The Association Between Hematological Profiles and Whole-Blood Transcriptome Genes Identified Using Quantitative Analysis with Average Daily Gain and Feed Efficiency in Forage-Fed Beef Heifers †
Abstract
:1. Introduction
2. Results
2.1. Feed Efficiency Phenotypes and Hematology Parameters
2.2. Phenotype Associations with Hematology Parameters
2.3. Differentially Expressed Genes for ADG and ADFI
3. Discussion
4. Materials and Methods
4.1. Institutional Animal Care and Use
4.2. Animal Population and Sampling
4.3. Hematology Parameter Measurement
4.4. Phenotypic Association with Hematology Parameters
4.5. RNA Isolation and RNA-Seq Library Preparation
4.6. RNA-Seq Read Processing
4.7. Differential Gene Expression Analysis
4.8. Gene Ontology and Pathway Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heinrichs, A.J.; Jones, C.M.; Gray, S.M.; Heinrichs, P.A.; Cornelisse, S.A.; Goodling, R.C. Identifying efficient dairy heifer producers using production costs and data envelopment analysis. J. Dairy Sci. 2013, 96, 7355–7362. [Google Scholar] [CrossRef]
- Freetly, H.C.; Kuehn, L.A.; Thallman, R.M.; Snelling, W.M. Heritability and genetic correlations of feed intake, body weight gain, residual gain, and residual feed intake of beef cattle as heifers and cows. J. Anim. Sci. 2020, 98, skz394. [Google Scholar] [CrossRef] [PubMed]
- Messad, F.; Louveau, I.; Renaudeau, D.; Gilbert, H.; Gondret, F. Analysis of merged whole blood transcriptomic datasets to identify circulating molecular biomarkers of feed efficiency in growing pigs. BMC Genom. 2021, 22, 501. [Google Scholar] [CrossRef] [PubMed]
- Jégou, M.; Gondret, F.; Vincent, A.; Tréfeu, C.; Gilbert, H.; Louveau, I. Whole Blood Transcriptomics Is Relevant to Identify Molecular Changes in Response to Genetic Selection for Feed Efficiency and Nutritional Status in the Pig. PLoS ONE 2016, 11, e0146550. [Google Scholar] [CrossRef]
- Taiwo, G.A.; Idowu, M.; Denvir, J.; Cervantes, A.P.; Ogunade, I.M. Identification of key pathways associated with residual feed intake of beef cattle based on whole blood transcriptome data analyzed using gene set enrichment analysis. Front. Vet. Sci. 2022, 9, 848027. [Google Scholar] [CrossRef] [PubMed]
- Lindholm-Perry, A.K.; Kuehn, L.A.; Wells, J.E.; Rempel, L.A.; Chitko-McKown, C.G.; Keel, B.N.; Oliver, W.T. Red blood cell hematology parameters as potential indicators of feed efficiency in pigs. Transl. Anim. Sci. 2021, 5, txab219. [Google Scholar] [CrossRef]
- Kern, R.J.; Lindholm-Perry, A.K.; Freetly, H.C.; Snelling, W.M.; Kern, J.W.; Keele, J.W.; Miles, J.R.; Foote, A.P.; Oliver, W.T.; Kuehn, L.A.; et al. Transcriptome differences in the rumen of beef steers with variation in feed intake and gain. Gene 2016, 586, 12–26. [Google Scholar] [CrossRef]
- Lindholm-Perry, A.K.; Kern, R.J.; Keel, B.N.; Snelling, W.M.; Kuehn, L.A.; Freetly, H.C. Profile of the Spleen Transcriptome in Beef Steers with Variation in Gain and Feed Intake. Front. Genet. 2016, 7, 127. [Google Scholar] [CrossRef]
- Lindholm-Perry, A.K.; Freetly, H.C.; Oliver, W.T.; Rempel, L.A.; Keel, B.N. Genes associated with body weight gain and feed intake identified by meta-analysis of the mesenteric fat from crossbred beef steers. PLoS ONE 2020, 15, e0227154. [Google Scholar] [CrossRef]
- Zarek, C.M.; Lindholm-Perry, A.K.; Kuehn, L.A.; Freetly, H.C. Differential expression of genes related to gain and intake in the liver of beef cattle. BMC Res. Notes 2017, 10, 1. [Google Scholar] [CrossRef]
- Keel, B.N.; Zarek, C.M.; Keele, J.W.; Kuehn, L.A.; Snelling, W.M.; Oliver, W.T.; Freetly, H.C.; Lindholm-Perry, A.K. RNA-Seq Meta-analysis identifies genes in skeletal muscle associated with gain and intake across a multi-season study of crossbred beef steers. BMC Genom. 2018, 19, 430. [Google Scholar] [CrossRef]
- Basu, M.; Wang, K.; Ruppin, E.; Hannenhalli, S. Predicting tissue-specific gene expression from whole blood transcriptome. Sci. Adv. 2021, 7, eabd6991. [Google Scholar] [CrossRef] [PubMed]
- Mpetile, Z.; Young, J.M.; Gabler, N.K.; Dekkers, J.C.M.; Tuggle, C.K. Assessing peripheral blood cell profile of Yorkshire pigs divergently selected for residual feed intake. J. Anim. Sci. 2015, 93, 892–899. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Nguyen, Y.T.; Nettleton, D.; Dekkers, J.C.M.; Tuggle, C.K. Post-weaning blood transcriptomic differences between Yorkshire pigs divergently selected for residual feed intake. BMC Genom. 2016, 17, 73. [Google Scholar] [CrossRef] [PubMed]
- Cônsolo, N.R.B.; Munro, J.C.; Bourgon, S.L.; Karrow, N.A.; Fredeen, A.H.; Martell, J.E.; Montanholi, Y.R. Associations of blood analysis with feed efficiency and developmental stage in grass-fed beef heifers. Animals 2018, 8, 133. [Google Scholar] [CrossRef]
- Tang, S.; Buchman, A.S.; Wang, Y.; Avey, D.; Xu, J.; Tasaki, S.; Bennett, D.A.; Zheng, Q.; Yang, J. Differential gene expression analysis based on linear mixed model corrects false positive inflation for studying quantitative traits. Nat. Sci. Rep. 2023, 13, 16570. [Google Scholar] [CrossRef]
- Fan, H.; Hegde, P.S. The transcriptome in blood: Challenges and solutions for robust expression profiling. Curr. Mol. Methods 2005, 5, 3–10. [Google Scholar] [CrossRef]
- Debey, S.; Schoenbeck, U.; Hellmich, M.; Gathof, B.S.; Pillai, R.; Zander, T.; Schultze, J.L. Comparison of different isolation techniques prior to gene expression profiling of blood derived cells: Impact on physiological responses, on overall expression and the role of different cells. Pharmacogenom. J. 2004, 4, 193–207. [Google Scholar] [CrossRef]
- Jang, J.S.; Berg, B.; Holicky, E.; Eckloff, B.; Mutawe, M.; Carrasquillo, M.M.; Ertekin-Taner, N.; Cuninngham, J.M. Comparative evaluation for the globin depletion methods for mRNA sequencing using the whole blood-derived total RNAs. BMC Genom. 2020, 21, 890. [Google Scholar] [CrossRef]
- Harrington, C.A.; Fei, S.S.; Minnier, J.; Carbone, L.; Searles, R.; Davis, B.A.; Ogle, K.; Planck, S.R.; Rosenbaum, J.T.; Choi, D. RNA-Seq of human whole blood: Evaluation of globin RNA depletion on Ribo-Zero library method. Nat. Sci. Rep. 2020, 10, 6271. [Google Scholar] [CrossRef]
- Sheerin, D.; Lakay, F.; Esmail, H.; Kinnear, C.; Sansom, B.; Glanzmann, B.; Wilkinson, R.J.; Ritchie, M.E.; Coussens, A.K. Identification and control for the effects of bioinformatic globin depletion on human RNA-seq differential expression analysis. Nat. Sci. Rep. 2023, 13, 1859. [Google Scholar] [CrossRef] [PubMed]
- Damasius, W.; Weikard, R.; Hadlich, F.; Muller, K.E.; Kuhn, C. Monitoring the immune response to vaccination with an inactivated vaccine associated to bovine neonatal pancytopenia by deep sequencing transcriptome analysis in cattle. Vet. Res. 2013, 44, 93. [Google Scholar] [CrossRef] [PubMed]
- Correia, C.N.; McLoughlin, K.E.; Nalpas, N.C.; Magee, D.A.; Browne, J.A.; Rue-Albrecht, K.; Gordon, S.V.; MacHugh, D.E. RNA Sequencing (RNA-Seq reveals extremely low levels of reticulocyte-derived globin gene transcripts in peripheral blood from horses (Equus caballus) and cattle (Bos taurus). Front. Genet. 2018, 9, 278. [Google Scholar] [CrossRef]
- Cobos, F.A.; Alquicira-Hernandez, J.; Powell, J.E.; Mestdagh, P.; De Preter, K. Benchmarking cell type deconvolution pipelines for transcriptomic data. Nat. Commun. 2020, 11, 5650. [Google Scholar] [CrossRef] [PubMed]
- Foote, A.P.; Hales, K.E.; Tait, R.G.; Berry, E.D.; Lents, C.A.; Wells, J.E.; Lindholm-Perry, A.K.; Freetly, H.C. Relationship of glucocorticoids and hematological measures with feed intake, growth, and efficiency of finishing beef cattle. J. Anim. Sci. 2016, 94, 275–283. [Google Scholar] [CrossRef]
- Montanholi, Y.R.; Swanson, K.C.; Schenkel, F.S.; McBride, B.W.; Caldwell, T.R.; Miller, S.P. On the determination of residual feed intake and associations of infrared thermography with efficiency and ultrasound traits in beef bulls. Livest. Sci. 2009, 125, 22–30. [Google Scholar] [CrossRef]
- Richardson, E.C.; Herd, R.M.; Oddy, V.H. Variation in body composition, activity and other physiological processes and their associations with feed efficiency. In Feed Efficiency in Beef Cattle, Proceedings of the Feed Efficiency Workshop; Archer, J.A., Herd, R.M., Arthur, P.F., Eds.; CRC for Cattle and Beef Quality: Armidale, Australia, 2001; pp. 46–50. [Google Scholar]
- Neufeld, L.M.; Larson, L.M.; Kurpad, A.; Mburu, S.; Martorell, R.; Brown, K.H. Hemoglobin concentration and anemia diagnosis in venous and capillary blood: Biological basis and policy implications. Ann. N. Y. Acad. Sci. 2019, 1450, 172–189. [Google Scholar] [CrossRef]
- Rincon-Delgado, R.M.; Gutierrez-Banuelos, H.; Perez-Vszquez, E.D.; Muro Reyes, A.; Diaz-Garcia, L.H.; Banuelos-Valenzuela, R.; Gutierrez-Pina, F.J.; Medina-Flores, C.A.; Escareno-Sanchez, L.M.; Aguilera-Soto, J.I.; et al. Relationship of residual feed intake on specific hematological and biochemical parameters in Rambouillet sheep. Agric. J. 2011, 6, 87–91. [Google Scholar]
- Quintero-Gutiérrez, A.G.; González-Rosendo, G.; Sánchez-Muñoz, J.; Polo-Pozo, J.; Rodríguez-Jerez, J.J. Bioavailability of heme iron in biscuit filling using piglets as an animal model for humans. Int. J. Biol. Sci. 2008, 4, 58–62. [Google Scholar] [CrossRef]
- Fonseca, L.D.; Eler, J.P.; Pereira, M.A.; Rosa, A.F.; Alexandre, P.A.; Moncau, C.T.; Salvato, F.; Rosa-Fernandes, L.; Palmisano, G.; Ferraz, J.B.S.; et al. Liver proteomics unravel the metabolic pathways related to Feed Efficiency in beef cattle. Sci. Rep. 2019, 9, 5364. [Google Scholar] [CrossRef]
- Banerjee, P.; Carmelo, V.A.O.; Kadarmideen, H.N. Genome-wide epistatic interaction networks affecting feed efficiency in Duroc and Landrace pigs. Front. Genet. 2020, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.F.; Wang, T.; Regmi, N. Lysine nutrition in swine and the related monogastric animals: Muscle protein biosynthesis and beyond. Springerplus 2015, 4, 147. [Google Scholar] [CrossRef]
- Cardoso, T.F.; Bruscadin, J.J.; Afonso, J.; Petrini, J.; Andrade, B.G.N.; de Oliveira, P.S.N.; Malheiros, J.M.; Rocha, M.I.P.; Zerlotini, A.; Ferraz, J.B.S.; et al. EEF1A1 transcription cofactor gene polymorphism is associated with muscle gene expression and residual feed intake in Nelore cattle. Mamm. Genome 2022, 33, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Tizioto, P.C.; Coutinho, L.L.; Decker, J.E.; Schnabel, R.D.; Rosa, K.O.; Oliveira, P.S.; Souza, M.M.; Mourão, G.B.; Tullio, R.R.; Chaves, A.S.; et al. Global liver gene expression differences in Nelore steers with diverge.nt residual feed intake phenotypes. BMC Genom. 2015, 16, 242. [Google Scholar] [CrossRef] [PubMed]
- Tizioto, P.C.; Coutinho, L.L.; Oliveira, P.S.; Cesar, A.S.; Diniz, W.J.; Lima, A.O.; Rocha, M.I.; Decker, J.E.; Schnabel, R.D.; Mourão, G.B.; et al. Gene expression differences in Longissimus muscle of Nelore steers genetically divergent for residual feed intake. Sci. Rep. 2016, 6, 39493. [Google Scholar] [CrossRef]
- Khansefid, M.; Millen, C.A.; Chen, Y.; Pryce, J.E.; Chamberlain, A.J.; Vander Jagt, C.J.; Gondro, C.; Goddard, M.E. Gene expression analysis of blood, liver, and muscle in cattle divergently selected for high and low residual feed intake. J. Anim. Sci. 2017, 95, 4764–4775. [Google Scholar] [CrossRef]
- Juigné, C.; Becker, E.; Gondret, F. Small networks of expressed genes in the whole blood and relationships to profiles in circulating metabolites provide insights in inter-individual variability of feed efficiency in growing pigs. BMC Genom. 2023, 24, 647. [Google Scholar] [CrossRef]
- Kern-Lunbery, R.J.; Rathert-Williams, A.R.; Foote, A.P.; Cunninghan-Hollinger, H.C.; Kuehn, L.A.; Meyer, A.M.; Lindholm-Perry, A.K. Genes involved in the cholecystokinin receptor signaling map were differentially expressed in the jejunum of steers with variation in residual feed intake. Vet. Anim. Sci. 2024, 24, 100357. [Google Scholar] [CrossRef]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package Version 1.0-6. 2014. Available online: http://CRAN.R-project.org/package=lme4 (accessed on 15 January 2024).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Meth. 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Love, M.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Blighe, K.; Lun, A. PCAtools: PCAtools: Everything Principal Components Analysis. R Package Version 2.18.0. 2024. Available online: https://github.com/kevinblighe/PCAtools (accessed on 23 November 2023).
Phenotype 1 | Average (SD) | Minimum | Maximum |
---|---|---|---|
Weight (d 0) | 283.0 (27.3) | 228.6 | 356.5 |
Weight (d 21) | 306.5 (26.7) | 250.4 | 374.7 |
Weight (d 42) | 315.2 (29.2) | 259.5 | 404.6 |
Weight (d 63) | 333.5 (32.1) | 270.3 | 424.6 |
Weight (d 84) | 347.4 (34.2) | 286.7 | 436.4 |
ADG | 0.8 (0.2) | 0.3 | 1.4 |
ADFI | 7.5 (1.2) | 5.1 | 11.0 |
G:F | 0.11 (0.03) | 0.05 | 0.16 |
Parameter 1 | Average (SD) | Minimum | Maximum |
---|---|---|---|
WBC, 109/L | 9.56 (2.53) | 5.64 | 20.28 |
NEU, 109/L | 3.55 (1.75) | 1.32 | 11.46 |
LYM, 109/L | 5.24 (1.11) | 3.17 | 7.73 |
MONO, 109/L | 0.57 (0.19) | 0.19 | 1.18 |
EOS, 109/L | 0.11 (0.04) | 0.05 | 0.26 |
BAS, 109/L | 0.08 (0.03) | 0.03 | 0.20 |
RBC, 1012/L | 9.21 (1.08) | 6.61 | 11.74 |
HGB, g/dL | 12.57 (1.19) | 10.10 | 16.60 |
HCT % | 37.31 (3.61) | 29.40 | 48.30 |
MCV, fL | 40.80 (3.74) | 34.30 | 52.40 |
MCH, pg | 13.73 (1.26) | 11.60 | 17.70 |
MCHC, g/dL | 33.69 (0.76) | 31.90 | 34.80 |
RDW, % | 23.18 (1.38) | 20.60 | 27.60 |
PLT, 109/L | 641.77 (146.08) | 350.00 | 1016.00 |
MPV, fL | 4.80 (0.35) | 4.10 | 5.70 |
Trait | Hematology Parameter * | Reg † | SE | R2 | p ‡ |
---|---|---|---|---|---|
ADG | WBC | −0.0273 | 0.0141 | 0.2037 | 0.0526 |
NEU | −0.0210 | 0.0212 | 0.1782 | 0.3208 | |
LYM | −0.0773 | 0.0305 | 0.2526 | 0.0112 | |
MONO | −0.1107 | 0.1885 | 0.1950 | 0.5571 | |
EOS | −0.5944 | 0.8276 | 0.1859 | 0.4727 | |
BAS | −1.9405 | 1.0354 | 0.2128 | 0.0609 | |
RBC | −0.0619 | 0.0361 | 0.2384 | 0.0864 | |
HGB | −0.0115 | 0.0289 | 0.1967 | 0.6914 | |
HCT | −0.0087 | 0.0096 | 0.2142 | 0.3642 | |
MCV | 0.0113 | 0.0104 | 0.1947 | 0.2779 | |
MCH | 0.0479 | 0.0291 | 0.2151 | 0.0997 | |
MCHC | 0.1206 | 0.0439 | 0.3107 | 0.0060 | |
RDW | 3.4880 | 2.6008 | 0.1944 | 0.1799 | |
PLT | −0.0001 | 0.0002 | 0.1741 | 0.5418 | |
MPV | 0.1163 | 0.1090 | 0.2233 | 0.2860 | |
ADFI | WBC | 0.0081 | 0.0708 | 0.2217 | 0.9085 |
NEU | 0.0109 | 0.1027 | 0.2200 | 0.9156 | |
LYM | 0.0100 | 0.1576 | 0.2135 | 0.9496 | |
MONO | 0.2004 | 0.9160 | 0.2205 | 0.8268 | |
EOS | 0.4040 | 4.0199 | 0.2194 | 0.9200 | |
BAS | −3.1918 | 5.0772 | 0.2204 | 0.5296 | |
RBC | −0.3916 | 0.1719 | 0.2885 | 0.0227 | |
HGB | −0.1979 | 0.1368 | 0.2527 | 0.1480 | |
HCT | −0.0847 | 0.0451 | 0.2760 | 0.0602 | |
MCV | 0.0327 | 0.0512 | 0.2215 | 0.5227 | |
MCH | 0.1614 | 0.1430 | 0.2328 | 0.2592 | |
MCHC | 0.5074 | 0.2141 | 0.3062 | 0.0178 | |
RDW | 9.9999 | 12.6317 | 0.2202 | 0.4286 | |
PLT | 0.0006 | 0.0011 | 0.2303 | 0.6150 | |
MPV | 0.1415 | 0.5340 | 0.2213 | 0.7910 | |
G:F | WBC | −0.0035 | 0.0014 | 0.1849 | 0.0134 |
NEU | −0.0030 | 0.0022 | 0.1214 | 0.1642 | |
LYM | −0.0010 | 0.0030 | 0.2511 | 0.0014 | |
MONO | −0.0152 | 0.0191 | 0.1349 | 0.4275 | |
EOS | −0.0978 | 0.0837 | 0.1096 | 0.2426 | |
BAS | −0.2222 | 0.1057 | 0.1570 | 0.0355 | |
RBC | −0.0033 | 0.0037 | 0.1293 | 0.3835 | |
HGB | 0.0016 | 0.0030 | 0.1096 | 0.5976 | |
HCT | 0.0002 | 0.0010 | 0.1084 | 0.8606 | |
MCV | 0.0014 | 0.0010 | 0.1236 | 0.1932 | |
MCH | 0.0049 | 0.0030 | 0.1392 | 0.0958 | |
MCHC | 0.0086 | 0.0048 | 0.1755 | 0.0715 | |
RDW | 0.2520 | 0.2712 | 0.1194 | 0.3527 | |
PLT | −2.8 × 10−5 | 2.3 × 10−5 | 0.1122 | 0.2173 | |
MPV | 0.0150 | 0.0111 | 0.1880 | 0.1764 |
Phenotype | Gene | Reg † | Nominal p | FDR-Adjusted p |
---|---|---|---|---|
ADG | FAH | −0.5625 | 3.54 × 10−6 | 0.0543 |
LOC104972586 | −0.5400 | 1.02 × 10−5 | 0.0778 | |
COL1A2 | 0.5281 | 1.72 × 10−5 | 0.0879 | |
G:F | COL1A2 | 0.5763 | 1.78 × 10−6 | 0.0273 |
B9D1 | 0.5456 | 7.85 × 10−6 | 0.0601 | |
CCDC151 | 0.5267 | 1.82 × 10−5 | 0.0611 | |
SMARCA2 | −0.5167 | 2.79 × 10−5 | 0.0611 | |
NEK2 | 0.5214 | 2.29 × 10−5 | 0.0611 | |
CIAPIN1 | 0.5221 | 2.22 × 10−5 | 0.0611 | |
RGS10 | −0.5179 | 2.66 × 10−5 | 0.0611 | |
U2AF1 | 0.5084 | 3.94 × 10−5 | 0.0674 | |
XKR5 | 0.5083 | 3.96 × 10−5 | 0.0674 | |
NRP2 | −0.4924 | 7.46 × 10−5 | 0.0923 | |
ATP6V0E2 | 0.4846 | 0.0001 | 0.0923 | |
PLOD1 | −0.4869 | 9.20 × 10−5 | 0.0923 | |
UQCRFS1 | 0.4841 | 0.000102 | 0.0923 | |
LOC112443184 | 0.4904 | 8.06 × 10−5 | 0.0923 | |
BCL2A1 | 0.4902 | 8.11 × 10−5 | 0.0923 | |
FAH | −0.4897 | 8.27 × 10−5 | 0.0923 | |
LOC101904536 | −0.4889 | 8.53 × 10−5 | 0.0923 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindholm-Perry, A.K.; Bradford, H.L.; Foote, A.P.; Freetly, H.C.; Chitko-McKown, C.G.; Kuehn, L.A.; Keele, J.W.; Neville, B.W.; Oliver, W.T.; Keel, B.N. The Association Between Hematological Profiles and Whole-Blood Transcriptome Genes Identified Using Quantitative Analysis with Average Daily Gain and Feed Efficiency in Forage-Fed Beef Heifers. Int. J. Mol. Sci. 2025, 26, 4633. https://doi.org/10.3390/ijms26104633
Lindholm-Perry AK, Bradford HL, Foote AP, Freetly HC, Chitko-McKown CG, Kuehn LA, Keele JW, Neville BW, Oliver WT, Keel BN. The Association Between Hematological Profiles and Whole-Blood Transcriptome Genes Identified Using Quantitative Analysis with Average Daily Gain and Feed Efficiency in Forage-Fed Beef Heifers. International Journal of Molecular Sciences. 2025; 26(10):4633. https://doi.org/10.3390/ijms26104633
Chicago/Turabian StyleLindholm-Perry, Amanda K., Heather L. Bradford, Andrew P. Foote, Harvey C. Freetly, Carol G. Chitko-McKown, Larry A. Kuehn, John W. Keele, Bryan W. Neville, William T. Oliver, and Brittney N. Keel. 2025. "The Association Between Hematological Profiles and Whole-Blood Transcriptome Genes Identified Using Quantitative Analysis with Average Daily Gain and Feed Efficiency in Forage-Fed Beef Heifers" International Journal of Molecular Sciences 26, no. 10: 4633. https://doi.org/10.3390/ijms26104633
APA StyleLindholm-Perry, A. K., Bradford, H. L., Foote, A. P., Freetly, H. C., Chitko-McKown, C. G., Kuehn, L. A., Keele, J. W., Neville, B. W., Oliver, W. T., & Keel, B. N. (2025). The Association Between Hematological Profiles and Whole-Blood Transcriptome Genes Identified Using Quantitative Analysis with Average Daily Gain and Feed Efficiency in Forage-Fed Beef Heifers. International Journal of Molecular Sciences, 26(10), 4633. https://doi.org/10.3390/ijms26104633