Gill Transcriptome, Proteome, and Histology in Female Eriocheir sinensis Under Copper Stress
Abstract
:1. Introduction
2. Results
2.1. Transcriptome and Proteome Annotation
2.2. Tanscriptome and Proteome Analysis
2.3. DEGs and DEPs Analysis
2.4. Histological Analysis
3. Discussion
3.1. Common DEGs and DEPs in Two Omics
3.2. GO Terms and KEGGs
3.3. Gill Histology
4. Materials and Methods
4.1. Ethics
4.2. Reagents
4.3. Experimental Animals
4.4. Exposure Experiment and Sampling
4.5. Transcriptome Analysis
4.6. Proteome Analysis
4.7. Combined Transcriptome and Proteome Analysis
4.8. Histological Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruiz, L.M.; Libedinsky, A.; Elorza, A.A. Role of copper on mitochondrial function and metabolism. Front. Mol. Biosci. 2021, 8, 711227. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Liu, R.; Shi, X.; Shen, C.; Bai, Y.; Tang, B.; Wang, Z. Toxic effects of metal copper stress on immunity, metabolism and pathologic changes in chinese mitten crab (Eriocheir japonica sinensis). Ecotoxicology 2021, 30, 632–642. [Google Scholar] [CrossRef]
- Rehman, M.; Liu, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D. Copper environmental toxicology, recent advances, and future outlook: A review. Environ. Sci. Pollut. Res. 2019, 26, 18003–18016. [Google Scholar] [CrossRef]
- Tavares-Dias, M. Toxic, physiological, histomorphological, growth performance and antiparasitic effects of copper sulphate in fish aquaculture. Aquaculture 2021, 535, 736350. [Google Scholar] [CrossRef]
- Watson, S.E.; Taylor, C.H.; Bell, V.; Bellamy, T.R.; Hooper, A.S.; Taylor, H.; Jouault, M.; Kille, P.; Perkins, R.G. Impact of copper sulphate treatment on cyanobacterial blooms and subsequent water quality risks. J. Environ. Manag. 2024, 366, 10. [Google Scholar] [CrossRef] [PubMed]
- GB11607-89; Chinese National Water Quality Standard for Fisheries. National Environmental Protection Agency: Beijing, China, 1989; Volume 17, pp. 25–27.
- Xu, J.; Feng, G.; Yan, Y. Effects of polystyrene nanoplastics and copper on gill tissue structure, metabolism, and immune function of the Chinese mitten crab (Eriocheir sinensis). Front. Mar. Sci. 2025, 12, 1538734. [Google Scholar] [CrossRef]
- Yang, Z.; Lian, W.; Waiho, K.; Zhu, L.; Chen, A.; Cheng, Y.; Wang, Y. Effects of copper exposure on lipid metabolism and srebp pathway in the Chinese mitten crab Eriocheir sinensis. Chemosphere 2022, 308, 136556. [Google Scholar] [CrossRef]
- Feng, W.; Su, S.; Song, C.; Yu, F.; Zhou, J.; Li, J.; Jia, R.; Xu, P.; Tang, Y. Effects of copper exposure on oxidative stress, apoptosis, endoplasmic reticulum stress, autophagy and immune response in different tissues of Chinese mitten crab (Eriocheir sinensis). Antioxidants 2022, 11, 2029. [Google Scholar] [CrossRef]
- Bu, X.; Song, Y.; Pan, J.; Wang, X.; Qin, C.; Jia, Y.; Du, Z.; Qin, J.G.; Chen, L. Toxicity of chronic copper exposure on Chinese mitten crab (Eriocheir sinensis) and mitigation of its adverse impact by myo-inositol. Aquaculture 2022, 547, 737511. [Google Scholar] [CrossRef]
- Benedetti, I.; Albano, A.; Mola, L. Histomorphological changes in some organs of the brown bullhead, Ictalurus nebulosus lesueur, following short-and long-term exposure to copper. J. Fish Biol. 1989, 34, 273–280. [Google Scholar] [CrossRef]
- Zimmer, A.M.; Perry, S.F. Physiology and aquaculture: A review of ion and acid-base regulation by the gills of fishes. Fish Fish. 2022, 23, 874–898. [Google Scholar] [CrossRef]
- Agbugui, M.; Abe, G. Heavy metals in fish: Bioaccumulation and health. Br. J. Earth Sci. Res. 2022, 10, 47–66. [Google Scholar]
- Bao, J.; Li, X.; Yu, H.; Jiang, H. Respiratory metabolism responses of Chinese mitten crab, Eriocheir sinensis and Chinese grass shrimp, Palaemonetes sinensis, subjected to environmental hypoxia stress. Front. Physiol. 2018, 9, 1559. [Google Scholar] [CrossRef]
- Guerreiro Gomes, E.; da Silva Freitas, L.; Maciel, F.E.; Jorge, M.B.; Camila, D.M.G.M. Combined effects of waterborne copper exposure and salinity on enzymes related to osmoregulation and ammonia excretion by blue crab Callinectes sapidus. Ecotoxicology 2019, 28, 781–789. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Jiang, Q.; Ye, Y.; Zhao, Y. Effects of nanoplastic on cell apoptosis and ion regulation in the gills of Macrobrachium nipponense. Environ. Pollut. 2022, 300, 118989. [Google Scholar] [CrossRef]
- Wang, T.; Long, X.; Chen, X.; Liu, Y.; Liu, Z.; Han, S.; Yan, S. Integrated transcriptome, proteome and physiology analysis of Epinephelus coioides after exposure to copper nanoparticles or copper sulfate. Nanotoxicology 2017, 11, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Li, Z.; Ran, F.; Huang, S.; Li, C. Transcriptome analysis provides insights into copper toxicology in piebald naked carp (Gymnocypris eckloni). BMC Genom. 2021, 22, 416. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, N.; Ger, T.R.; Uapipatanakul, B.; Huang, J.C.; Chen, K.H.C.; Hsiao, C.D. Review of copper and copper nanoparticle toxicity in fish. Nanomaterials 2020, 10, 1126. [Google Scholar] [CrossRef]
- Zhao, J.; Li, Z.; Li, C.; Wang, R.; Zhao, Z.; Gou, H.; Li, L.; Xie, A.; Ren, H.; Qiu, B. Regulation of GECu/Zn-SOD, GeMn-SOD, GeHsp90, and GeMT in Gymnocypris eckloni in response to copper and lead ion challenges. J. Appl. Ichthyol. 2024, 2024, 5716920. [Google Scholar] [CrossRef]
- Pereira, T.C.B.; Campos, M.M.; Bogo, M.R. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model. J. Appl. Toxicol. 2016, 36, 876–885. [Google Scholar] [CrossRef]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Zhu, S.; Yang, H.; Cui, H.; Guo, H.; Deng, J.; Ren, Z.; Geng, Y.; Ouyang, P.; Xu, Z. The dysregulation of inflammatory pathways triggered by copper exposure. Biol. Trace Elem. Res. 2023, 201, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Verhaegh, G.W.; Richard, M.J.; Hainaut, P. Regulation of p53 by metal ions and by antioxidants: Dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper. Mol. Cell. Biol. 1997, 17, 5699–5706. [Google Scholar] [CrossRef]
- Powell, C.L.; Swenberg, J.A.; Rusyn, I. Expression of base excision DNA repair genes as a biomarker of oxidative DNA damage. Cancer Lett. 2005, 229, 1–11. [Google Scholar] [CrossRef]
- Sandrini, J.Z.; Bianchini, A.; Trindade, G.S.; Nery, L.E.M.; Marins, L.F.F. Reactive oxygen species generation and expression of DNA repair-related genes after copper exposure in zebrafish (Danio rerio) ZFL cells. Aquat. Toxicol. 2009, 95, 285–291. [Google Scholar] [CrossRef]
- Whiteside, J.R.; Box, C.L.; Mcmillan, T.J.; Allinson, S.L. Cadmium and copper inhibit both DNA repair activities of polynucleotide kinase. DNA Repair 2010, 9, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Barthel, A.; Ostrakhovitch, E.A.; Walter, P.L.; Kampkotter, A.; Klotz, L.O. Stimulation of phosphoinositide 3-kinase/akt signaling by copper and zinc ions: Mechanisms and consequences. Arch. Biochem. Biophys. 2007, 463, 175–182. [Google Scholar] [CrossRef]
- Ostrakhovitch, E.A.; Lordnejad, M.R.; Schliess, F.; Sies, H.; Klotz, L.O. Copper ions strongly activate the phosphoinositide-3-kinase/akt pathway independent of the generation of reactive oxygen species. Arch. Biochem. Biophys. 2002, 397, 232–239. [Google Scholar] [CrossRef]
- Khan, S.K.; Dutta, J.; Rather, M.A.; Ahmad, I.; Nazir, J.; Karnwal, A. Toxicological impact of copper nanoparticles on rainbow trout: Hematological, biochemical, antioxidant, and histopathological responses with oxidative gene expression. Toxicol. Mech. Methods 2025, 35, 356–371. [Google Scholar] [CrossRef]
- Samim, A.R.; Singh, V.K.; Vaseem, H. Assessment of hazardous impact of nickel oxide nanoparticles on biochemical and histological parameters of gills and liver tissues of Heteropneustes fossilis. J. Trace Elem. Med. 2022, 74, 127059. [Google Scholar] [CrossRef]
- Fatima, H.; Jabeen, F.; Raza, T.; Raza, M.; Zafar, S.; Chaudhry, A.S.; Studies, E. Copper nanoparticles induced oxidative stress and tissue integrity in gills and brain of Cyprinus carpio. Int. J. Aquat. Res. 2024, 4, 53–68. [Google Scholar]
- Al-Bairuty, G.A.; Shaw, B.J.; Handy, R.D.; Henry, T.B. Histopathological effects of waterborne copper nanoparticles and copper sulphate on the organs of rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 2013, 126, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one fastq preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. Hisat: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 1–21. [Google Scholar] [CrossRef]
- Pan, T.; Li, T.; Yang, M.; Jiang, H.; Ling, J. Integrative analysis of hepatopancreas transcriptome and proteome in female Eriocheir sinensis under thermal stress. Int. J. Mol. Sci. 2024, 25, 7249. [Google Scholar] [CrossRef]
- Pan, T.; Li, T.; Yang, M.; Jiang, H.; Ling, J.; Gao, Q.J.F. Cardiac transcriptome and histology of the heart of the male Chinese mitten crab (Eriocheir sinensis) under high-temperature stress. Fishes 2024, 9, 92. [Google Scholar] [CrossRef]
Reads Summary | GBL | GCP |
---|---|---|
Raw reads | 241.35 M | 235.66 M |
Clean reads | 236.92 M | 230.56 M |
Raw data | 35.60 G | 34.67 G |
Clean data | 34.95 G | 33.91 G |
Valid ratio (reads)/% | 98.16 | 97.84 |
GC content % | 46.98 | 46.53 |
Mapping reads ratio | 66.75 | 72.29 |
Unique Mapped reads ratio | 61.73 | 66.52 |
DGEs | Description | Transcriptome | Proteome | ||||
---|---|---|---|---|---|---|---|
Log2FC | Regulation | p Value | Log2FC | Regulation | p Value | ||
SACS | sacsin-like | −1.30 | Down | 0.030 | 5.89 | Up | 0.038 |
LOC126994049 | minichromosome maintenance domain containing protein 2 like | 3.47 | Up | 0.003 | −11.79 | Down | 0.00001 |
stumps | DBB domain-containing protein stumps | 1.70 | Up | 0.002 | −6.96 | Down | 0.001 |
GO ID | GO Term | GO Function | p Value | Gene ID |
---|---|---|---|---|
GO:0050727 | regulation of inflammatory response | Biological process | 0.003 | stumps |
GO:0014068 | positive regulation of phosphatidylinositol 3-kinase signaling | Biological process | 0.003 | stumps |
GO:0006270 | DNA replication initiation | Biological process | 0.004 | LOC126994049 |
GO:0051897 | positive regulation of protein kinase B signaling | Biological process | 0.006 | stumps |
GO:0051321 | meiotic cell cycle | Biological process | 0.013 | LOC126994049 |
GO:0006281 | DNA repair | Biological process | 0.034 | LOC126994049 |
GO:0050750 | low-density lipoprotein particle receptor binding | Molecular function | 0.03 | SACS |
Pathway | Pathway Name | p Value | Enrichment Score | Overlapped Genes |
---|---|---|---|---|
ko04662 | B cell receptor signaling pathway | 0.006 | 170.1 | stumps |
ko04151 | PI3K-Akt signaling pathway | 0.025 | 39.2 | stumps |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, T.; Li, T.; Yang, M.; Yu, C.; Jiang, H.; Ling, J. Gill Transcriptome, Proteome, and Histology in Female Eriocheir sinensis Under Copper Stress. Int. J. Mol. Sci. 2025, 26, 4711. https://doi.org/10.3390/ijms26104711
Pan T, Li T, Yang M, Yu C, Jiang H, Ling J. Gill Transcriptome, Proteome, and Histology in Female Eriocheir sinensis Under Copper Stress. International Journal of Molecular Sciences. 2025; 26(10):4711. https://doi.org/10.3390/ijms26104711
Chicago/Turabian StylePan, Tingshuang, Tong Li, Min Yang, Chengchen Yu, He Jiang, and Jun Ling. 2025. "Gill Transcriptome, Proteome, and Histology in Female Eriocheir sinensis Under Copper Stress" International Journal of Molecular Sciences 26, no. 10: 4711. https://doi.org/10.3390/ijms26104711
APA StylePan, T., Li, T., Yang, M., Yu, C., Jiang, H., & Ling, J. (2025). Gill Transcriptome, Proteome, and Histology in Female Eriocheir sinensis Under Copper Stress. International Journal of Molecular Sciences, 26(10), 4711. https://doi.org/10.3390/ijms26104711