Genetic Polymorphisms of Vascular Endothelial Growth Factor and Their Impact on Recurrent Spontaneous Miscarriage in Saudi Women
Abstract
1. Introduction
2. Results
2.1. Demographic Data of Subjects Included in This Study
2.2. Genotypic and Allelic Frequencies
2.2.1. rs699947, (-2578C/A)
2.2.2. rs2010963, (-634G/C)
2.2.3. rs3025053, (1725G/A)
2.2.4. rs25648, rs833061, and rs10434
2.3. VEGF Plasma Levels
2.3.1. Comparison of VEGF Plasma Levels in Pregnant Patients (Patients vs. Controls)
2.3.2. Comparison of VEGF Plasma Levels in Non-Pregnant Patients (Patients vs. Controls)
3. Discussion
4. Materials and Methods
4.1. The Study Design and Participants
4.2. DNA Extraction and Genotyping
4.3. Plasma VEGF Measurement
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RSM | Recurrent spontaneous miscarriage |
VEGF | Vascular endothelial growth factor |
SNP | Single-nucleotide polymorphism |
OR | Odds ratio |
CI | Confidence interval |
X2 | Chi-square |
References
- Al-Khateeb, G.M.; Mustafa, F.E.; Sater, M.S.; Almawi, W.Y. Effect of the functional VEGFA− 583C/T variant on vascular endothelial growth factor levels and the risk of recurrent spontaneous miscarriage. Fertil. Steril. 2011, 95, 2471–2473. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh, E.; Tazik, K.; Taheri, F.; Shayankia, G.; Gheibihayat, S.M.; Saberi, A. Abnormal angiogenesis associated with HIF-1α/VEGF signaling pathway in recurrent miscarriage along with therapeutic goals. Gene Rep. 2022, 26, 101483. [Google Scholar] [CrossRef]
- Abu-Ghazaleh, N.; Brennecke, S.; Murthi, P.; Karanam, V. Association of vascular endothelial growth factors (VEGFs) with recurrent miscarriage: A systematic review of the literature. Int. J. Mol. Sci. 2023, 24, 9449. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Gimenez, C.; Alijotas-Reig, J. Recurrent miscarriage: Causes, evaluation and management. Postgrad. Med. J. 2015, 91, 151–162. [Google Scholar] [CrossRef]
- Blyth, U.; Craciunas, L.; Hudson, G.; Choudhary, M. Maternal germline factors associated with aneuploid pregnancy loss: A systematic review. Hum. Reprod. Update 2021, 27, 866–884. [Google Scholar] [CrossRef]
- Bilibio, J.P.; Gama, T.B.; Nascimento, I.C.M.; Meireles, A.J.C.; de Aguiar, A.S.C.; do Nascimento, F.C.; Lorenzzoni, P.L. Causes of recurrent miscarriage after spontaneous pregnancy and after in vitro fertilization. Am. J. Reprod. Immunol. 2020, 83, e13226. [Google Scholar] [CrossRef] [PubMed]
- Sundermann, A.C.; Edwards, D.R.V.; Slaughter, J.C.; Wu, P.; Jones, S.H.; Torstenson, E.S.; Hartmann, K.E. Week-by-week alcohol consumption in early pregnancy and spontaneous abortion risk: A prospective cohort study. Am. J. Obstet. Gynecol. 2021, 224, 97.e1–97.e16. [Google Scholar] [CrossRef]
- Quenby, S.; Gallos, I.D.; Dhillon-Smith, R.K.; Podesek, M.; Stephenson, M.D.; Fisher, J.; Brosens, J.J.; Brewin, J.; Ramhorst, R.; Lucas, E.S. Miscarriage matters: The epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet 2021, 397, 1658–1667. [Google Scholar] [CrossRef]
- Guo, X.; Yi, H.; Li, T.C.; Wang, Y.; Wang, H.; Chen, X. Role of vascular endothelial growth factor (VEGF) in human embryo implantation: Clinical implications. Biomolecules 2021, 11, 253. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Ewadh, M.J.; Jeddoa, Z.M.A. The association of vascular endothelial growth factor polymorphism (rs699947) with diabetic foot ulcer and oxidative status. Gene Rep. 2020, 19, 100606. [Google Scholar] [CrossRef]
- Boldeanu, L.; Dijmărescu, A.L.; Radu, M.; Siloşi, C.A.; Popescu-Drigă, M.V.; Poenariu, I.S.; Siloşi, I.; Boldeanu, M.V.; Novac, M.B.; Novac, L.V. The role of mediating factors involved in angiogenesis during implantation. Rom. J. Morphol. Embryol. 2020, 61, 665. [Google Scholar] [CrossRef]
- Zeng, H.; Hu, L.; Xie, H.; Ma, W.; Quan, S. Polymorphisms of vascular endothelial growth factor and recurrent implantation failure: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 2021, 304, 297–307. [Google Scholar] [CrossRef]
- Azzam, O.; Mahgoub, S.; Farhan, S. Is there an Association Between-2549 Insertion/Deletion Polymorphisms in the Promotor Region of the Gene Encoding for VEGFA as a Risk Factor and the Idiopathic Recurrent Spontaneous Miscarriage in a Sample of Jordanian Women. Prensa Med. Argent (Genet.) 2020, 106, 3. [Google Scholar]
- Niktalab, R.; Piravar, Z.; Behzadi, R. Different polymorphisms of vascular endothelial growth factor gene in patients with pre-eclampsia among the Iranian women population. Int. J. Fertil. Steril. 2020, 14, 41. [Google Scholar]
- Mahajan, D.; Sambyal, V.; Uppal, M.S.; Sudan, M.; Guleria, K. VEGF-2578C/A,-460T/C polymorphisms and gastrointestinal tract cancer risk: An updated meta-analysis. Genet. Test. Mol. Biomark. 2024, 28, 176–188. [Google Scholar] [CrossRef]
- El-Hefnawy, S.M.; Naidany, S.S.E.; Alhanafy, A.M.; Badr, N.; Ellaithy, M.A. Prognostic impact of serum vascular endothelial growth factor and VEGF gene polymorphism (rs2010963) in breast cancer patients. Hum. Gen. 2023, 36, 201168. [Google Scholar] [CrossRef]
- Qayyum, S.; Afzal, M.; Naveed, A.K.; Butt, I.A.; Sajjad, M.; Azam, M. Association of vascular endothelial growth factor a gene (VEGFA) polymorphisms, rs699947 and rs1570360, with diabetic retinopathy and altered VEGF secretion in the Pakistani patients with type 2 diabetes mellitus: A casecontrol study. J. Pak. Med. Assoc. 2023, 73, 2348–2356. [Google Scholar] [CrossRef]
- Zhang, H.-h.; Chen, J.C.; Sheibani, L.; Lechuga, T.J.; Chen, D.-b. Pregnancy augments VEGF-stimulated in vitro angiogenesis and vasodilator (NO and H2S) production in human uterine artery endothelial cells. J. Clin. Endocrinol. Metab. 2017, 102, 2382–2393. [Google Scholar] [CrossRef]
- Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.-M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar] [PubMed]
- Mamer, S.B.; Wittenkeller, A.; Imoukhuede, P. VEGF-A splice variants bind VEGFRs with differential affinities. Sci. Rep. 2020, 10, 14413. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Wei, Z.; Li, O.; Huang, R.; Qin, J.; Chen, H.; Fan, X.; Chen, Z.-J. An increase in vascular endothelial growth factor (VEGF) and VEGF soluble receptor-1 (sFlt-1) are associated with early recurrent spontaneous abortion. PLoS ONE 2013, 8, e75759. [Google Scholar] [CrossRef]
- Woo, I.; Chan, Y.; Sriprasert, I.; Louie, K.; Ingles, S.; Stanczyk, F.; McGinnis, L.K.; Chung, K. The role of angiogenic markers in adverse perinatal outcomes: Fresh versus frozen embryo transfers. J. Assist. Reprod. Genet. 2017, 34, 1639–1643. [Google Scholar] [CrossRef] [PubMed]
- Wathén, K.-A.; Unkila-Kallio, L.; Isaksson, R.; Tiitinen, A.; Stenman, U.-H.; Vuorela, P. Is serum-soluble vascular endothelial growth factor receptor-1 of importance in unexplained infertility? Acta Obstet. Gynecol. Scand. 2008, 87, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Edgell, T.A.; Evans, J.; Lazzaro, L.; Boyes, K.; Sridhar, M.; Catt, S.; Rombauts, L.J.; Vollenhoven, B.J.; Salamonsen, L.A. Assessment of potential biomarkers of pre-receptive and receptive endometrium in uterine fluid and a functional evaluation of the potential role of CSF3 in fertility. Cytokine 2018, 111, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Astin, J.W.; Haggerty, M.J.; Okuda, K.S.; Le Guen, L.; Misa, J.P.; Tromp, A.; Hogan, B.M.; Crosier, K.E.; Crosier, P.S. Vegfd can compensate for loss of Vegfc in zebrafish facial lymphatic sprouting. Development 2014, 141, 2680–2690. [Google Scholar] [CrossRef]
- Bui, H.M.; Enis, D.; Robciuc, M.R.; Nurmi, H.J.; Cohen, J.; Chen, M.; Yang, Y.; Dhillon, V.; Johnson, K.; Zhang, H. Proteolytic activation defines distinct lymphangiogenic mechanisms for VEGFC and VEGFD. J. Clin. Investig. 2016, 126, 2167–2180. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, X.; Cui, H.; Shi, J.; Yuan, G.; Shi, S.; Hu, Y. The role of the VEGF family in coronary heart disease. Front. Cardiovasc. Med. 2021, 8, 738325. [Google Scholar] [CrossRef]
- Apte, R.S.; Chen, D.S.; Ferrara, N. VEGF in signaling and disease: Beyond discovery and development. Cell 2019, 176, 1248–1264. [Google Scholar] [CrossRef]
- Tu, J.; Wang, S.; Zhao, J.; Zhu, J.; Sheng, L.; Sheng, Y.; Chen, H.; Tian, J. rs833061 and rs699947 on promoter gene of vascular endothelial growth factor (VEGF) and associated lung cancer susceptibility and survival: A meta-analysis. Med. Sci. Monit. 2014, 20, 2520. [Google Scholar]
- An, H.J.; Kim, J.H.; Ahn, E.H.; Kim, Y.R.; Kim, J.O.; Park, H.S.; Ryu, C.S.; Kim, E.-G.; Cho, S.H.; Lee, W.S. 3′-UTR polymorphisms in the vascular endothelial growth factor gene (VEGF) contribute to susceptibility to recurrent pregnancy loss (RPL). Int. J. Mol. Sci. 2019, 20, 3319. [Google Scholar] [CrossRef]
- García-Closas, M.; Malats, N.; Real, F.X.; Yeager, M.; Welch, R.; Silverman, D.; Kogevinas, M.; Dosemeci, M.; Figueroa, J.; Chatterjee, N. Large-scale evaluation of candidate genes identifies associations between VEGF polymorphisms and bladder cancer risk. PLoS Genet. 2007, 3, e29. [Google Scholar] [CrossRef]
- Scartozzi, M.; Faloppi, L.; Svegliati Baroni, G.; Loretelli, C.; Piscaglia, F.; Iavarone, M.; Toniutto, P.; Fava, G.; De Minicis, S.; Mandolesi, A. VEGF and VEGFR genotyping in the prediction of clinical outcome for HCC patients receiving sorafenib: The ALICE-1 study. Int. J. Cancer 2014, 135, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Sajjadi, M.S.; Ghandil, P.; Shahbazian, N.; Saberi, A. Association of vascular endothelial growth factor A polymorphisms and aberrant expression of connexin 43 and VEGFA with idiopathic recurrent spontaneous miscarriage. J. Obstet. Gynaecol. Res. 2020, 46, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Amin, I.; Pandith, A.A.; Manzoor, U.; Mir, S.H.; Koul, A.M.; Wani, S.; Ahmad, A.; Qasim, I.; Rashid, M.; Wani, U.M. Implications of VEGF gene sequence variations and its expression in recurrent pregnancy loss. Reprod. Biomed. Online 2021, 43, 1035–1044. [Google Scholar] [CrossRef]
- El-baz, R.; Bedairy, M.H.; Saad, A.M.; El-gareeb, M.S. Study of genetic polymorphisms of Vascular Endothelial Growth Factor in women with recurrent abortion. J. Pharm. Biol. Sci. 2014, 9, 51–55. [Google Scholar] [CrossRef]
- Elmi, M.; Ghandil, P.; Hemadi, M.; Birgani, M.T.; Saberi, A. Association of rs1570360 and rs2010963 in VEGF and rs2279744 in the MDM2 gene with Recurrent Implantation Failure in Iranian Women. JBRA Assist. Reprod. 2023, 27, 342. [Google Scholar] [CrossRef]
- Jung, Y.W.; Ahn, E.H.; Kim, J.O.; An, H.J.; Cho, S.H.; Kim, Y.R.; Lee, W.S.; Kim, N.K. Association of genetic polymorphisms in VEGF-460,-7 and-583 and hematocrit level with the development of idiopathic recurrent pregnancy loss and a meta-analysis. J. Gene Med. 2018, 20, e3048. [Google Scholar] [CrossRef]
- Jung, Y.W.; Kim, J.O.; Rah, H.; Kim, J.H.; Kim, Y.R.; Lee, Y.; Lee, W.S.; Kim, N.K. Genetic variants of vascular endothelial growth factor are associated with recurrent implantation failure in Korean women. Reprod. Biomed. Online 2016, 32, 190–196. [Google Scholar] [CrossRef]
- Yalcintepe, S.A.; Silan, F.; Hacivelioglu, S.O.; Uludag, A.; Cosar, E.; Ozdemir, O. Fetal Vegf genotype is more important for abortion risk than mother genotype. Int. J. Mol. Cell Med. 2014, 3, 88. [Google Scholar]
- Almawi, W.Y.; Saldanha, F.L.; Mahmood, N.A.; Al-Zaman, I.; Sater, M.S.; Mustafa, F.E. Relationship between VEGFA polymorphisms and serum VEGF protein levels and recurrent spontaneous miscarriage. Hum. Reprod. 2013, 28, 2628–2635. [Google Scholar] [CrossRef]
- Gupta, P.; Deo, S.; Jaiswar, S.; Sankhwar, P. Case control study to compare serum vascular endothelial growth factor (VEGF) level in women with recurrent pregnancy loss (RPL) compared to women with term pregnancy. J. Obstet. Gynaecol. India 2019, 69, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Palm, M.; Basu, S.; Larsson, A.; Wernroth, L.; Åkerud, H.; Axelsson, O. A longitudinal study of plasma levels of soluble fms-like tyrosine kinase 1 (sFlt1), placental growth factor (PlGF), sFlt1: PlGF ratio and vascular endothelial growth factor (VEGF-A) in normal pregnancy. Acta Obstet. Gynecol. Scand. 2011, 90, 1244–1251. [Google Scholar] [CrossRef] [PubMed]
- Lyall, F.; Greer, I.A.; Boswell, F.; Fleming, R. Suppression of serum vascular endothelial growth factor immunoreactivity in normal pregnancy and in pre-eclampsia. Br. J. Obstet. Gynaecol. 1997, 104, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Mohammed Alotaibi, M.A. Maternal plasma levels of vascular endothelial growth factor and interleukin-6 in the term-pregnant and non-pregnant rats. Anim. Reprod. (AR) 2018, 14, 1259–1263. [Google Scholar] [CrossRef]
- Marakhovskaya, T.A.; Butenko, E.V.; Kovalenko, K.A.; Mashkina, E.V. Association of growth factors genes with miscarriage. J. Reprod. Infertil. 2018, 19, 219. [Google Scholar]
- Braile, M.; Marcella, S.; Cristinziano, L.; Galdiero, M.R.; Modestino, L.; Ferrara, A.L.; Varricchi, G.; Marone, G.; Loffredo, S. VEGF-A in cardiomyocytes and heart diseases. Int. J. Mol. Sci. 2020, 21, 5294. [Google Scholar] [CrossRef]
- Zhang, A.; Fang, H.; Chen, J.; He, L.; Chen, Y. Role of VEGF-A and LRG1 in abnormal angiogenesis associated with diabetic nephropathy. Front. Physiol. 2020, 11, 1064. [Google Scholar] [CrossRef]
(a) | |||
Parameter for Pregnant | Control | Case | p-Value |
Mean ± S.E | |||
Age (years) | 33 ± 0.57 | 36 ± 0.73 | 0.002 |
Weight (kg) | 75 ± 2.46 | 74 ± 1.83 | 0.668 |
Length (m) | 2 ± 0.01 | 2 ± 0.01 | 0.755 |
Body mass index (kg/m2) | 30 ±0.98 | 29 ± 0.71 | 0.727 |
No. of children | 3 ± 0.14 | 3 ± 0.24 | 0.715 |
No. of abortions | 0 ± 0.00 | 4 ± 0.29 | 0.000 |
(b) | |||
Parameter for Non-Pregnant | Control | Case | p-Value |
Mean ± S.E | |||
Age (years) | 35 ± 0.72 | 36 ± 0.78 | 0.499 |
Weight (kg) | 69 ± 2.09 | 70 ± 1.78 | 0.765 |
Length (m) | 2 ± 0.01 | 2 ± 0.01 | 0.117 |
Body mass index (kg/m2) | 28 ± 0.79 | 28 ± 0.60 | 0.709 |
No. of children | 3 ± 0.19 | 2 ± 0.25 | 0.000 |
No. of abortions | 0 ± 0.00 | 5 ± 0.60 | 0.000 |
(a) | ||||||
Genotype | Case Pregnant N = 50 | Control N = 50 | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
CC | 22 (44%) | 15 (30%) | 1.83 | 0.80 to 4.18 | 2.08 | p = 0.15 |
AC | 15 (30%) | 25 (50%) | 0.43 | 0.19 to 0.98 | 4.13 | p = 0.04 |
AA | 13 (26%) | 10 (20%) | 1.41 | 0.55 to 3.59 | 0.50 | p = 0.48 |
Total | 50 | 50 | ||||
Allele | Case (Freq) | Control (Freq) | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
C | 59 (59%) | 55 (55%) | 1.18 | 0.67 to 2.06 | 0.32 | p = 0.57 |
A | 41 (41%) | 45 (45%) | 0.85 | 0.49 to 1.49 | ||
(b) | ||||||
Genotype | Case N = 50 | Control N = 50 | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
CC | 15 (30%) | 16 (32%) | 0.91 | 0.39 to 2.13 | 0.05 | p = 0.83 |
AC | 30 (60%) | 22 (44%) | 1.91 | 0.86 to 4.23 | 2.54 | p = 0.11 |
AA | 5 (10%) | 12 (24%) | 0.35 | 0.11 to 1.09 | 3.44 | p = 0.07 |
Total | 50 | 50 | ||||
Allele | Case (Freq) | Control (Freq) | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
C | 60 (60%) | 54 (54%) | 1.28 | 0.73 to 2.24 | 0.73 | p = 0.39 |
A | 40 (40%) | 46 (46%) | 0.78 | 0.45 to 1.37 |
(a) | ||||||
Genotype | Case Pregnant N = 50 | Control N = 50 | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
CC | 12 (24%) | 3 (6%) | 4.95 | 1.30 to 18.81 | 6.29 | p = 0.02 |
CG | 14 (28%) | 10 (20%) | 1.56 | 0.61 to 3.94 | 0.89 | p = 0.35 |
GG | 24 (48%) | 37 (74%) | 0.32 | 0.14 to 0.75 | 7.03 | p = 0.01 |
Total | 50 | 50 | ||||
Allele | Case (Freq) | Control (Freq) | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
C | 38 (38%) | 16 (16%) | 3.22 | 1.65 to 6.29 | 12.22 | p = 0.001 |
G | 62 (62%) | 84 (84%) | 0.31 | 0.16 to 0.61 | ||
(b) | ||||||
Genotype | Case N = 50 | Control N = 50 | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
CC | 7 (14%) | 9 (18%) | 0.74 | 0.25 to 2.18 | 0.29 | p = 0.59 |
CG | 28 (56%) | 21 (42%) | 1.76 | 0.8 to 3.88 | 1.94 | p = 0.16 |
GG | 15 (30%) | 20 (40%) | 0.64 | 0.28 to 1.47 | 1.09 | p = 0.3 |
Total | 50 | 50 | ||||
Allele | Case (Freq) | Control (Freq) | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
C | 42 (42%) | 39 (39%) | 1.13 | 0.64 to 1.99 | 0.19 | p = 0.67 |
G | 58 (58%) | 61 (61%) | 0.88 | 0.50 to 1.55 |
(a) | ||||||
Genotype | Case pregnant N = 50 | Control N = 50 | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
GG | 41 (82%) | 28 (56%) | 3.58 | 1.44 to 8.91 | 7.82 | p = 0.01 |
GA | 8 (16%) | 21 (42%) | 0.26 | 0.10 to 0.67 | 8.13 | p = 0.01 |
AA | 1 (2%) | 1 (2%) | 1.00 | 0.06 to 16.44 | 0 | p = 1.00 |
Total | 50 | 50 | ||||
Allele | Case (Freq) | Control (Freq) | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
G | 90 (90%) | 77 (77%) | 2.69 | 1.21 to 6 | 6.10 | p = 0.02 |
A | 10 (10%) | 23 (23%) | 0.37 | 0.17 to 0.83 | ||
(b) | ||||||
Genotype | Case N = 50 | Control N = 50 | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
GG | 44 (88%) | 45 (90%) | 0.81 | 0.23 to 2.87 | 0.10 | p = 0.75 |
GA | 5 (10%) | 5 (10%) | 1.00 | 0.27 to 3.69 | 0 | p = 1.00 |
AA | 1 (2%) | 0 | 3.06 | 0.12 to 76.95 | 1 | p = 0.5 |
Total | 50 | 50 | ||||
Allele | Case (Freq) | Control (Freq) | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
G | 93 (93%) | 95 (95%) | 0.7 | 0.21 to 2.28 | 0.35 | p = 0.55 |
A | 7 (7%) | 5 (5%) | 1.43 | 0.44 to 4.67 |
(a) | ||||||
Genotype | Case Pregnant N = 50 | Control N = 50 | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
CC | 34 (68%) | 29 (58%) | 1.54 | 0.68 to 3.49 | 1.06 | p = 0.30 |
CT | 14 (28%) | 20 (40%) | 0.58 | 0.25 to 1.35 | 1.59 | p = 0.21 |
TT | 2 (4%) | 1 (2%) | 2.04 | 0.18 to 23.27 | 0.34 | p = 0.57 |
Total | 50 | 50 | ||||
Allele | Case (Freq) | Control (Freq) | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
C | 82 (82%) | 78 (78%) | 1.28 | 0.64 to 2.58 | 0.5 | p = 0.48 |
T | 18 (18%) | 22 (22%) | 0.78 | 0.39 to 1.56 | ||
(b) | ||||||
Genotype | Case N = 50 | Control N = 50 | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
CC | 38 (76%) | 36 (72%) | 1.23 | 0.50 to 3.02 | 0.21 | p = 0.65 |
CT | 12 (24%) | 12 (24%) | 1 | 0.4 to 2.50 | 0 | p = 1 |
TT | 0 | 2 (4%) | 0.19 | 0.01 to 4.10 | 2.02 | p = 0.29 |
Total | 50 | 50 | ||||
Allele | Case (Freq) | Control (Freq) | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
C | 88 (88%) | 84 (84%) | 1.4 | 0.62 to 3.13 | 0.66 | p = 0.42 |
T | 12 (12%) | 16 (16%) | 0.72 | 0.32 to 1.60 |
(a) | ||||||
Genotype | Case Pregnant N = 50 | Control N = 50 | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
CC | 13 (26%) | 12 (24%) | 1.11 | 0.45 to 2.75 | 0.05 | p = 0.82 |
CT | 22 (44%) | 21 (42%) | 1.09 | 0.49 to 2.4 | 0.04 | p = 0.84 |
TT | 15 (30%) | 17 (34%) | 0.83 | 0.36 to 1.93 | 0.18 | p = 0.67 |
Total | 50 | 50 | ||||
Allele | Case (Freq) | Control (Freq) | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
C | 48 (48%) | 45 (45%) | 1.13 | 0.65 to 1.97 | 0.18 | p = 0.67 |
T | 52 (52%) | 55 (55%) | 0.89 | 0.51 to 1.55 | ||
(b) | ||||||
Genotype | Case N = 50 | Control N = 50 | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
CC | 7 (14%) | 12 (24%) | 0.52 | 0.18 to 1.44 | 1.61 | p = 0.21 |
CT | 28 (56%) | 22 (44%) | 1.62 | 0.74 to 3.57 | 1.43 | p = 0.23 |
TT | 15 (30%) | 16 (32%) | 0.91 | 0.39 to 2.13 | 0.05 | p = 0.83 |
Total | 50 | 50 | ||||
Allele | Case (Freq) | Control (Freq) | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
C | 42 (42%) | 46 (46%) | 0.85 | 0.49 to 1.49 | 0.32 | p = 0.57 |
T | 58 (58%) | 54 (54%) | 1.18 | 0.67 to 2.06 |
(a) | ||||||
Genotype | Case Pregnant N = 50 | Control N = 50 | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
GG | 22 (44%) | 27 (54%) | 0.67 | 0.30 to 1.47 | 0.99 | p = 0.32 |
GA | 22 (44%) | 19 (38%) | 1.28 | 0.58 to 2.85 | 0.37 | p = 0.54 |
AA | 6 (12%) | 4 (8%) | 1.57 | 0.41 to 5.94 | 0.44 | p = 0.51 |
Total | 50 | 50 | ||||
Allele | Case (Freq) | Control (Freq) | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
G | 66 (66%) | 73 (73%) | 0.72 | 0.39 to 1.31 | 1.15 | p = 0.28 |
A | 34 (34%) | 27 (27%) | 1.39 | 0.76 to 2.55 | ||
(b) | ||||||
Genotype | Case N = 50 | Control N = 50 | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
GG | 22 (44%) | 24 (48%) | 0.85 | 0.39 to 1.87 | 0.16 | p = 0.69 |
GA | 18 (36%) | 18 (36%) | 1 | 0.44 to 2.26 | 0 | p = 1 |
AA | 10 (20%) | 8 (16%) | 1.31 | 0.47 to 3.66 | 0.27 | p = 0.60 |
Total | 50 | 50 | ||||
Allele | Case (Freq) | Control (Freq) | Case vs. Control | |||
OR | CI | X2 | p-Value | |||
G | 62 (62%) | 66 (66%) | 0.84 | 0.47 to 1.5 | 0.35 | p = 0.56 |
A | 38 (38%) | 34 (34%) | 1.19 | 0.67 to 2.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Qahtani, W.K.; Alkhuriji, A.F.; Babay, Z.A.; Kaabi, A.M.H.; Al-Malahi, N.M.; Alshammari, J.O. Genetic Polymorphisms of Vascular Endothelial Growth Factor and Their Impact on Recurrent Spontaneous Miscarriage in Saudi Women. Int. J. Mol. Sci. 2025, 26, 4757. https://doi.org/10.3390/ijms26104757
Al-Qahtani WK, Alkhuriji AF, Babay ZA, Kaabi AMH, Al-Malahi NM, Alshammari JO. Genetic Polymorphisms of Vascular Endothelial Growth Factor and Their Impact on Recurrent Spontaneous Miscarriage in Saudi Women. International Journal of Molecular Sciences. 2025; 26(10):4757. https://doi.org/10.3390/ijms26104757
Chicago/Turabian StyleAl-Qahtani, Wadha Khalid, Afrah Fahad Alkhuriji, Zeneb Ahmed Babay, Aaishah Mohammed Hussain Kaabi, Nawal M. Al-Malahi, and Jamilah Obaid Alshammari. 2025. "Genetic Polymorphisms of Vascular Endothelial Growth Factor and Their Impact on Recurrent Spontaneous Miscarriage in Saudi Women" International Journal of Molecular Sciences 26, no. 10: 4757. https://doi.org/10.3390/ijms26104757
APA StyleAl-Qahtani, W. K., Alkhuriji, A. F., Babay, Z. A., Kaabi, A. M. H., Al-Malahi, N. M., & Alshammari, J. O. (2025). Genetic Polymorphisms of Vascular Endothelial Growth Factor and Their Impact on Recurrent Spontaneous Miscarriage in Saudi Women. International Journal of Molecular Sciences, 26(10), 4757. https://doi.org/10.3390/ijms26104757