Recent Studies and Prospects of Biologics in Allergic Rhinitis Treatment
Abstract
:1. Introduction
2. AR and Related Biologics
2.1. Allergic Rhinitis and Its Therapeutic Predicaments
2.2. AR Inflammatory Pathway Spectrum Targeted by Biologics
3. Research Progress and Classification of AR-Related Biologics
3.1. Anti-IgE
3.1.1. Omalizumab
3.1.2. LP-003
3.2. Anti-IL4/IL13
3.2.1. Dupilumab
3.2.2. CM310 (Spectrobab)
3.3. Anti-IL5
3.4. Anti-Thymic Stromal Lymphopoietin (TSLP)
Tezepelumab
3.5. Anti-IL33
4. Selection of Biologic Agents
4.1. Omalizumab
4.1.1. Seasonal Allergic Rhinitis
4.1.2. Perennial Allergic Rhinitis
4.2. Dupilumab
4.3. CM310
5. Direction of Clinical Application
5.1. Refractory Allergic Rhinitis
5.2. Seasonal Allergic Rhinitis
5.3. Combination Therapy
6. Other Considerations
6.1. Long-Term Efficacy and Safety Studies
6.2. Economic Cost
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wise, S.K.; Damask, C.; Roland, L.T.; Ebert, C.; Levy, J.M.; Lin, S.; Luong, A.; Rodriguez, K.; Sedaghat, A.R.; Toskala, E.; et al. International consensus statement on allergy and rhinology: Allergic rhinitis-2023. Int. Forum Allergy Rhinol. 2023, 13, 293–859. [Google Scholar] [PubMed]
- Bousquet, J.; Anto, J.M.; Bachert, C.; Baiardini, I.; Bosnic-Anticevich, S.; Walter, C.G.; Melen, E.; Palomares, O.; Scadding, G.K.; Togias, A.; et al. Allergic rhinitis. Nat. Rev. Dis. Primers 2020, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, J.; Khaltaev, N.; Cruz, A.A.; Denburg, J.; Fokkens, W.J.; Togias, A.; Zuberbier, T.; Baena-Cagnani, C.E.; Canonica, G.W.; van Weel, C.; et al. Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA(2)LEN and AllerGen). Allergy 2008, 63 (Suppl. S86), 8–160. [Google Scholar] [CrossRef]
- Fokkens, W.J.; Lund, V.J.; Hopkins, C.; Hellings, P.W.; Kern, R.; Reitsma, S.; Toppila-Salmi, S.; Bernal-Sprekelsen, M.; Mullol, J.; Alobid, I.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2020. Rhinology 2020, 58 (Suppl. S29), 1–464. [Google Scholar] [CrossRef] [PubMed]
- Canonica, G.W.; Bousquet, J.; Mullol, J.; Scadding, G.K.; Virchow, J.C. A survey of the burden of allergic rhinitis in Europe. Allergy 2007, 62 (Suppl. S85), 17–25. [Google Scholar] [CrossRef]
- Subspecialty Group of Rhinology, Editorial Board of Chinese Journal of Otorhinolaryngology Head and Neck Surgery; Subspecialty Group of Rhinology, Society of Otorhinolaryngology Head and Neck Surgery, Chinese Medical Association. Chinese guideline for diagnosis and treatment of allergic rhinitis (2022, revision). Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi = Chin. J. Otorhinolaryngol. Head Neck Surg. 2022, 57, 106–129. [Google Scholar]
- Zhang, Y.; Xi, L.; Gao, Y.; Huang, Y.; Cao, F.; Xiong, W.; Wang, C.; Zhang, L. Omalizumab is effective in the preseasonal treatment of seasonal allergic rhinitis. Clin. Transl. Allergy 2022, 12, e12094. [Google Scholar] [CrossRef]
- Dykewicz, M.S.; Wallace, D.V.; Amrol, D.J.; Baroody, F.M.; Bernstein, J.A.; Craig, T.J.; Dinakar, C.; Ellis, A.K.; Finegold, I.; Golden, D.B.K.; et al. Rhinitis 2020: A practice parameter update. J. Allergy Clin. Immunol. 2020, 146, 721–767. [Google Scholar] [CrossRef]
- Meltzer, E.O.; Blaiss, M.S.; Derebery, M.J.; Mahr, T.A.; Gordon, B.R.; Sheth, K.K.; Simmons, A.L.; Wingertzahn, M.A.; Boyle, J.M. Burden of allergic rhinitis: Results from the Pediatric Allergies in America survey. J. Allergy Clin. Immunol. 2009, 124 (Suppl. S3), S43–S70. [Google Scholar] [CrossRef]
- Meltzer, E.O.; Blaiss, M.S.; Naclerio, R.M.; Stoloff, S.W.; Derebery, M.J.; Nelson, H.S.; Boyle, J.M.; Wingertzahn, M.A. Burden of allergic rhinitis: Allergies in America, Latin America, and Asia-Pacific adult surveys. Allergy Asthma Proc. 2012, 33 (Suppl. S1), S113–S141. [Google Scholar] [CrossRef]
- Derebery, J.; Meltzer, E.; Nathan, R.A.; Stang, P.E.; Campbell, U.B.; Corrao, M.; Stanford, R. Rhinitis symptoms and comorbidities in the United States: Burden of rhinitis in America survey. Otolaryng. Head Neck Surg. 2008, 139, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, J.A.; Bernstein, J.S.; Makol, R.; Ward, S. Allergic Rhinitis: A Review. JAMA-J. Am. Med. Assoc. 2024, 331, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Menditto, E.; Costa, E.; Midao, L.; Bosnic-Anticevich, S.; Novellino, E.; Bialek, S.; Briedis, V.; Mair, A.; Rajabian-Soderlund, R.; Arnavielhe, S.; et al. Adherence to treatment in allergic rhinitis using mobile technology. The MASK Study. Clin. Exp. Allergy 2019, 49, 442–460. [Google Scholar] [CrossRef]
- Zheng, M.; Wang, X.; Wang, M.; She, W.; Cheng, L.; Lu, M.; Xing, Z.; Ma, F.; Zhu, L.; Chen, L.; et al. Clinical characteristics of allergic rhinitis patients in 13 metropolitan cities of China. Allergy 2021, 76, 577–581. [Google Scholar] [CrossRef] [PubMed]
- White, P.; Smith, H.; Baker, N.; Davis, W.; Frew, A. Symptom control in patients with hay fever in UK general practice: How well are we doing and is there a need for allergen immunotherapy? Clin. Exp. Allergy 1998, 28, 266–270. [Google Scholar] [CrossRef]
- Pfaar, O.; Richter, H.; Sager, A.; Miller, C.; Muller, T.; Jutel, M. Persistence in allergen immunotherapy: A longitudinal, prescription data-based real-world analysis. Clin. Transl. Allergy 2023, 13, e12245. [Google Scholar] [CrossRef]
- Yamani, I.; Bu, S.K.; Alsulami, A.; Sait, S.; Althumali, A.H. Efficacy of Biologic Therapies in the Management of Allergic Rhinitis: A Systematic Review. Cureus J. Med. Sci. 2024, 16, e71408. [Google Scholar] [CrossRef]
- Annunziato, F.; Romagnani, C.; Romagnani, S. The 3 major types of innate and adaptive cell-mediated effector immunity. J. Allergy Clin. Immunol. 2015, 135, 626–635. [Google Scholar] [CrossRef]
- Pulendran, B.; Artis, D. New paradigms in type 2 immunity. Science 2012, 337, 431–435. [Google Scholar] [CrossRef]
- Ogulur, I.; Mitamura, Y.; Yazici, D.; Pat, Y.; Ardicli, S.; Li, M.; D’Avino, P.; Beha, C.; Babayev, H.; Zhao, B.; et al. Type 2 immunity in allergic diseases. Cell Mol. Immunol. 2025, 22, 211–242. [Google Scholar] [CrossRef]
- Maspero, J.; Adir, Y.; Al-Ahmad, M.; Celis-Preciado, C.A.; Colodenco, F.D.; Giavina-Bianchi, P.; Lababidi, H.; Ledanois, O.; Mahoub, B.; Perng, D.W.; et al. Type 2 inflammation in asthma and other airway diseases. ERJ Open Res. 2022, 8, 00576–2021. [Google Scholar] [CrossRef]
- Zhang, Y.; Lan, F.; Zhang, L. Update on pathomechanisms and treatments in allergic rhinitis. Allergy 2022, 77, 3309–3319. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.N.; Kohanski, M.A.; Maina, I.W.; Workman, A.D.; Herbert, D.R.; Cohen, N.A. Sentinels at the wall: Epithelial-derived cytokines serve as triggers of upper airway type 2 inflammation. Int. Forum. Allergy Rhinol. 2019, 9, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Karta, M.R.; Broide, D.H.; Doherty, T.A. Insights into Group 2 Innate Lymphoid Cells in Human Airway Disease. Curr. Allergy Asthma Rep. 2016, 16, 8. [Google Scholar] [CrossRef] [PubMed]
- Hellings, P.W.; Steelant, B. Epithelial barriers in allergy and asthma. J. Allergy Clin. Immunol. 2020, 145, 1499–1509. [Google Scholar] [CrossRef]
- Tidke, M.; Borghare, P.T.; Pardhekar, P.; Nasre, Y.; Gomase, K.; Chaudhary, M. Recent Advances in Allergic Rhinitis: A Narrative Review. Cureus J. Med. Sci. 2024, 16, e68607. [Google Scholar] [CrossRef]
- Nakayama, T.; Hirahara, K.; Onodera, A.; Endo, Y.; Hosokawa, H.; Shinoda, K.; Tumes, D.J.; Okamoto, Y. Th2 Cells in Health and Disease. Annu. Rev. Immunol. 2017, 35, 53–84. [Google Scholar] [CrossRef]
- Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor beta, and TNF-alpha: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 2016, 138, 984–1010. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Zhang, H.; Hu, L.; Liu, J.; Wang, L.; Wang, T.; Zhang, H.; Cong, L.; Wang, Q. Pathogenesis of allergic diseases and implications for therapeutic interventions. Signal Transduct. Target Ther. 2023, 8, 138. [Google Scholar] [CrossRef]
- Wu, J.; Lu, A.D.; Zhang, L.P.; Zuo, Y.X.; Jia, Y.P. Study of clinical outcome and prognosis in pediatric core binding factor-acute myeloid leukemia. Zhonghua Xue Ye Xue Za Zhi 2019, 40, 52–57. [Google Scholar]
- Doherty, T.A.; Scott, D.; Walford, H.H.; Khorram, N.; Lund, S.; Baum, R.; Chang, J.; Rosenthal, P.; Beppu, A.; Miller, M.; et al. Allergen challenge in allergic rhinitis rapidly induces increased peripheral blood type 2 innate lymphoid cells that express CD84. J. Allergy Clin. Immunol. 2014, 133, 1203–1205. [Google Scholar] [CrossRef]
- Hong, H.; Liao, S.; Chen, F.; Yang, Q.; Wang, D.Y. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy 2020, 75, 2794–2804. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, M.; Pozzi, E.; Abbattista, L.; Lonoce, L.; Zuccotti, G.V.; D’Auria, E. Barrier Impairment and Type 2 Inflammation in Allergic Diseases: The Pediatric Perspective. Children 2021, 8, 1165. [Google Scholar] [CrossRef] [PubMed]
- Palomares, Ó.; Sánchez-Ramón, S.; Dávila, I.; Prieto, L.; de Llano, L.P.; Domingo, C.; Nieto, A. dIvergEnt: How IgE Axis Contributes to the Continuum of Allergic Asthma and Anti-IgE Therapies. Int. J. Mol. Sci. 2017, 18, 1328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, B.; Shen, S.; Song, X.; Jiang, Y.; Shi, L.; Zhao, C.; Yang, Y.; Jiang, L.; Li, J.; et al. Efficacy and safety of CM310 in severe eosinophilic chronic rhinosinusitis with nasal polyps (CROWNS-1): A multicentre, randomised, double-blind, placebo-controlled phase 2 clinical trial. Eclinicalmedicine 2023, 61, 102076. [Google Scholar] [CrossRef]
- Undem, B.J.; Taylor-Clark, T. Mechanisms underlying the neuronal-based symptoms of allergy. J. Allergy Clin. Immunol. 2014, 133, 1521–1534. [Google Scholar] [CrossRef]
- Dhariwal, J.; Cameron, A.; Trujillo-Torralbo, M.B.; Del, R.A.; Bakhsoliani, E.; Paulsen, M.; Jackson, D.J.; Edwards, M.R.; Rana, B.; Cousins, D.J.; et al. Mucosal Type 2 Innate Lymphoid Cells Are a Key Component of the Allergic Response to Aeroallergens. Am. J. Respir. Crit. Care Med. 2017, 195, 1586–1596. [Google Scholar] [CrossRef]
- Corren, J.; Parnes, J.R.; Wang, L.; Mo, M.; Roseti, S.L.; Griffiths, J.M.; van der Merwe, R. Tezepelumab in Adults with Uncontrolled Asthma. N. Engl. J. Med. 2017, 377, 936–946. [Google Scholar] [CrossRef]
- Mennini, M.; Dahdah, L.; Fiocchi, A. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N. Engl. J. Med. 2017, 376, 1090. [Google Scholar]
- Bachert, C.; Mannent, L.; Naclerio, R.M.; Mullol, J.; Ferguson, B.J.; Gevaert, P.; Hellings, P.; Jiao, L.; Wang, L.; Evans, R.R.; et al. Effect of Subcutaneous Dupilumab on Nasal Polyp Burden in Patients with Chronic Sinusitis and Nasal Polyposis: A Randomized Clinical Trial. JAMA-J. Am. Med. Assoc. 2016, 315, 469–479. [Google Scholar] [CrossRef]
- Drug Clinical Trial Registration and Information Disclosure Platform. Available online: http://www.chinadrugtrials.org.cn/index.html (accessed on 26 April 2025).
- International Clinical Trials Registry Platform (ICTRP). Available online: https://www.who.int/clinical-trials-registry-platform (accessed on 26 April 2025).
- Ma, T.; Wang, H.; Wang, X. Effectiveness and Response Predictors of Omalizumab in Treating Patients with Seasonal Allergic Rhinitis: A Real-World Study. J. Asthma Allergy 2021, 14, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, C.; Begvarfaj, E.; Incorvaia, C.; Sposato, B.; Brunori, M.; Ciofalo, A.; Greco, A.; de Vincentiis, M.; Masieri, S. Long-term omalizumab efficacy in allergic rhinitis. Immunol. Lett. 2020, 227, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Wang, K.; Cui, X.; Lu, L.; Dong, J.; Wang, M.; Gao, X. Clinical Efficacy and Safety of Omalizumab in the Treatment of Allergic Rhinitis: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Am. J. Rhinol. Allergy 2020, 34, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Okubo, K.; Ogino, S.; Nagakura, T.; Ishikawa, T. Omalizumab is effective and safe in the treatment of Japanese cedar pollen-induced seasonal allergic rhinitis. Allergol. Int. 2006, 55, 379–386. [Google Scholar] [CrossRef]
- Database of Approved and Licensed Drugs in Japan. Available online: https://www.drugfuture.com/pmda/ (accessed on 26 April 2025).
- Groundbreaking! Phase II Data of LP-003 Unveiled by Longbio Pharma at AAAAI2024. Available online: http://www.longbio.com/news1/22.html (accessed on 26 April 2025).
- Weinstein, S.F.; Katial, R.; Jayawardena, S.; Pirozzi, G.; Staudinger, H.; Eckert, L.; Joish, V.N.; Amin, N.; Maroni, J.; Rowe, P.; et al. Efficacy and safety of dupilumab in perennial allergic rhinitis and comorbid asthma. J. Allergy Clin. Immunol. 2018, 142, 171–177. [Google Scholar] [CrossRef]
- Wipperman, M.F.; Gayvert, K.M.; Atanasio, A.; Wang, C.Q.; Corren, J.; Covarrubias, A.; Setliff, I.; Chio, E.; Laws, E.; Wolfe, K.; et al. Differential modulation of allergic rhinitis nasal transcriptome by dupilumab and allergy immunotherapy. Allergy 2024, 79, 894–907. [Google Scholar] [CrossRef]
- Corren, J.; Saini, S.S.; Gagnon, R.; Moss, M.H.; Sussman, G.; Jacobs, J.; Laws, E.; Chung, E.S.; Constant, T.; Sun, Y.; et al. Short-Term Subcutaneous Allergy Immunotherapy and Dupilumab are Well Tolerated in Allergic Rhinitis: A Randomized Trial. J. Asthma Allergy 2021, 14, 1045–1063. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Yang, B.; Li, J.; Ding, Y.; Wu, L.; Zhang, L.; Wang, J.; Zhu, X.; Zhang, F.; et al. Efficacy and safety of CM310 in moderate-to-severe atopic dermatitis: A multicenter, randomized, double-blind, placebo-controlled phase 2b trial. Chin. Med. J. 2024, 137, 200–208. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, L.; Zhang, J. Efficacy and safety of stapokibart (CM310) in adults with moderate-to-severe atopic dermatitis: A multicenter, randomized, double-blind, placebo-controlled phase 3 trial. J. Am. Acad. Dermatol. 2024, 91, 984–986. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Wang, M.; Li, X.; Yan, B.; Liu, J.; Shi, L.; Cao, Z.; Feng, Y.; Liu, W.; et al. Stapokibart for moderate-to-severe seasonal allergic rhinitis: A randomized phase 3 trial. Nat. Med. 2025. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, B.; Zhu, Z.; Wang, X.; Song, X.; Zhu, D.; Ma, T.; Zhang, Y.; Meng, C.; Wang, G.; et al. Efficacy and safety of stapokibart (CM310) in uncontrolled seasonal allergic rhinitis (MERAK): An investigator-initiated, placebo-controlled, randomised, double-blind, phase 2 trial. Eclinicalmedicine 2024, 69, 102467. [Google Scholar] [CrossRef]
- Gibson, P.G.; Prazma, C.M.; Chupp, G.L.; Bradford, E.S.; Forshag, M.; Mallett, S.A.; Yancey, S.W.; Smith, S.G.; Bel, E.H. Mepolizumab improves clinical outcomes in patients with severe asthma and comorbid conditions. Respir. Res. 2021, 22, 171. [Google Scholar] [CrossRef] [PubMed]
- Asakura, K.; Saito, H.; Watanabe, M.; Ogasawara, H.; Matsui, T.; Kataura, A. Effects of anti-IL-5 monoclonal antibody on the murine model of nasal allergy. Int. Arch. Allergy Immunol. 1998, 116, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Matsumoto, K.; Denburg, A.E.; Crawford, L.; Ellis, R.; Inman, M.D.; Sehmi, R.; Takatsu, K.; Matthaei, K.I.; Denburg, J.A. Pathogenesis of murine experimental allergic rhinitis: A study of local and systemic consequences of IL-5 deficiency. J. Immunol. 2002, 168, 3017–3023. [Google Scholar] [CrossRef] [PubMed]
- Corren, J.; Larson, D.; Altman, M.C.; Segnitz, R.M.; Avila, P.C.; Greenberger, P.A.; Baroody, F.; Moss, M.H.; Nelson, H.; Burbank, A.J.; et al. Effects of combination treatment with tezepelumab and allergen immunotherapy on nasal responses to allergen: A randomized controlled trial. J. Allergy Clin. Immunol. 2023, 151, 192–201. [Google Scholar] [CrossRef]
- Cayrol, C.; Girard, J. Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine 2022, 156, 155891. [Google Scholar] [CrossRef]
- Kim, Y.H.; Yang, T.Y.; Park, C.S.; Ahn, S.H.; Son, B.K.; Kim, J.H.; Lim, D.H.; Jang, T.Y. Anti-IL-33 antibody has a therapeutic effect in a murine model of allergic rhinitis. Allergy 2012, 67, 183–190. [Google Scholar] [CrossRef]
- Londei, M.; Kenney, B.; Los, G.; Marino, M.H. A Phase 1 Study of ANB020, an anti-IL-33 monoclonal Antibody in Healthy Volunteers. J. Allergy Clin. Immunol. 2017, 139, AB73. [Google Scholar] [CrossRef]
- Chinthrajah, S.; Cao, S.; Liu, C.; Lyu, S.C.; Sindher, S.B.; Long, A.; Sampath, V.; Petroni, D.; Londei, M.; Nadeau, K.C. Phase 2a randomized, placebo-controlled study of anti-IL-33 in peanut allergy. JCI Insight 2019, 4, e131347. [Google Scholar] [CrossRef]
- Jang, T.Y.; Park, C.S.; Jeon, M.S.; Heo, M.J.; Na, K.; Kim, Y.H. Additive anti-allergic effects of anti-interleukin-33 and anti-Siglec-F treatments in a murine model of allergic asthma. Cent. Eur. J. Immunol. 2014, 39, 426–433. [Google Scholar] [CrossRef]
- Casale, T.B.; Condemi, J.; LaForce, C.; Nayak, A.; Rowe, M.; Watrous, M.; McAlary, M.; Fowler-Taylor, A.; Racine, A.; Gupta, N.; et al. Effect of omalizumab on symptoms of seasonal allergic rhinitis: A randomized controlled trial. JAMA-J. Am. Med. Assoc. 2001, 286, 2956–2967. [Google Scholar] [CrossRef] [PubMed]
- Chervinsky, P.; Casale, T.; Townley, R.; Tripathy, I.; Hedgecock, S.; Fowler-Taylor, A.; Shen, H.; Fox, H. Omalizumab, an anti-IgE antibody, in the treatment of adults and adolescents with perennial allergic rhinitis. Ann. Allergy Asthma Immunol. 2003, 91, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Vignola, A.M.; Humbert, M.; Bousquet, J.; Boulet, L.P.; Hedgecock, S.; Blogg, M.; Fox, H.; Surrey, K. Efficacy and tolerability of anti-immunoglobulin E therapy with omalizumab in patients with concomitant allergic asthma and persistent allergic rhinitis: SOLAR. Allergy 2004, 59, 709–717. [Google Scholar] [CrossRef]
- Busse, W.W.; Maspero, J.F.; Lu, Y.; Corren, J.; Hanania, N.A.; Chipps, B.E.; Katelaris, C.H.; FitzGerald, J.M.; Quirce, S.; Ford, L.B.; et al. Efficacy of dupilumab on clinical outcomes in patients with asthma and perennial allergic rhinitis. Ann. Allergy Asthma Immunol. 2020, 125, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Tsabouri, S.; Tseretopoulou, X.; Priftis, K.; Ntzani, E.E. Omalizumab for the treatment of inadequately controlled allergic rhinitis: A systematic review and meta-analysis of randomized clinical trials. J. Allergy Clin. Immunol.-Pract. 2014, 2, 332–340. [Google Scholar] [CrossRef]
- Tsabouri, S.; Ntritsos, G.; Koskeridis, F.; Evangelou, E.; Olsson, P.; Kostikas, K. Omalizumab for the treatment of allergic rhinitis: A systematic review and meta-analysis. Rhinology 2021, 59, 501–510. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, M.; Zhang, J.Q.; Li, Q.Q.; Lu, M.P.; Cheng, L. Combination of omalizumab with allergen immunotherapy versus immunotherapy alone for allergic diseases: A meta-analysis of randomized controlled trials. Int. Forum Allergy Rhinol. 2024, 14, 794–806. [Google Scholar] [CrossRef]
- Kopp, M.V.; Hamelmann, E.; Zielen, S.; Kamin, W.; Bergmann, K.C.; Sieder, C.; Stenglein, S.; Seyfried, S.; Wahn, U. Combination of omalizumab and specific immunotherapy is superior to immunotherapy in patients with seasonal allergic rhinoconjunctivitis and co-morbid seasonal allergic asthma. Clin. Exp. Allergy 2009, 39, 271–279. [Google Scholar] [CrossRef]
- Sitek, A.N.; Li, J.T.; Pongdee, T. Risks and safety of biologics: A practical guide for allergists. World Allergy Organ. J. 2023, 16, 100737. [Google Scholar] [CrossRef]
- Cox, L.; Platts-Mills, T.A.; Finegold, I.; Schwartz, L.B.; Simons, F.E.; Wallace, D.V. American Academy of Allergy, Asthma & Immunology/American College of Allergy, Asthma and Immunology Joint Task Force Report on omalizumab-associated anaphylaxis. J. Allergy Clin. Immunol. 2007, 120, 1373–1377. [Google Scholar]
- FitzGerald, J.M.; Bleecker, E.R.; Nair, P.; Korn, S.; Ohta, K.; Lommatzsch, M.; Ferguson, G.T.; Busse, W.W.; Barker, P.; Sproule, S.; et al. Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): A randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2016, 388, 2128–2141. [Google Scholar] [CrossRef] [PubMed]
- Bleecker, E.R.; FitzGerald, J.M.; Chanez, P.; Papi, A.; Weinstein, S.F.; Barker, P.; Sproule, S.; Gilmartin, G.; Aurivillius, M.; Werkstrom, V.; et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting beta(2)-agonists (SIROCCO): A randomised, multicentre, placebo-controlled phase 3 trial. Lancet 2016, 388, 2115–2127. [Google Scholar] [CrossRef] [PubMed]
- Khamisy-Farah, R.; Damiani, G.; Kong, J.D.; Wu, J.H.; Bragazzi, N.L. Safety profile of Dupilumab during pregnancy: A data mining and disproportionality analysis of over 37,000 reports from the WHO individual case safety reporting database (VigiBase). Eur. Rev. Med. Pharm. 2021, 25, 5448–5451. [Google Scholar]
- Blauvelt, A.; de Bruin-Weller, M.; Gooderham, M.; Cather, J.C.; Weisman, J.; Pariser, D.; Simpson, E.L.; Papp, K.A.; Hong, H.C.; Rubel, D.; et al. Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): A 1-year, randomised, double-blinded, placebo-controlled, phase 3 trial. Lancet 2017, 389, 2287–2303. [Google Scholar] [CrossRef]
- Heffler, E.; Brussino, L.; Del, G.S.; Paoletti, G.; Minciullo, P.L.; Varricchi, G.; Scadding, G.; Malvezzi, L.; De Virgilio, A.; Spriano, G.; et al. New drugs in early-stage clinical trials for allergic rhinitis. Expert Opin. Investig. Drugs 2019, 28, 267–273. [Google Scholar] [CrossRef] [PubMed]
Target | Name of Drug | Company | Indications | For AR R&D Status |
---|---|---|---|---|
IgE | Omalizumab | Novartis Pharmaceuticals | Allergic asthma, chronic sinusitis and nasal polyps, chronic idiopathic urticaria, and chronic spontaneous urticaria | Approved in Japan for the treatment of severe seasonal rhinitis [29] |
IgE | LP-003 | Tianchen Biology | Allergic rhinitis and chronic spontaneous urticaria | Phase III clinical trial in China |
IL-4/IL-13 | Dupilumab | Sanofi | Eosinophilic asthma, atopic dermatitis, chronic sinusitis, and nasal polyps | Experimental phase |
IL-4R | CM310 | Keymed Biosciences | Allergic rhinitis | Approved in China for the treatment of severe seasonal rhinitis |
IL-4R | QX005N | Qyuns | Phase III clinical trial of prurigo nodosum, Phase III clinical trial for atopic dermatitis, and Phase II clinical trial of chronic sinusitis with nasal polyps | Not yet |
IL-4R | TQH2722 | Chiatai Tianqing | Phase II clinical trial for atopic dermatitis and Phase II clinical trial of chronic sinusitis with nasal polyps | Not yet |
IL-4R | GR1802 | Genrixbio | Phase III clinical trial for moderate to severe atopic dermatitis, Phase II multicenter clinical trial of chronic sinusitis with nasal polyps, b10 > Phase II clinical trial for seasonal allergic rhinitis, and a Phase II multicenter clinical trial in chronic spontaneous urticaria | Phase II clinical trial in China |
IL-4R | CBP-201 | Conneder | Phase III clinical trial for moderate to severe atopic dermatitis and Phase III clinical study of asthma | Not yet |
IL-5 | Mepolizumab | GlaxoSmithKline | severe asthma (eosinophilic phenotype), eosinophilic granulomatosis and polyangiitis (EGPA) in adults, and eosinophilic syndrome (HES) in children 12 years of age and older | Experimental phase |
IL-5 | Depemokimab | GlaxoSmithKline | Phase III clinical trial for hypereosinophilic syndrome and Phase III clinical trial for chronic rhinosinusitis with nasal polyps (CRSwNP). | Experimental phase |
IL-5 | Benralizumab | AstraZeneca | Severe eosinophilic asthma | Not yet |
IL-5 | BAT2606 | Bio-Thera | Chronic sinusitis with nasal polyps | Not yet |
TSLP | Tezepelumab; | AstraZeneca | Severe chronic sinusitis with nasal polyps Phase III study, Phase III study of severe asthma, and eosinophilic esophagitis Phase III study | Not yet |
TSLP | CM326; | Connaught | Phase II clinical study of moderate to severe asthma, Phase II clinical study of moderate to severe atopic dermatitis, and Phase II clinical study of chronic sinusitis with nasal polyps | Not yet |
TSLP | TQC2731 | Chia Tai Tianqing | Phase II clinical trial of severe asthma and Phase II clinical trial of chronic sinusitis with nasal polyps | Not yet |
TSLP | SHR-1905 | Hengrui | Phase II clinical trial for asthma and Phase II clinical trial of chronic sinusitis with nasal polyps | Not yet |
IL-25 | XKH001 | Xinkanghe | Phase I study of moderate to severe asthma and single-arm Phase Ic clinical trial for allergic asthma | Not yet |
IL-33 | Etokimab/ANB020 | AstraZeneca | Phase IIa clinical trial of chronic sinusitis with nasal polyps and Phase IIa clinical trial of peanut allergy | Not yet |
Clinical Trials | Inclusion Criteria | Dosage Regimens | Observation Period | Efficacy Evaluations | Baseline IgE | Baseline Scores | Efficacy Outcomes |
---|---|---|---|---|---|---|---|
Omalizumab | |||||||
Casale et al. [65] | Aged 12–75, with SAR ≥ 2 years, IgE 30–700 IU/mL. | IgE > 150: 50/150/300 mg q3W for 4 times; IgE ≤ 150: same doses q4W for 3 times. | 12 weeks. | Daily nasal symptom severity score (0–3); RQLQ; rescue medication; | >150: 305.4 ± 138 IU/mL ≤150: 79.0 ± 34.0 IU/mL | Nasal: 0.71 ± 0.59; RQLQ: 1.53 ± 1.16 | 300 mg group showed significant symptom improvement (Δ−0.36, p = 0.001) with clear dose-response relationship |
Zhang et al. [7] | Aged 18–60, SAR ≥ 2 years, sIgE ≥ 0.7 kUA/L | Single 300 mg injection 2 weeks before pollen season | 6 weeks | CSMS-nose; CSMS-eye; TNSS/TESS; MS; | 381.24 ± 85.32 kU/L | TNSS: 1.44 ± 0.24; TESS: 0.38 ± 0.12; MS: 0.44 ± 0.13; CSMS-nose: 0.68 ± 0.16; CSMS-eyes: 0.63 ± 0.16; RQLQ: 5.65 ± 0.89; | CSMS-nose reduced by 40% (p < 0.001); Better ocular symptom improvement (p = 0.004) |
Chervinsk et al. [66] | Aged 12–75 with PAR, IgE 30–700 IU/mL | ≥0.016 mg/kg/IgE q4W | 16 weeks | Daily nasal symptom severity score; RQLQ(0–6); rescue medication | 149 IU/mL | Nasal: 1.7 (0–3); RQLQ: 3.08 (0–6) | Symptom control rate 69% vs. 49% in controls (p < 0.001) |
Vignola et al. [67] | Aged 12–74 with moderate-severe PAR ≥ 2 years; Allergic asthma ≥1 year; | ≥0.016 mg/kg/IgE (IU/mL) q4W | 28 weeks | Asthma exacerbation rate; QoL improvement; FEV1 change; symptom scores | 30–1300 IU/mL | AQLQ: 4.0 ± 0.81; RQLQ: 3.8 ± 0.87 | Exacerbations ↓32% (p = 0.02); QoL improvement ↑17.1% (p < 0.001) |
CM310 | |||||||
Zhang et al. [55] | Aged 18–65 with moderate-severe SAR ≥ 2 years | 600–300 mg qW/q2W; 4-week treatment | 12 weeks | rTNSS; rTOSS; RQLQ | - | rTNSS (0–12): 8.7 ± 1.9; rTOSS: 6.0 ± 2; RQLQ: 4.0 ± 1.1 | Improvement trend but not significant (p = 0.065); notably improved nasal/ocular symptoms in eosinophil-high (≥300/μL) subgroup (rTNSS Δ−37.2% vs. −28.5%, p = 0.032). |
Zhang et al. [54] | Aged 18–65 with moderate-severe SAR ≥ 2 years | 300 mg q2W (loading 600 mg); 4-week treatment | 8 weeks | rTNSS; rTOSS; RQLQ | - | rTNSS:9.2 ± 1.4; rTOSS: 6.2 ± 1.7; RQLQ:4.2 ± 0.9 Blood eosinophils 540/μL | 2 weeks: the mean change from baseline in the daily rTNSS of the stapokibart group was superior to that of the placebo group (−1.3, 95% CI: −2.0 to −0.6, p = 0.0008); 4 weeks: (−1.7, 95% CI: −2.5 to −0.8, p = 0.0002). |
Dupilumab | |||||||
Weinstein et al. [49] | Persistent asthma + PAR, sIgE ≥ 0.35 kU/L | 200/300 mg q2W | 24 weeks | SNOT-22 total score and AR-related items (postnasal drip, congestion, rhinorrhea, and sneezing) | - | SNOT-22: 15.27–19.30; blood eosinophils ≥300/μL: 42% | 300 mg group: SNOT-22 ↓5.98 (95%CI: −10.45 to −1.51, p = 0.009); congestion improvement −0.60 (p < 0.01); rhinorrhea improvement −0.67 (p < 0.01) |
Busse et al. [68] | Moderate-severe asthma + PAR, sIgE ≥ 0.35 kU/L | 200 mg q2W (loading 400 mg); 300 mg q2W (loading 600 mg) | 52 weeks | Annualized severe asthma exacerbation rate; FEV1 change; ACQ-5; RQLQ; | 272–321 IU/mL | RQLQ: 1.87–2.00; ACQ-5: 2.68–2.79 | Severe exacerbation rate ↓34.6% (p < 0.05); FEV1 ↑0.18 L (p < 0.01); better efficacy in blood eosinophils ≥ 300/μL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Zhou, Y.; Hao, Y.; Long, Z.; Hu, Q.; Huo, B.; Xie, T.; Chen, S.; Zhou, L.; Zhou, T.; et al. Recent Studies and Prospects of Biologics in Allergic Rhinitis Treatment. Int. J. Mol. Sci. 2025, 26, 4509. https://doi.org/10.3390/ijms26104509
Cheng X, Zhou Y, Hao Y, Long Z, Hu Q, Huo B, Xie T, Chen S, Zhou L, Zhou T, et al. Recent Studies and Prospects of Biologics in Allergic Rhinitis Treatment. International Journal of Molecular Sciences. 2025; 26(10):4509. https://doi.org/10.3390/ijms26104509
Chicago/Turabian StyleCheng, Xiangning, Yue Zhou, Yuzhe Hao, Ziyi Long, Qianxue Hu, Bingyue Huo, Tianjian Xie, Shan Chen, Liuqing Zhou, Tao Zhou, and et al. 2025. "Recent Studies and Prospects of Biologics in Allergic Rhinitis Treatment" International Journal of Molecular Sciences 26, no. 10: 4509. https://doi.org/10.3390/ijms26104509
APA StyleCheng, X., Zhou, Y., Hao, Y., Long, Z., Hu, Q., Huo, B., Xie, T., Chen, S., Zhou, L., Zhou, T., Li, L., Cheng, Q., & Chen, J. (2025). Recent Studies and Prospects of Biologics in Allergic Rhinitis Treatment. International Journal of Molecular Sciences, 26(10), 4509. https://doi.org/10.3390/ijms26104509