Beyond Trypanosoma cruzi: LINE-1 Activation as a Driver of Chronic Inflammation in Chagas Disease
Abstract
1. Introduction
2. Results
2.1. Trypanosoma cruzi Upregulates LINE-1 Expression and Triggers Interferon Production In Vitro
2.2. CRISPR/dCas9-Mediated LINE-1 Suppression Attenuates Interferon Response During Trypanosoma cruzi Infection
2.3. LINE-1 Drives Autoimmune Responses in Chagas Disease Independently of Parasite Burden
3. Discussion
4. Materials and Methods
4.1. Experimental Groups
4.2. Cell and Parasite Culture
4.3. Infection with Trypanosoma cruzi
4.4. CRISPR/dCas9 System and Cell Transfection
4.5. Sample Collection
4.6. RNA Extraction and cDNA Synthesis
4.7. Quantitative PCR (qPCR)
4.8. Indirect Enzyme-Linked Immunosorbent Assay
4.9. Histopathological Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Chagas Disease (American Trypanosomiasis); WHO: Geneva, Switzerland, 2024; Available online: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed on 17 March 2025).
- Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet 2018, 391, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Guarner, J. Chagas disease as example of a reemerging parasite. Semin. Diagn. Pathol. 2019, 36, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Pierrotti, L.C.; Carvalho, N.B.; Amorin, J.P.; Pascual, J.; Kotton, C.N.; López-Vélez, R. Chagas disease recommendations for solid-organ transplant recipients and donors. Transplantation 2018, 102, S1–S7. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.R.L.; Hecht, M.M.; Guimaro, M.C.; Sousa, A.O.; Nitz, N. Pathogenesis of chagas’ disease: Parasite persistence and autoimmunity. Clin. Microbiol. Rev. 2011, 24, 592–630. [Google Scholar] [CrossRef]
- De Bona, E.; Lidani, K.C.F.; Bavia, L.; Omidian, Z.; Gremski, L.H.; Sandri, T.L.; Messias Reason, I.J.D. Autoimmunity in chronic chagas disease: A road of multiple pathways to cardiomyopathy? Front. Immunol. 2018, 9, 1842. [Google Scholar] [CrossRef]
- Guimaro, M.C.; Alves, R.M.; Rose, E.; Sousa, A.O.; de Cássia Rosa, A.; Hecht, M.M.; Sousa, M.V.; Andrade, R.R.; Vital, T.; Plachy, J.; et al. Inhibition of Autoimmune Chagas-Like Heart Disease by Bone Marrow Transplantation. PLoS Neglected Trop. Dis. 2014, 8, e3313. [Google Scholar] [CrossRef]
- Gironès, N.; Cuervo, H.; Fresno, M. Trypanosoma cruzi-Induced Molecular Mimicry and Chagas’ Disease. Curr. Top. Microbiol. Immunol. 2005, 296, 89–123. [Google Scholar]
- Rajendran, P.; Chen, Y.F.; Chen, Y.F.; Chung, L.C.; Tamilselvi, S.; Shen, C.Y.; Day, C.H.; Chen, R.; Viswanadha, V.P.; Kuo, W.; et al. The multifaceted link between inflammation and human diseases. J. Cell. Physiol. 2018, 233, 6458–6471. [Google Scholar] [CrossRef]
- Sauaia, A.; Moore, F.A.; Moore, E.E. Postinjury Inflammation and Organ Dysfunction. Crit. Care Clin. 2017, 33, 167–191. [Google Scholar] [CrossRef]
- Kazazian, H.H.; Moran, J.V. Mobile DNA in Health and Disease. N. Engl. J. Med. 2017, 377, 361–370. [Google Scholar] [CrossRef]
- Protasova, M.S.; Andreeva, T.V.; Rogaev, E.I. Factors regulating the activity of line1 retrotransposons. Genes 2021, 12, 1562. [Google Scholar] [CrossRef] [PubMed]
- Payer, L.M.; Burns, K.H. Transposable elements in human genetic disease. Nat. Rev. Genet. 2019, 20, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Papasotiriou, I.; Pantopikou, K.; Apostolou, P. L1 retrotransposon expression in circulating tumor cells. PLoS ONE 2017, 12, e0171534. [Google Scholar] [CrossRef] [PubMed]
- Han, J.S.; Boeke, J.D. LINE-1 retrotransposons: Modulators of quantity and quality of mammalian gene expression? Bioessays 2005, 27, 775–784. [Google Scholar] [CrossRef]
- Newton, J.C.; Naik, M.T.; Li, G.Y.; Murphy, E.L.; Fawzi, N.L.; Sedivy, J.M.; Jogl, G. Phase separation of the LINE-1 ORF1 protein is mediated by the N-terminus and coiled-coil domain. Biophys. J. 2021, 120, 2181–2191. [Google Scholar] [CrossRef]
- Beck, C.R.; Garcia-Perez, J.L.; Badge, R.M.; Moran, J.V. LINE-1 elements in structural variation and disease. Annu. Rev. Genom. Hum. Genet. 2011, 12, 187–215. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Yu, J. New Understanding of the Relevant Role of LINE-1 Retrotransposition in Human Disease and Immune Modulation. Front. Cell Dev. Biol. 2020, 8, 657. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, Y.; Du, J.; Gao, P.; Zhao, K. The Interplay Among HIV, LINE-1, and the Interferon Signaling System. Front. Immunol. 2021, 12, 732775. [Google Scholar] [CrossRef]
- García Pérez, J.L.; Alarcón-Riquelme, M.E. The TREX1 Dinosaur Bites the Brain through the LINE. Cell Stem Cell 2017, 21, 287–288. [Google Scholar] [CrossRef]
- Thomas, C.A.; Tejwani, L.; Trujillo, C.A.; Negraes, P.D.; Herai, R.H.; Mesci, P.; Macia, A.; Crow, Y.J.; Muotri, A.R. Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation. Cell Stem Cell 2017, 21, 319–331.e8. [Google Scholar] [CrossRef]
- Ukadike, K.C.; Najjar, R.; Ni, K.; Laine, A.; Wang, X.; Bays, A.; Taylor, M.S.; LaCava, J.; Mustelin, T. Expression of L1 retrotransposons in granulocytes from patients with active systemic lupus erythematosus. Mob. DNA 2023, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Karagianni, P.; Kapsogeorgou, E.K.; Tzioufas, A.G.; Goules, A.V. DNA Methylation Studies in Saliva of Patients with Sjögren’s Syndrome. Mediterr. J. Rheumatol. 2021, 32, 176–178. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Karnik, R.; Gu, H.; Ziller, M.J.; Clement, K.; Tsankov, A.M.; Akopian, V.; A Gifford, C.; Donaghey, J.; Galonska, C.; et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 2015, 47, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Muotri, A.R.; Chu, V.T.; Marchetto, M.C.N.; Deng, W.; Moran, J.V.; Gage, F.H. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 2005, 435, 903–910. [Google Scholar] [CrossRef]
- Sanchez-Luque, F.J.; Kempen, M.J.H.C.; Gerdes, P.; Vargas-Landin, D.B.; Richardson, S.R.; Troskie, R.L.; Jesuadian, J.S.; Cheetham, S.W.; Carreira, P.E.; Salvador-Palomeque, C.; et al. LINE-1 evasion of epigenetic repression in humans. Mol. Cell 2019, 75, 590–604.e12. [Google Scholar] [CrossRef]
- Silverman, R.H. Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J. Virol. 2007, 81, 12720–12729. [Google Scholar] [CrossRef]
- Yao, Q.; Cao, G.; Li, M.; Wu, B.; Zhang, X.; Zhang, T.; Guo, J.; Yin, H.; Shi, L.; Chen, J.; et al. Ribonuclease activity of MARF1 controls oocyte RNA homeostasis and genome integrity in mice. Proc. Natl. Acad. Sci. USA 2018, 115, 11250–11255. [Google Scholar] [CrossRef]
- Goodier, J.L.; Pereira, G.C.; Cheung, L.E.; Rose, R.J.; Kazazian, H.H. The broad-spectrum antiviral protein ZAP restricts human retrotransposition. PLoS Genet. 2015, 11, e1005252. [Google Scholar] [CrossRef]
- Guo, L.; Byun, H.M.; Zhong, J.; Motta, V.; Barupal, J.; Zheng, Y.; Dou, C.; Zhang, F.; McCracken, J.P.; Diaz, A.; et al. Effects of short-term exposure to inhalable particulate matter on DNA methylation of tandem repeats. Environ. Mol. Mutagen. 2014, 55, 322–335. [Google Scholar] [CrossRef]
- Orecchini, E.; Frassinelli, L.; Galardi, S.; Ciafrè, S.A.; Michienzi, A. Post-transcriptional regulation of LINE-1 retrotransposition by AID/APOBEC and ADAR deaminases. Chromosome Res. 2018, 26, 45–59. [Google Scholar] [CrossRef]
- Mita, P.; Sun, X.; Fenyö, D.; Kahler, D.J.; Li, D.; Agmon, N.; Wudzinska, A.; Keegan, S.; Bader, J.S.; Yun, C.; et al. BRCA1 and S phase DNA repair pathways restrict LINE-1 retrotransposition in human cells. Nat. Struct. Mol. Biol. 2020, 27, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, J.G.; Cristofari, G. Post-transcriptional control of LINE-1 retrotransposition by cellular host factors in somatic cells. Front. Cell Dev. Biol. 2016, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Morrish, T.A.; Gilbert, N.; Myers, J.S.; Vincent, B.J.; Stamato, T.D.; Taccioli, G.E.; Batzer, M.A.; Moran, J.V. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat. Genet. 2002, 31, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Gasior, S.L.; Wakeman, T.P.; Xu, B.; Deininger, P.L. The human LINE-1 retrotransposon creates DNA double-strand breaks. J. Mol. Biol. 2006, 357, 1383–1393. [Google Scholar] [CrossRef]
- Marin-Neto, J.A.; Cunha-Neto, E.; Maciel, B.C.; Simões, M.V. Pathogenesis of chronic Chagas heart disease. Circulation 2007, 115, 1109–1123. [Google Scholar] [CrossRef]
- Zingales, B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop. 2018, 184, 38–52. [Google Scholar] [CrossRef]
- Rose, E.; Moraes, A.; Shiroma, T.; Nitz, N.; Rosa, A.C.; Pratesi, R.; Hagström, L.; de Carvalho, J.L.; Hecht, M. Host DNA repair response to oxidative damage is modulated by Trypanosoma cruzi in a strain-dependent manner. Acta Trop. 2021, 224, 106126. [Google Scholar] [CrossRef]
- Kloypan, C.; Srisa-art, M.; Mutirangura, A.; Boonla, C. LINE-1 hypomethylation induced by reactive oxygen species is mediated via depletion of S-adenosylmethionine. Cell Biochem. Funct. 2015, 33, 375–384. [Google Scholar] [CrossRef]
- Hecht, M.M.; Nitz, N.; Araujo, P.F.; Sousa, A.O.; Rosa, A.D.C.; Gomes, D.A.; Leonardecz, E.; Teixeira, A.R.L. Inheritance of DNA transferred from American trypanosomes to human hosts. PLoS ONE 2010, 5, e9181. [Google Scholar] [CrossRef]
- Teixeira, A.R.L.; Gomes, C.; Nitz, N.; Sousa, A.O.; Alves, R.M.; Guimaro, M.C.; Cordeiro, C.; Bernal, F.M.; Rosa, A.C.; Hejnar, J.; et al. Trypanosoma cruzi in the chicken model: Chagas-like heart disease in the absence of parasitism. PLoS Neglected Trop. Dis. 2011, 5, e1000. [Google Scholar] [CrossRef]
- Arora, R.; Bodak, M.; Penouty, L.; Hackman, C.; Ciaudo, C. Sequestration of LINE-1 in cytosolic aggregates by MOV10 restricts retrotransposition. EMBO Rep. 2022, 23, e53990. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, J.; Jia, R.; Cheng, V.; Xu, X.; Qiao, W.; Guo, F.; Liang, C.; Cen, S. The MOV10 helicase inhibits LINE-1 mobility. J. Biol. Chem. 2013, 288, 21148–21160. [Google Scholar] [CrossRef] [PubMed]
- Warkocki, Z. An update on post-transcriptional regulation of retrotransposons. FEBS Lett. 2023, 597, 380–406. [Google Scholar] [CrossRef] [PubMed]
- Gonzáles-Córdova, R.A.; dos Santos, T.R.; Gachet-Castro, C.; Andrade Vieira, J.; Trajano-Silva, L.A.M.; Sakamoto-Hojo, E.T.; Baqui, M.M.A. Trypanosoma cruzi infection induces DNA double-strand breaks and activates DNA damage response pathway in host epithelial cells. Sci. Rep. 2024, 14, 5225. [Google Scholar] [CrossRef]
- Servant, G.; Streva, V.A.; Derbes, R.S.; Wijetunge, M.I.; Neeland, M.; White, T.B.; Belancio, V.P.; Roy-Engel, A.M.; Deininger, P.L. The nucleotide excision repair pathway limits L1 retrotransposition. Genetics 2017, 205, 139–153. [Google Scholar] [CrossRef]
- Suzuki, J.; Yamaguchi, K.; Kajikawa, M.; Ichiyanagi, K.; Adachi, N.; Koyama, H.; Takeda, S.; Okada, N. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet. 2009, 5, e1000461. [Google Scholar] [CrossRef]
- Florentino, P.T.V.; Mendes, D.; Vitorino, F.N.L.; Martins, D.J.; Cunha, J.P.C.; Mortara, R.A.; Menck, C.F.M. DNA damage and oxidative stress in human cells infected by Trypanosoma cruzi. PLoS Pathog. 2021, 17, e1009502. [Google Scholar] [CrossRef]
- Luqman-Fatah, A.; Watanabe, Y.; Uno, K.; Ishikawa, F.; Moran, J.V.; Miyoshi, T. The interferon stimulated gene-encoded protein HELZ2 inhibits human LINE-1 retrotransposition and LINE-1 RNA-mediated type I interferon induction. Nat. Commun. 2023, 14, 203. [Google Scholar] [CrossRef]
- Chessler, A.D.C.; Ferreira, L.R.P.; Chang, T.H.; Fitzgerald, K.A.; Burleigh, B.A. A novel IFN regulatory factor 3-dependent pathway activated by trypanosomes triggers IFN-β in macrophages and fibroblasts. J. Immunol. 2008, 180, 7917–7924. [Google Scholar] [CrossRef]
- Manque, P.A.; Probst, C.; Pereira, M.C.S.; Rampazzo, R.C.P.; Ozaki, L.S.; Pavoni, D.P.; Neto, D.T.S.; Carvalho, M.R.; Xu, P.; Serrano, M.G.; et al. Trypanosoma cruzi infection induces a global host cell response in cardiomyocytes. Infect. Immun. 2011, 79, 1855–1862. [Google Scholar] [CrossRef]
- Gil-Jaramillo, N.; Rocha, A.P.; Raiol, T.; Motta, F.N.; Favali, C.; Brigido, M.M.; Bastos, I.M.D.; Santana, J.M. The first contact of human dendritic cells with Trypanosoma cruzi reveals response to virus as an unexplored central pathway. Front. Immunol. 2021, 12, 638020. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhao, Y.; Du, J.; Wang, Y.; Wang, S.; Wang, Q.; Zhao, X.; Xu, W.; Zhao, K. RNA sensor MDA5 suppresses LINE-1 retrotransposition by regulating the promoter activity of LINE-1 5′-UTR. Mob. DNA 2022, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Hato, S.V.; Langereis, M.A.; Zoll, J.; Virgen-Slane, R.; Peisley, A.; Hur, S.; Semler, B.L.; van Rij, R.P.; van Kuppeveld, F.J. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep. 2012, 2, 1187–1196. [Google Scholar] [CrossRef]
- Cortesi, A.; Gandolfi, F.; Arco, F.; Di Chiaro, P.; Valli, E.; Polletti, S.; Noberini, R.; Gualdrini, F.; Attanasio, S.; Citron, F. Activation of endogenous retroviruses and induction of viral mimicry by MEK1/2 inhibition in pancreatic cancer. Sci. Adv. 2024, 10, eade7830. [Google Scholar] [CrossRef]
- Saito, T.; Gale, M. Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity. J. Exp. Med. 2008, 205, 1523–1527. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, S.; Yang, Z.; Lin, H.; Zhu, J.; Liu, L.; Wang, W.; Liu, S.; Liu, W.; Ma, Y.; et al. Self-recognition of an inducible host lncRNA by RIG-I feedback restricts innate immune response. Cell 2018, 173, 906–919.e13. [Google Scholar] [CrossRef]
- Yu, Q.; Carbone, C.J.; Katlinskaya, Y.V.; Zheng, H.; Zheng, K.; Luo, M.; Wang, P.J.; Greenberg, R.A.; Fuchs, S.Y. Type I interferon controls propagation of long interspersed element-1. J. Biol. Chem. 2015, 290, 10191–10199. [Google Scholar] [CrossRef]
- Leviyang, S.; Griva, I. Investigating functional roles for positive feedback and cellular heterogeneity in the type I interferon response to viral infection. Viruses 2018, 10, 517. [Google Scholar] [CrossRef]
- Serban, A.I.; Stanca, L.; Geicu, O.I.; Dinischiotu, A. AGEs-induced IL-6 synthesis precedes RAGE up-regulation in HEK 293 cells: An alternative inflammatory mechanism? Int. J. Mol. Sci. 2015, 16, 20100–20117. [Google Scholar] [CrossRef]
- Lv, Y.; Qi, J.; Babon, J.J.; Cao, L.; Fan, G.; Lang, J.; Zhang, J.; Mi, P.; Kobe, B.; Wang, F. The JAK-STAT pathway: From structural biology to cytokine engineering. Signal Transduct. Target. Ther. 2024, 9, 221. [Google Scholar] [CrossRef]
- Reynolds, A.; Anderson, E.M.; Vermeulen, A.; Fedorov, Y.; Robinson, K.; Leake, D.; Karpilow, J.; Marshall, W.S.; Khvorova, A. Induction of the interferon response by siRNA is cell type- and duplex length-dependent. RNA 2006, 12, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Belancio, V.P.; Roy-Engel, A.M.; Pochampally, R.R.; Deininger, P. Somatic expression of LINE-1 elements in human tissues. Nucleic Acids Res. 2010, 38, 3909–3922. [Google Scholar] [CrossRef] [PubMed]
- De Cecco, M.; Ito, T.; Petrashen, A.P.; Elias, A.E.; Skvir, N.J.; Criscione, S.W.; Caligiana, A.; Brocculi, G.; Adney, E.M.; Boeke, J.D.; et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 2019, 566, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Crow, M.K.; Olferiev, M.; Kirou, K.A. Type I interferons in autoimmune disease. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 369–393. [Google Scholar] [CrossRef]
- Rönnblom, L.; Eloranta, M.L. The interferon signature in autoimmune diseases. Curr. Opin. Rheumatol. 2013, 25, 248–253. [Google Scholar] [CrossRef]
- Klarquist, J.; Cantrell, R.; Lehn, M.A.; Lampe, K.; Hennies, C.M.; Hoebe, K.; Janssen, E.M. Type I IFN drives experimental systemic lupus erythematosus by distinct mechanisms in CD4 T cells and B cells. ImmunoHorizons 2020, 4, 140–152. [Google Scholar] [CrossRef]
- Kiefer, K.; Oropallo, M.A.; Cancro, M.P.; Marshak-Rothstein, A. Role of type I interferons in the activation of autoreactive B cells. Immunol. Cell Biol. 2012, 90, 498–504. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kusuda, M.; Yamaguchi, Y. Interferons and systemic lupus erythematosus: Pathogenesis, clinical features, and treatments in interferon-driven disease. Mod. Rheumatol. 2023, 33, 857–867. [Google Scholar] [CrossRef]
- Krumbholz, M.; Faber, H.; Steinmeyer, F.; Hoffmann, L.A.; Kümpfel, T.; Pellkofer, H.; Derfuss, T.; Ionescu, C.; Starck, M.; Hafner, C.; et al. Interferon-β increases BAFF levels in multiple sclerosis: Implications for B cell autoimmunity. Brain 2008, 131, 1455–1463. [Google Scholar] [CrossRef]
- Dias, N.; Dias, M.; Ribeiro, A.; Gomes, N.; Moraes, A.; Wesley, M.; Gonzaga, C.; Ramos, D.D.A.R.; Braz, S.; Dallago, B.; et al. Network analysis of pathogenesis markers in murine Chagas disease under antimicrobial treatment. Microorganisms 2024, 12, 2332. [Google Scholar] [CrossRef]
- Wesley, M.; Moraes, A.; Rosa, A.C.; Carvalho, J.L.; Shiroma, T.; Vital, T.; Dias, N.; de Carvalho, B.; Rabello, D.D.A.; Borges, T.K.d.S.; et al. Correlation of parasite burden, kDNA integration, autoreactive antibodies, and cytokine pattern in the pathophysiology of Chagas disease. Front. Microbiol. 2019, 10, 1856. [Google Scholar] [CrossRef] [PubMed]
- Chatelain, E.; Konar, N. Translational challenges of animal models in Chagas disease drug development: A review. Drug Des. Dev. Ther. 2015, 9, 4807–4823. [Google Scholar] [CrossRef] [PubMed]
- Carmo, M.; Nunes, P.; Bern, C.; Clark, E.H.; Teixeira, A.L.; Molina, I. Clinical features of Chagas disease progression and severity. Lancet Reg. Health-Am. 2024, 37, 100832. [Google Scholar]
- Da Cunha, A.B.; Cunha, D.M. Revisiting the history of Chagas disease: “Live to tell”. Int. J. Cardiovasc. Sci. 2022, 35, 267–282. [Google Scholar] [CrossRef]
- Camandaroba, E.; Thé, T.S.; Pessina, D.H.; Andrade, S.G. Trypanosoma cruzi: Clones isolated from the Colombian strain reproduce the parental strain characteristics, with ubiquitous histotropism. Int. J. Exp. Pathol. 2006, 87, 209–217. [Google Scholar] [CrossRef]
- Rios, L.E.; Lokugamage, N.; Garg, N.J. Effects of acute and chronic Trypanosoma cruzi infection on pregnancy outcomes in mice: Parasite transmission, mortality, delayed growth, and organ damage in pups. Am. J. Pathol. 2023, 193, 313–331. [Google Scholar] [CrossRef]
- Arias-Argáez, B.C.; Dzul-Huchim, V.M.; Haro-Álvarez, A.P.; Rosado-Vallado, M.E.; Villanueva-Lizama, L.; Cruz-Chan, J.V.; Dumonteil, E. Signature of cardiac alterations in early and late chronic infections with Trypanosoma cruzi in mice. PLoS ONE 2023, 18, e0288976. [Google Scholar] [CrossRef]
- De Castro Nobre, A.C.; Pimentel, C.F.; do Rêgo, G.M.S.; Paludo, G.R.; Pereira Neto, G.B.; de Castro, M.B.; Nitz, N.; Hecht, M.; Dallago, B.; Hagström, L. Insights from the use of erythropoietin in experimental Chagas disease. Int. J. Parasitol. Drugs Drug Resist. 2022, 19, 65–80. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dias, M.; Moraes, A.; Shiroma, T.; Pessoa, V.; Ermoges, A.; Vital, T.; Hagström, L.; de Sousa, D.; de Castro, M.; Dallago, B.; et al. Beyond Trypanosoma cruzi: LINE-1 Activation as a Driver of Chronic Inflammation in Chagas Disease. Int. J. Mol. Sci. 2025, 26, 4466. https://doi.org/10.3390/ijms26104466
Dias M, Moraes A, Shiroma T, Pessoa V, Ermoges A, Vital T, Hagström L, de Sousa D, de Castro M, Dallago B, et al. Beyond Trypanosoma cruzi: LINE-1 Activation as a Driver of Chronic Inflammation in Chagas Disease. International Journal of Molecular Sciences. 2025; 26(10):4466. https://doi.org/10.3390/ijms26104466
Chicago/Turabian StyleDias, Marina, Aline Moraes, Tatiana Shiroma, Vitória Pessoa, Antonio Ermoges, Tamires Vital, Luciana Hagström, Davi de Sousa, Márcio de Castro, Bruno Dallago, and et al. 2025. "Beyond Trypanosoma cruzi: LINE-1 Activation as a Driver of Chronic Inflammation in Chagas Disease" International Journal of Molecular Sciences 26, no. 10: 4466. https://doi.org/10.3390/ijms26104466
APA StyleDias, M., Moraes, A., Shiroma, T., Pessoa, V., Ermoges, A., Vital, T., Hagström, L., de Sousa, D., de Castro, M., Dallago, B., Bastos, I. M. D., Nitz, N., & Hecht, M. (2025). Beyond Trypanosoma cruzi: LINE-1 Activation as a Driver of Chronic Inflammation in Chagas Disease. International Journal of Molecular Sciences, 26(10), 4466. https://doi.org/10.3390/ijms26104466