Effects of Dietary Carbohydrate Levels on Growth and Ammonia Excretion in Chinese Perch (Siniperca chuatsi) at Low Water Temperatures
Abstract
:1. Introduction
2. Results
2.1. Effect of Dietary Carbohydrate Levels on the Growth Performance Under Low Water Temperature
2.2. Effects of Dietary Carbohydrate Levels on Morphometric Indices and Body Composition Under Low Water Temperature
2.3. Effects of Dietary Carbohydrate Levels on Glutamate Metabolism Under Low Water Temperature
2.4. Effect of Dietary Carbohydrate Levels on Ammonia Excretion Under Low Water Temperature
2.5. Effects of Dietary Carbohydrate Levels on Glycolipid Metabolism Under Low Water Temperature
2.6. Effects of Dietary Carbohydrate Levels on the AMPK Signaling Pathway Under Low Water Temperature
2.7. Effect of Dietary Carbohydrate Levels on Protein Synthesis and Catabolism Under Low Water Temperature
3. Discussion
4. Materials and Methods
4.1. Fish Maintenance
4.2. Experimental Diets
4.3. Sample Collection
4.4. Biochemical Parameters Analysis
4.5. Calculation and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | Acetyl-CoA carboxy-lase |
AKG | α-ketoglutaric acid |
AMPD | Adenosine monophosphate deaminase |
AMPK | AMP-activated protein kinase |
CF | Condition factor |
eEF2 | Eukaryotic elongation factor 2 |
FBW | Final body weight |
FCR | Feed conversion ratio |
FR | Feeding rate |
G6Pase | Glucose-6-phosphatase |
GDH | Glutamate dehydrogenase |
GK | Glucokinase |
Gln | Glutamine |
Glu | Glutamate |
GLS | Glutaminase |
GS | Glutamine synthetase |
HSI | Hepatosomatic index |
IBW | Initial body weight |
LKB1 | Liver kinase B1 |
MAFbx | Muscle atrophy F-box |
mTOR | Mammalian target of rapamycin |
MuRF1 | Muscle-specific RING finger protein-1 |
PEPCK | Phosphoenolpyruvate carboxykinase |
PER | Protein efficiency ratio |
PK | Pyruvate kinase |
PPARα | Peroxisome proliferators-activated receptors |
PR | Protein retention rate |
Rhag | Rh a glycoprotein |
Rhbg | Rh b glycoprotein |
Rhcg | Rh c glycoprotein |
S6K1 | Translational regulators S6 kinase 1 |
SGR | Specific growth rate |
SR | Survival rate |
SREBP1 | Sterol regulatory element binding protein 1 |
VSI | Viscerosomatic index |
WGR | Weight gain rate |
References
- Guo, Z.; Cui, J.; Li, M.; Liu, H.; Zhang, M.; Meng, F.; Shi, G.; Wang, R.; He, X.; Zhao, Y. Effect of feeding frequency on growth performance, antioxidant status, immune response and resistance to hypoxia stress challenge on juvenile dolly varden char Salvelinus malma. Aquaculture 2018, 486, 197–201. [Google Scholar] [CrossRef]
- Azaza, M.S.; Khiari, N.; Dhraief, M.N.; Aloui, N.; Kräem, M.M.; Elfeki, A. Growth performance, oxidative stress indices and hepatic carbohydrate metabolic enzymes activities of juvenile Nile tilapia, Oreochromis niloticus L., in response to dietary starch to protein ratios. Aquac. Res. 2015, 46, 14–27. [Google Scholar] [CrossRef]
- Brauge, C.; Corraze, G.; Médale, F. Effects of dietary levels of carbohydrate and lipid on glucose oxidation and lipo genesis from glucose in rainbow trout, Oncorhynchus mykiss, reared in freshwater or in seawater. Comp. Biochem. Phys. A 1995, 111, 117–124. [Google Scholar] [CrossRef]
- Xu, R.; Ding, F.F.; Zhou, N.N.; Wang, T.; Wu, H.X.; Qiao, F.; Chen, L.Q.; Du, Z.Y.; Zhang, M.L. Bacillus amyloliquefaciens protects Nile tilapia against Aeromonas hydrophila infection and alleviates liver inflammation induced by high-carbohydrate diet. Fish Shellfish Immunol. 2022, 127, 836–842. [Google Scholar] [CrossRef]
- Kamalam, B.S.; Medale, F.; Panserat, S. Utilisation of dietary carbohydrates in farmed fishes: New insights on influencing factors, biological limitations and future strategies. Aquaculture 2017, 467, 3–27. [Google Scholar] [CrossRef]
- Basto-Silva, C.; Enes, P.; Oliva-Teles, A.; Capilla, E.; Guerreiro, I. Dietary protein/carbohydrate ratio and feeding frequency affect feed utilization, intermediary metabolism, and economic efficiency of gilthead seabream (Sparus aurata) juveniles. Aquaculture 2022, 554, 738182. [Google Scholar] [CrossRef]
- Mao, T. Research progress on carbohydrate nutrition demand and regulation mechanism of carbohydrate metabolism of aquatic economic animals. Open J. Fish Res. 2021, 08, 68–75. [Google Scholar] [CrossRef]
- Bucking, C. A broader look at ammonia production, excretion, and transport in fish: A review of impacts of feeding and the environment. J. Comp. Physiol. B 2017, 187, 1–18. [Google Scholar] [CrossRef]
- Jia, S.; Li, X.; Zheng, S.; Wu, G. Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish. Amino Acids 2017, 49, 2053–2063. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, D.; Wu, L.Y.; Hu, B.; Chen, J.C.; Li, Y.; Liu, L.W. Glutamate and α-ketoglutarate on the growth, deamination, and glucose metabolism of Chinese perch (Siniperca chuatsi). Acta Hydrobiol. Sin. 2024, 48, 384–392. [Google Scholar]
- Soyano, K.; Mushirobira, Y. The mechanism of low-temperature tolerance in fish. Adv. Exp. Med. Biol. 2018, 1081, 149–164. [Google Scholar] [PubMed]
- Cui, Z.; Ren, J.; Long, Y. Signaling pathways and regulatory mechanisms of cold stress response and injury in fish. J. Henan Norm. Univ. 2023, 51, 11–21+171. [Google Scholar]
- Xu, W.; Li, H.; Wu, L.; Jin, J.; Zhu, X.; Han, D.; Liu, H.; Yang, Y.; Xu, X.; Xie, S. Dietary Scenedesmus ovalternus improves disease resistance of overwintering gibel carp (Carassius gibelio) by alleviating toll-like receptor signaling activation. Fish Shellfish Immunol. 2020, 97, 351–358. [Google Scholar] [CrossRef]
- Yang, B.; Wang, C.; Tu, Y.; Hu, H.; Han, D.; Zhu, X.; Jin, J.; Yang, Y.; Xie, S. Effects of repeated handling and air exposure on the immune response and the disease resistance of gibel carp (Carassius auratus gibelio) over winter. Fish Shellfish Immunol. 2015, 47, 933–941. [Google Scholar] [CrossRef]
- Gao, X.; Wang, X.; Wang, X.; Li, H.; Xu, L.; Fang, Y.; Cao, S.; Huang, B.; Chen, H.; Xing, R.; et al. Effect of winter feeding frequency on growth performance, biochemical blood parameters, oxidative stress, and appetite-related genes in takifugu rubripes. Fish Physiol. Biochem. 2022, 48, 1167–1181. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, T.; Lei, C.; Jiang, P.; Du, J.; Zhu, J.; Song, H.; Li, S. Effects on growth and hepatic glucose metabolism of grass carp fed with high dietary carbohydrates. S. China Fish. Sci. 2023, 19, 75–85. [Google Scholar]
- Zhang, L.; Xu, G.B.; Cheng, Y.B.; Chen, J. Effects of high carbohydrate diet on growth, glucose and lipid metabolism and intestinal metabolites of yellow catfish (Pelteobagrus fulvidraco). China Feed 2021, 5, 67–71. [Google Scholar]
- Wang, J.; Lan, K.; Wu, G.; Wang, Y.; Zhou, C.; Lin, H.; Ma, Z. Effect of dietary carbohydrate level on growth, feed utilization, energy retention, body composition, and digestive and metabolic enzyme activities of juvenile cobia, Rachycentron canadum. Aquac. Rep. 2022, 25, 101211. [Google Scholar] [CrossRef]
- Li, H.Y.; Wu, L.Y.; Dong, B.; Xu, W.J.; Jin, J.Y.; Yang, Y.X.; Zhu, X.M.; Han, D.; Liu, H.K.; Xie, S.Q. Effects of dietary carbohydrate and lipid levels on growth performance and plasma metabolites of in juvenile blunt snout bream. Acta Hydrobiol. Sin. 2021, 45, 756–763. [Google Scholar]
- Niu, S.H.; Li, H.Y.; Pan, H.J.; Xie, J.; Wang, G.J.; Xia, Y.; Gong, W.B. Effects of live prey fish and artificial diet on nutrient compositions and texture properties in the muscle of mandarin fish (Siniperca chuatsi). Acta Hydrobiol. Sin. 2023, 47, 37–44. [Google Scholar]
- He, S.; Liang, X.F.; Sun, J.; Li, L.; Yu, Y.; Huang, W.; Qu, C.M.; Cao, L.; Bai, X.L.; Tao, Y.X. Insights into food preference in hybrid F1 of Siniperca chuatsi (♀) × Siniperca scherzeri (♂) mandarin fish through transcriptome analysis. BMC Genom. 2013, 14, 601. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Miao, Y.L. Progress of fish sugar nutrition research. Rural Econ. Sci. Technol. 2018, 29, 82–84. [Google Scholar]
- Ma, H.J.; Mou, M.M.; Pu, D.C.; Lin, S.M.; Chen, Y.J.; Luo, L. Effect of dietary starch level on growth, metabolism enzyme and oxidative status of juvenile largemouth bass, Micropterus salmoides. Aquaculture 2019, 498, 482–487. [Google Scholar] [CrossRef]
- Ren, M.; Habte-Tsion, H.M.; Xie, J.; Liu, B.; Zhou, Q.; Ge, X.; Pan, L.; Chen, R. Effects of dietary carbohydrate source on growth performance, diet digestibility and liver glucose enzyme activity in blunt snout bream, Megalobrama amblycephala. Aquaculture 2015, 438, 75–81. [Google Scholar] [CrossRef]
- Jobling, M. National Research Council (NRC): Nutrient requirements of fish and shrimp. Aquac. Int. 2012, 20, 601–602. [Google Scholar] [CrossRef]
- Zhang, H.D.; Ma, H.J. Research progress on nutrient requirement and feed of mandarin fish (Siniperca chuatsi). Fish. Sci. Technol. Inform. 2024, 51, 258–263+268. [Google Scholar]
- Xing, S.; Sun, R.; Ma, J.; Wei, H.; Xu, W.; Zhou, Y.; Zhang, W.; Mai, C. Effects of dietary carbohydrate on growth performance and glycometabolism of large yellow croaker Larimichthys crocea. Acta Hydrobiol. Sin. 2017, 41, 265–276. [Google Scholar]
- Xu, X.; Liu, W.; Wen, H.; Jiang, M.; Wu, F. Effect of high-carbohydrate diet on growth performance, feed utilization, glucose and lipid metabolism of GIFT Oreochromis niloticus. S. China Fish. Sci. 2017, 13, 94–102. [Google Scholar]
- Liu, H.; Yang, J.; Dong, X.; Tan, B.; Yang, Q.; Chi, S.; Liu, H.; Zhang, S.; Yang, Y. Effects of dietary carbohydrate level on growth performance, body composition, plasma biochemical parameters and intestinal and liver enzyme activities of orange-spotted grouper (Epineohelus coioides). Chin. J. Anim. Nutr. 2020, 32, 357–371. [Google Scholar]
- Luo, L.; Liu, S.; Ou, Z.; Yuan, Z. Effects of carbohydrate level of in feed on growth, antioxidant capacity and muscle composition of Crucian carp. Feed Res. 2021, 44, 55–59. [Google Scholar]
- Liang, X.; Li, J. Nutritional requirements and feed development technology of Siniperca chuatsi. Sci. Fish Farming 2020, 7, 66–67. [Google Scholar]
- Guo, J.-l.; Zhou, Y.-l.; Zhao, H.; Chen, W.-Y.; Chen, Y.-J.; Lin, S.-M. Effect of dietary lipid level on growth, lipid metabolism and oxidative status of largemouth bass, Micropterus salmoides. Aquaculture 2019, 506, 394–400. [Google Scholar] [CrossRef]
- Xie, D.; Yang, L.; Yu, R.; Chen, F.; Lu, R.; Qin, C.; Nie, G. Effects of dietary carbohydrate and lipid levels on growth and hepatic lipid deposition of juvenile tilapia, Oreochromis niloticus. Aquaculture 2017, 479, 696–703. [Google Scholar] [CrossRef]
- Gonçalves, A.F.N.; Ha, N.; Biller-Takahashi, J.D.; Gimbo, R.Y.; Urbinati, E.C.; Takahashi, L.S. Dietary protein-to-carbohydrate ratios affect metabolism and growth of juvenile surubim cachara (Pseudoplatystoma reticulatum). Aquac. Int. 2018, 26, 349–362. [Google Scholar] [CrossRef]
- Paulino, R.R.; Fortes-Silva, R.; Prieto-Guevara, M.J.; Rodrigues, E.J.D.; Costa, L.S.; Alves, A.P.d.C.; Oliva Teles, A.; Rosa, P.V. Dietary lipid level and source affect metabolic responses in hybrid catfish (Pseudoplatystoma reticulatum × Leiarius marmoratus). Aquac. Res. 2020, 51, 1567–1583. [Google Scholar] [CrossRef]
- Li, S.; Li, Z.; Chen, N.; Jin, P.; Zhang, J. Dietary lipid and carbohydrate interactions: Implications on growth performance, feed utilization and non-specific immunity in hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). Aquaculture 2019, 498, 568–577. [Google Scholar] [CrossRef]
- Lee, S.-M.; Lee, J.H. Effect of dietary glucose, dextrin and starch on growth and body composition of juvenile starry flounder Platichthys stellatus. Fish. Sci. 2004, 70, 53–58. [Google Scholar] [CrossRef]
- Karaca, M.; Martin-Levilain, J.; Grimaldi, M.; Li, L.; Dizin, E.; Emre, Y.; Maechler, P. Liver glutamate dehydrogenase controls whole-body energy partitioning through amino acid-derived gluconeogenesis and ammonia homeostasis. Diabetes 2018, 67, 1949–1961. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, G.; Lin, Z.; Yao, H.; Dong, Y. The razor clam Sinonovacula constricta uses the strategy of conversion of toxic ammonia to glutamine in response to high environmental ammonia exposure. Mol. Biol. Rep. 2020, 47, 9579–9593. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Wang, M.; Zhong, L.; Li, L.; Yuan, Z.; Zou, S. Amino acid metabolism dysregulation associated with inflammation and insulin resistance in HIV-infected individuals with metabolic disorders. Amino Acids 2023, 55, 1545–1555. [Google Scholar] [CrossRef]
- Yang, Y.; Meng, F.-X.; Wang, R.-X. On the Detoxification metabolic pathways of Boleophthalmus pectinirostris exposed to acute ammonia-nitrogen stress. Biotechnol. Bull. 2019, 35, 72–81. [Google Scholar]
- Tu, H.; Zhao, J.; Zhao, Y.; Cao, X. Study on the timing sequence of two pathway of Oreochromis niloticus ammonia metabolism under the stress of carbonate alkalinity. Freshw. Fish. 2018, 48, 25–32. [Google Scholar]
- Tao, S.; Li, X.; Wang, J.; Bai, Y.; Wang, J.; Yang, Y.; Zhao, Z. Examination of the relationship of carbonate alkalinity stress and ammonia metabolism disorder-mediated apoptosis in the Chinese mitten crab, Eriocheir sinensis: Potential involvement of the ROS/MAPK signaling pathway. Aquaculture 2024, 579, 740179. [Google Scholar] [CrossRef]
- Yang, R.; Liu, X.; Liu, Y.; Tian, Q.; Wang, Z.; Zhu, D.; Qian, Z.; Yi, Y.; Hu, J.; Li, Y.; et al. Dissolved oxygen and ammonia affect ammonia production via GDH/AMPK signaling pathway and alter flesh quality in Chinese perch (Siniperca chuatsi). Fish Physiol. Biochem. 2024, 50, 1237–1249. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Liang, X.F.; He, S.; Tang, S.; Li, L.; Chen, X. mTOR-Mediated protein synthesis by inhibiting protein catabolism in Chinese perch (Siniperca chuatsi). Biochem. Biophys. Res. Commun. 2020, 533, 23–29. [Google Scholar] [CrossRef]
- Gaspar, C.; Silva-Marrero, J.I.; Fàbregas, A.; Miñarro, M.; Ticó, J.R.; Baanante, I.V.; Metón, I. Administration of chitosan-tripolyphosphate-DNA nanoparticles to knockdown glutamate dehydrogenase expression impairs transdeamination and gluconeogenesis in the liver. J. Biotechnol. 2018, 286, 5–13. [Google Scholar] [CrossRef]
- Xu, Z.; Cao, J.; Qin, X.; Qiu, W.; Mei, J.; Xie, J. Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and tissue structure in fish exposed to ammonia nitrogen: A review. Animals 2021, 11, 3304. [Google Scholar] [CrossRef]
- Rubino, J.G.; Wilson, J.M.; Wood, C.M. An in vitro analysis of intestinal ammonia transport in fasted and fed freshwater rainbow trout: Roles of NKCC, K+ channels, and Na+, K+ ATPase. J. Comp. Physiol. B 2019, 189, 549–566. [Google Scholar] [CrossRef]
- Nawata, C.M.; Hirose, S.; Nakada, T.; Wood, C.M.; Kato, A. Rh glycoprotein expression is modulated in pufferfish (Takifugu rubripes) during high environmental ammonia exposure. J. Exp. Biol. 2010, 213, 3150–3160. [Google Scholar] [CrossRef]
- Hung, C.C.; Nawata, C.M.; Wood, C.M.; Wright, P.A. Rhesus glycoprotein and urea transporter genes are expressed in early stages of development of rainbow trout (Oncorhynchus mykiss). J. Exp. Zool. A Ecol. Genet. Physiol. 2008, 309, 262–268. [Google Scholar] [CrossRef]
- Massa, M.L.; Gagliardino, J.J.; Francini, F. Liver Glucokinase: An overview on the regulatorymechanisms of its activity. IUBMB Life 2011, 63, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Enes, P.; Panserat, S.; Kaushik, S.; Oliva-Teles, A. Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol. Biochem. 2009, 35, 519–539. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Salazar, M.; Bureau, W.; Panserat, S.; Corraze, G.; Bureau, D.P. Effect of DHA supplementation on digestible starch utilization by rainbow trout. Brit. J. Nutr. 2006, 95, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Borrebaek, B.; Christophersen, B. Hepatic glucose phosphorylating activities in perch (Perca fluviatilis) after different dietary treatments. Comp. Biochem. Physiol. B 2000, 125, 387–393. [Google Scholar] [CrossRef]
- Li, S.; Liu, H.; Tan, B.; Dong, X.; Yang, Q.; Chi, S.; Zhang, S. Effects of dietary carbohydrate levels on the gene expression and the activity of PEPCK in marine fishes with different food habits. Acta Hydrobiol. Sin. 2015, 39, 80–89. [Google Scholar]
- Jeon, Y.G.; Kim, Y.Y.; Lee, G.; Kim, J.B. Physiological and pathological roles of lipogenesis. Nat. Metab. 2023, 5, 735–759. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y. Research progress of AMPK and hepatic glucolipid metabolism. Chin. J. Mod. Appl. Pharm. 2017, 34, 1062–1067. [Google Scholar]
- Chotechuang, N.; Azzout-Marniche, D.; Bos, C.; Chaumontet, C.; Gausserès, N.; Steiler, T.; Gaudichon, C.; Tomé, D. mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat. Am. J. Physiol. Endocrinol. Metab. 2009, 297, 1313–1323. [Google Scholar] [CrossRef]
- Su, J.; Gong, Y.; Cao, S.; Lu, F.; Han, D.; Liu, H.; Jin, J.; Yang, Y.; Zhu, X.; Xie, S. Effects of dietary tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol. 2017, 69, 59–66. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Parameters | Control | HG1 | HG2 |
---|---|---|---|
SR (%) | 100.00 ± 0.00 | 100.00 ± 0.00 | 100.00 ± 0.00 |
IBW (g) | 39.12 ± 0.25 | 39.63 ± 0.51 | 39.51 ± 0.09 |
FBW (g) | 57.77 ± 0.27 a | 59.45 ± 0.47 b | 58.00 ± 0.22 a |
WGR (%) | 47.67 ± 0.26 a | 50.02 ± 0.91 b | 46.78 ± 0.22 a |
SGR (%·d−1) | 0.59 ± 0.01 a | 0.62 ± 0.01 b | 0.58 ± 0.01 a |
FR (%·d−1) | 0.99 ± 0.01 | 0.99 ± 0.01 | 0.99 ± 0.02 |
FCR | 1.45 ± 0.02 b | 1.38 ± 0.03 a | 1.47 ± 0.01 b |
PER | 1.41 ± 0.01 a | 1.46 ± 0.02 b | 1.39 ± 0.01 a |
PR (%) | 22.05 ± 0.22 a | 23.27 ± 0.25 b | 21.91 ± 0.12 a |
Parameters | Control | HG1 | HG2 |
---|---|---|---|
HSI (%) | 1.59 ± 0.04 | 1.84 ± 0.12 | 1.83 ± 0.17 |
VSI (%) | 7.10 ± 0.13 a | 7.92 ± 0.28 ab | 8.03 ± 0.36 b |
CF (g/cm3) | 2.19 ± 0.03 b | 2.19 ± 0.02 b | 2.08 ± 0.03 a |
Parameters | Control | HG1 | HG2 |
---|---|---|---|
Crude lipid (%) | 4.86 ± 0.14 | 4.62 ± 0.04 | 4.74 ± 0.04 |
Crude protein (%) | 15.62 ± 0.22 | 15.71 ± 0.11 | 15.81 ± 0.11 |
Ash (%) | 5.13 ± 0.03 | 5.11 ± 0.17 | 5.37 ± 0.08 |
Moisture (%) | 74.84 ± 0.40 | 74.95 ± 0.22 | 74.58 ± 0.34 |
Ingredients | Control | HG1 | HG2 |
---|---|---|---|
Fish meal 1 | 55 | 55 | 55 |
Casein | 5 | 5 | 5 |
Fermented soybean meal | 6 | 6 | 7 |
Poultry by-product meal | 5 | 5 | 4 |
Gelatin | 3 | 3 | 3 |
Corn starch | 6 | 10 | 12 |
Fish oil | 5 | 1.5 | 0.5 |
Soybean oil | 5 | 1.5 | 0.5 |
Ca(H2PO4)2 | 2 | 2 | 2 |
Choline chloride | 0.5 | 0.5 | 0.5 |
Premix 2 | 4 | 4 | 4 |
DMPT (C5H11SO2Br) | 0.5 | 0.5 | 0.5 |
Bile acids | 0.04 | 0.04 | 0.04 |
Carboxymethyl cellulose | 1 | 1 | 1 |
Gum tragacanth | 1 | 2 | 2 |
Microcrystalline cellulose | 0.96 | 2.96 | 2.96 |
Total | 100 | 100 | 100 |
Nutrient composition | |||
Crude protein (%DM) | 49.73 | 49.11 | 49.24 |
Crude lipid (%DM) | 15.79 | 8.93 | 6.91 |
Carbohydrate (%DM) | 8.13 | 12.03 | 14.15 |
Ash (%DM) | 12.47 | 12.30 | 12.43 |
Gross energy (KJ/g) | 19.36 | 17.20 | 16.81 |
Primer | Primer Sequence (5′-3′) | Tm (°C) |
---|---|---|
sc-rpl13a-F | CACCCTATGACAAGAGGAAGC | 59 |
sc-rpl13a-R | TGTGCCAGACGCCCAAG | |
sc-gs-F | TGGATTGATGGAACTGGAGAG | 58 |
sc-gs-R | CCACTCAGGCAGGTCTTC | |
sc-gdh-F | GACGACGACCCCAACTTCT | 58 |
sc-gdh-R | GACCCGCTTCCTCTTCTGC | |
sc-ampd-F | CATTTCCTTCCCGTGTT | 58 |
sc-ampd-R | TCTGTCTGCGGAGTTGGT | |
sc-rhag-F | TGATTGGATTAGTGGCTGGCATA | 58 |
sc-rhag-R | GTGGACACCGCAGGTATCTT | |
sc-rhbg-F | AAGACGCAGCAACCAACAT | 58 |
sc-rhbg-R | CCAAGGCACCGAAGAGGAT | |
sc-rhcg-F | ACATCCAGAACTCCACTCTT | 60 |
sc-rhcg-R | AGATGACACCACAGCAGAA | |
sc-gk-F | AAGGTGGAGACCAAGAAC | 58 |
sc-gk-R | TGCCCTTGTCAATGTCC | |
sc-pk-F | CGCCCTCGCTGTCCTATTA | 57 |
sc-pk-R | TGCCGAAGTTGACCCTGTTG | |
sc-pparα-F | AGCAGAGAAGGACGTCAG | 58 |
sc-pparα-R | TTCCTTCTCGGCATGCTG | |
sc-srebp1-F | CTCCCTCCTTTCTGTCGGCTC | 58 |
sc-srebp1-R | TCATTTGCTGGCAGTCGTGG | |
sc-lkb1-F | GACGGGGCACTTAAAATC | 58 |
sc-lkb1-R | GTGTTACTCCAGCAGACCAAA | |
sc-ampk-F | GGGATGCAAACCAAGATG | 54 |
sc-ampk-R | ACAGACCCAGAGCGGAGA | |
sc-eef2-F | TCTGCTGTTATCCCGCCT | 58 |
sc-eef2-R | TCGCCATCACTCCTCCTCT | |
Sc-s6k1-F | CCTTCAAACCTTTCCTGCAATC | 58 |
Sc-s6k1-R | ATTTAACTGGGCTGAGAGGTG | |
sc-mtor-F | GCATCAACGAGAGCACCA | 55 |
sc-mtor-R | CGCTTCAAAATTCATAACCG | |
sc-mafbx-F | ACCGCATGGAGAACATCAT | 58 |
sc-mafbx-R | GCAGGTCAGTCAGAGTCAT | |
Sc-murf1-F | AGACACAGACAGACTTACGGAGAG | 58 |
Sc-murf1-R | AGAGGACGCACCACCTGAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Fang, L.; Zou, Z.; Su, J.; Liu, L. Effects of Dietary Carbohydrate Levels on Growth and Ammonia Excretion in Chinese Perch (Siniperca chuatsi) at Low Water Temperatures. Int. J. Mol. Sci. 2025, 26, 4638. https://doi.org/10.3390/ijms26104638
Zhang Y, Fang L, Zou Z, Su J, Liu L. Effects of Dietary Carbohydrate Levels on Growth and Ammonia Excretion in Chinese Perch (Siniperca chuatsi) at Low Water Temperatures. International Journal of Molecular Sciences. 2025; 26(10):4638. https://doi.org/10.3390/ijms26104638
Chicago/Turabian StyleZhang, Yufei, Lingchen Fang, Zhiwei Zou, Jianmei Su, and Liwei Liu. 2025. "Effects of Dietary Carbohydrate Levels on Growth and Ammonia Excretion in Chinese Perch (Siniperca chuatsi) at Low Water Temperatures" International Journal of Molecular Sciences 26, no. 10: 4638. https://doi.org/10.3390/ijms26104638
APA StyleZhang, Y., Fang, L., Zou, Z., Su, J., & Liu, L. (2025). Effects of Dietary Carbohydrate Levels on Growth and Ammonia Excretion in Chinese Perch (Siniperca chuatsi) at Low Water Temperatures. International Journal of Molecular Sciences, 26(10), 4638. https://doi.org/10.3390/ijms26104638