2008, 28, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Konev, A.Y.; Tribus, M.; Park, S.Y.; Podhraski, V.; Lim, C.Y.; Emelyanov, A.V.; Vershilova, E.; Pirrotta, V.; Kadonaga, J.T.; Lusser, A.; et al. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 2007, 317, 1087–1090. [Google Scholar] [CrossRef]
- Pradhan, S.K.; Su, T.; Yen, L.; Jacquet, K.; Huang, C.; Côté, J.; Kurdistani, S.K.; Carey, M.F. EP400 Deposits H3.3 into Promoters and Enhancers during Gene Activation. Mol. Cell 2016, 61, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.Y.; Lu, Y.J.; Cai, X.W.; Su, Y.N.; Feng, C.; Li, L.; Chen, S.; He, X.J. COMPASS functions as a module of the INO80 chromatin remodeling complex to mediate histone H3K4 methylation in Arabidopsis. Plant Cell 2021, 33, 3250–3271. [Google Scholar] [CrossRef] [PubMed]
- Aramayo, R.J.; Willhoft, O.; Ayala, R.; Bythell-Douglas, R.; Wigley, D.B.; Zhang, X. Cryo-EM structures of the human INO80 chromatin-remodeling complex. Nat. Struct. Mol. Biol. 2018, 25, 37–44. [Google Scholar] [CrossRef]
- Chen, L.; Cai, Y.; Jin, J.; Florens, L.; Swanson, S.K.; Washburn, M.P.; Conaway, J.W.; Conaway, R.C. Subunit organization of the human INO80 chromatin remodeling complex: An evolutionarily conserved core complex catalyzes ATP-dependent nucleosome remodeling. J. Biol. Chem. 2011, 286, 11283–11289. [Google Scholar] [CrossRef]
- Fan, J.; Moreno, A.T.; Baier, A.S.; Loparo, J.J.; Peterson, C.L. H2A.Z deposition by SWR1C involves multiple ATP-dependent steps. Nat. Commun. 2022, 13, 7052. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Xie, Q.; Chu, H.; Lv, B.; Xie, L.; Zhang, Q. DDM1 Maintains Heterochromatin by Regulating Histone Variants. Int. J. Mol. Sci. 2025, 26, 4845. https://doi.org/10.3390/ijms26104845
Sun Y, Xie Q, Chu H, Lv B, Xie L, Zhang Q. DDM1 Maintains Heterochromatin by Regulating Histone Variants. International Journal of Molecular Sciences. 2025; 26(10):4845. https://doi.org/10.3390/ijms26104845
Chicago/Turabian StyleSun, Yuanyi, Qijun Xie, Huaixue Chu, Bin Lv, Linan Xie, and Qingzhu Zhang. 2025. "DDM1 Maintains Heterochromatin by Regulating Histone Variants" International Journal of Molecular Sciences 26, no. 10: 4845. https://doi.org/10.3390/ijms26104845
APA StyleSun, Y., Xie, Q., Chu, H., Lv, B., Xie, L., & Zhang, Q. (2025). DDM1 Maintains Heterochromatin by Regulating Histone Variants. International Journal of Molecular Sciences, 26(10), 4845. https://doi.org/10.3390/ijms26104845