Phytic Acid Delays the Senescence of Rosa roxburghii Fruit by Regulating Antioxidant Capacity and the Ascorbate–Glutathione Cycle
Abstract
:1. Introduction
2. Results
2.1. Influence of Malondialdehyde (MDA) Content in R. roxburghii
2.2. Effect of Phytic Acid on ROS Metabolism
2.3. Effect of Phytic Acid on Ascorbate–Glutathione Cycle
2.4. Key Enzyme Gene Expressions for ROS and AsA-GSH Metabolism in R. roxburghii Fruit
3. Discussion
4. Materials and Methods
4.1. R. roxburghii, Chemicals and Treatment
4.2. Sample Collection
4.3. Determination of MDA Content
4.4. Determination of O2•− Production Rate, H2O2 Content, and ROS Metabolism-Related Enzyme Activity
4.5. Determination of GSH, AsA, GSSG, DHA Content, and AsA-GSH Metabolism-Related Enzyme Activity
4.6. RNA Extraction and First-Strand cDNA Synthesis
4.7. Real-Time Quantitative (RT-PCR)
4.8. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Vidyarthi, S.K.; Bai, W.; Pan, Z. Nutritional constituents, health benefits and processing of Rosa roxburghii: A review. J. Funct. Foods 2019, 60, 103456. [Google Scholar] [CrossRef]
- Wang, L.T.; Lv, M.J.; An, J.Y.; Fan, X.H.; Dong, M.Z.; Zhang, S.D.; Fu, Y.J. Botanical characteristics, phytochemistry and related biological activities of Rosa roxburghii Tratt fruit, and its potential use in functional foods: A review. Food Funct. 2021, 12, 1432–1451. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Sarsaiya, S.; Gong, Q.; Wu, Q.; Shi, J. Chemical diversity, traditional uses, and bioactivities of Rosa roxburghii Tratt: A comprehensive review. Pharmacol. Therapeut. 2024, 259, 108657. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Li, X.; An, S.; Liu, Z.; Liu, Y.; Ren, D. Preparation and characterization of polyethylene-based composite films coated with carboxymethyl chitosan/sodium alginate/nisin and application in the packaging of Rosa roxburghii Tratt. Food Packag. Shelf 2024, 43, 101295. [Google Scholar] [CrossRef]
- Foku, J.M.; Ackah, M.; Qiya, Y.; Zhang, H. Phytic acid-mediated enhancement of Meyerozyma caribbica biocontrol of Aspergillus carbonarius infection in grape berries through regulation of ROS metabolism. Sci. Hortic. 2024, 333, 113213. [Google Scholar] [CrossRef]
- Mittler, R.; Zandalinas, S.I.; Fichman, Y.; Van Breusegem, F. Reactive oxygen species signalling in plant stress responses. Nat. Rev. Mol. Cell Bio. 2022, 23, 663–679. [Google Scholar] [CrossRef]
- Siboza, X.I.; Bertling, I.; Odindo, A.O. Enzymatic antioxidants in response to methyl jasmonate and salicylic acid and their effect on chilling tolerance in lemon fruit [Citrus limon (L.) Burm. F.]. Sci. Hortic. 2017, 225, 659–667. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Wei, M.; Ge, Y.; Hou, J.; Cheng, Y.; Chen, J. Methyl jasmonate maintained antioxidative ability of ginger rhizomes by regulating antioxidant enzymes and energy metabolism. Sci. Hortic. 2019, 256, 108578. [Google Scholar] [CrossRef]
- Wu, B.; Guo, Q.; Li, Q.; Ha, Y.; Li, X.; Chen, W. Impact of postharvest nitric oxide treatment on antioxidant enzymes and related genes in banana fruit in response to chilling tolerance. Postharvest Biol. Technol. 2014, 92, 157–163. [Google Scholar] [CrossRef]
- Huan, C.; Jiang, L.; An, X.; Yu, M.; Xu, Y.; Ma, R.; Yu, Z. Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. Plant Physiol. Bioch. 2016, 104, 294–303. [Google Scholar] [CrossRef]
- Song, L.; Wang, J.; Shafi, M.; Liu, Y.; Wang, J.; Wu, J.; Wu, A. Hypobaric treatment effects on chilling injury, mitochondrial dysfunction, and the ascorbate–glutathione (AsA-GSH) cycle in postharvest peach fruit. J. Agric. Food Chem. 2016, 64, 4665–4674. [Google Scholar] [CrossRef]
- Yao, M.; Ge, W.; Zhou, Q.; Zhou, X.; Luo, M.; Zhao, Y.; Ji, S. Exogenous glutathione alleviates chilling injury in postharvest bell pepper by modulating the ascorbate-glutathione (AsA-GSH) cycle. Food Chem. 2021, 352, 129458. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Li, Q.; Yi, Y.; Wang, L.; Hou, W.; Ai, Y.; Min, T. Cinnamaldehyde affects the storage quality of freshly cut water chestnuts through the regulation of reactive oxygen species and the AsA-GSH cycle. Sci. Hortic. 2024, 332, 113199. [Google Scholar] [CrossRef]
- Huang, R.; Cheng, Y.; Li, C.; Guo, M.; Zhu, J.; Ge, Y.; Sun, T. Postharvest application of acibenzolar-S-methyl delays the senescence of pears by mediating the ascorbate-glutathione cycle. Sci. Hortic. 2022, 293, 110741. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Li, M.; Fu, X.; Zhao, X.; Min, D.; Zhang, X. Hot air pretreatment alleviates browning of fresh-cut pitaya fruit by regulating phenylpropanoid pathway and ascorbate-glutathione cycle. Postharvest Biol. Technol. 2022, 190, 111954. [Google Scholar] [CrossRef]
- Chen, W.; Xu, D. Phytic acid and its interactions in food components, health benefits, and applications: A comprehensive review. Trends Food Sci. Tech. 2023, 141, 104201. [Google Scholar] [CrossRef]
- Wang, Y.J.; Maina, N.H.; Ekholm, P.; Lampi, A.M.; Sontag-Strohm, T. Retardation of oxidation by residual phytate in purified cereal β-glucans. Food Hydrocolloid. 2017, 66, 161–167. [Google Scholar] [CrossRef]
- Fang, T.; Yao, J.; Duan, Y.; Zhong, Y.; Zhao, Y.; Lin, Q. Phytic acid treatment inhibits browning and lignification to promote the quality of fresh-cut apples during storage. Foods 2022, 11, 1470. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, X.; Li, X.; Wang, Z.; Wang, H.; Li, W.; Tang, Y. Combination of 1-methylcyclopropene and phytic acid inhibits surface browning and maintains texture and aroma of fresh-cut peaches. Postharvest Biol. Technol. 2023, 200, 112328. [Google Scholar] [CrossRef]
- Jin, P.; Zhu, H.; Wang, L.; Shan, T.; Zheng, Y. Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents. Food Chem. 2014, 161, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Telias, A.; Hoover, E.; Rosen, C.; Bedford, D.; Cook, D. The effect of calcium sprays and fruit thinning on bitter pit incidence and calcium content in ‘Honeycrisp’ apple. J. Plant Nutr. 2006, 29, 1941–1957. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.W.; Zhou, B.; Liu, Y.F.; Xia, X.L.; Xiao, Z.G.; Ji, S.J. Calcium inhibited peel browning by regulating enzymes in membrane metabolism of ‘Nanguo’pears during post-ripeness after refrigerated storage. Sci. Hortic. 2019, 244, 15–21. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Flores, F.B. Employing phytosulfokine α (PSKα) for delaying broccoli florets yellowing during cold storage. Food Chem. 2021, 355, 129626. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Li, C.; Hou, J.; Li, Y.; Jiang, C.; Ge, Y. Mitogen-activated protein kinase cascade and reactive oxygen species metabolism are involved in acibenzolar-S-methyl-induced disease resistance in apples. J. Agric. Food Chem. 2020, 68, 10928–10936. [Google Scholar] [CrossRef] [PubMed]
- Pilizota, V.; Sapers, G.M. Novel browning inhibitor formulation for fresh-cut apples. J. Food Sci. 2004, 69, 140–143. [Google Scholar] [CrossRef]
- Mahunu, G.K.; Zhang, H.; Yang, Q.; Zhang, X.; Li, D.; Zhou, Y. Improving the biocontrol efficacy of Pichia caribbica with phytic acid against postharvest blue mold and natural decay in apples. Bio. Control 2016, 92, 172–180. [Google Scholar] [CrossRef]
- He, M.; Wu, Y.; Hong, M.; Yun, Z.; Li, T.; Jiang, Y. α-Lipoic acid treatment alleviates postharvest pericarp browning of litchi fruit by regulating antioxidant ability and energy metabolism. Postharvest Biol. Technol. 2021, 180, 111629. [Google Scholar] [CrossRef]
- Li, L.; Kitazawa, H.; Zhang, X.; Zhang, L.; Sun, Y.; Wang, X.; Yu, S. Melatonin retards senescence via regulation of the electron leakage of postharvest white mushroom (Agaricus bisporus). Food Chem. 2021, 340, 127833. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, H.; Dai, X.; Yu, M.; Yu, Z. Effect of methyl jasmonate on the quality and antioxidant capacity by modulating ascorbate-glutathione cycle in peach fruit. Sci. Hortic. 2022, 303, 111216. [Google Scholar] [CrossRef]
- Li, C.; Wei, M.; Ge, Y.; Zhao, J.; Chen, Y.; Hou, J.; Li, J. The role of glucose-6-phosphate dehydrogenase in reactive oxygen species metabolism in apple exocarp induced by acibenzolar-S-methyl. Food Chem. 2020, 308, 125663. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.; Valentines, M.C.; Usall, J.; Vinas, I.; Larrigaudiere, C. Possible involvement of hydrogen peroxide in the development of resistance mechanisms in ‘Golden Delicious’ apple fruit. Postharvest Biol. Technol. 2003, 27, 235–242. [Google Scholar] [CrossRef]
- Pei, J.; Pan, X.; Wei, G.; Hua, Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, Y.; Bi, Y.; Ge, Y.; Wang, Y.; Fan, C.; Deng, H. Postharvest BTH treatment induced disease resistance and enhanced reactive oxygen species metabolism in muskmelon (Cucumis melo L.) fruit. Eur. Food Res. Technol. 2012, 234, 963–971. [Google Scholar] [CrossRef]
- Wei, M.; Ge, Y.; Li, C.; Han, X.; Qin, S.; Chen, Y.; Li, J. G6PDH regulated NADPH production and reactive oxygen species metabolism to enhance disease resistance against blue mold in apple fruit by acibenzolar-S-methyl. Postharvest Biol. Technol. 2019, 148, 228–235. [Google Scholar] [CrossRef]
- Ding, X.; Ma, J.; Liu, S.; Dong, X.; Pan, X.; Dong, B. Acid electrolytic water treatment improves the quality of fresh-cut red pitaya fruit by regulating ROS metabolism and phenylpropanoid pathway. Postharvest Biol. Technol. 2024, 207, 112636. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, B.; Chen, Y.; Kuang, C.; Da, F.; Ding, X. Phytic Acid Delays the Senescence of Rosa roxburghii Fruit by Regulating Antioxidant Capacity and the Ascorbate–Glutathione Cycle. Int. J. Mol. Sci. 2025, 26, 98. https://doi.org/10.3390/ijms26010098
Dong B, Chen Y, Kuang C, Da F, Ding X. Phytic Acid Delays the Senescence of Rosa roxburghii Fruit by Regulating Antioxidant Capacity and the Ascorbate–Glutathione Cycle. International Journal of Molecular Sciences. 2025; 26(1):98. https://doi.org/10.3390/ijms26010098
Chicago/Turabian StyleDong, Boyu, Yulong Chen, Chengyue Kuang, Fangfang Da, and Xiaochun Ding. 2025. "Phytic Acid Delays the Senescence of Rosa roxburghii Fruit by Regulating Antioxidant Capacity and the Ascorbate–Glutathione Cycle" International Journal of Molecular Sciences 26, no. 1: 98. https://doi.org/10.3390/ijms26010098
APA StyleDong, B., Chen, Y., Kuang, C., Da, F., & Ding, X. (2025). Phytic Acid Delays the Senescence of Rosa roxburghii Fruit by Regulating Antioxidant Capacity and the Ascorbate–Glutathione Cycle. International Journal of Molecular Sciences, 26(1), 98. https://doi.org/10.3390/ijms26010098