Developing Allosteric Chaperones for GBA1-Associated Disorders—An Integrated Computational and Experimental Approach
Abstract
:1. Introduction
2. Results
2.1. Identification of GCase Small Molecule Stabilizers (STARs) Using SEE-Tx Supercomputing Technology
2.2. Experimental Validation of STAR Compound: Effect of Compounds on Enhancing GCase Activity in Patient-Derived Fibroblasts
2.3. Binding of Compounds to GCase and Effect on Enzymatic Activity
2.4. Effect of Compounds on Lysosomal GCase Activity and Substrate Depletion
2.5. Enhancement of GCase Activity and Depletion of Toxic Substrate in a Neuronal Model
2.6. BBB Penetration
3. Discussion
4. Materials and Methods
4.1. Virtual Screening Using SEE-Tx® Technology
4.2. DSF
4.3. Enzyme Enhancement Activity
4.4. SPR Assays
4.5. GCase Biochemical Assay in Wild-Type Lysates
4.6. Lysosomal GCase Activity Assay
4.7. Lipid Quantification by LC-MS/MS
4.8. Protein Quantification by Western Blot
4.9. Cell Viability
4.10. NeuroPK
4.11. Data and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, L.; Schapira, A.H.V. GBA variants and Parkinson disease: Mechanisms and treatments. Cells 2022, 11, 1261. [Google Scholar] [CrossRef] [PubMed]
- Stirnemann, J.; Belmatoug, N.; Camou, F.; Serratrice, C.; Froissart, R.; Caillaud, C.; Levade, T.; Astudillo, L.; Serratrice, J.; Brassier, A.; et al. A review of Gaucher disease pathophysiology, clinical presentation and treatments. Int. J. Mol. Sci. 2017, 18, 441. [Google Scholar] [CrossRef]
- Nalysnyk, L.; Rotella, P.; Simeone, J.C.; Hamed, A.; Weinreb, N. Gaucher disease epidemiology and natural history: A comprehensive review of the literature. Hematology 2017, 22, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell 2008, 132, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Boer, D.E.C.; van Smeden, J.; Bouwstra, J.A.; Aerts, J. Glucocerebrosidase: Functions in and beyond the lysosome. J. Clin. Med. 2020, 9, 736. [Google Scholar] [CrossRef]
- Rolfs, A.; Giese, A.-K.; Grittner, U.; Mascher, D.; Elstein, D.; Zimran, A.; Böttcher, T.; Lukas, J.; Hübner, R.; Gölnitz, U.; et al. Glucosylsphingosine is a highly sensitive and specific biomarker for primary diagnostic and follow-up monitoring in Gaucher disease in a non-Jewish, Caucasian cohort of gaucher disease patients. PLoS ONE 2013, 8, e79732. [Google Scholar] [CrossRef]
- Murugesan, V.; Chuang, W.L.; Liu, J.; Lischuk, A.; Kacena, K.; Lin, H.; Pastores, G.M.; Yang, R.; Keutzer, J.; Zhang, K.; et al. Glucosylsphingosine is a key biomarker of Gaucher disease. Am. J. Hematol. 2016, 91, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Dekker, N.; van Dussen, L.; Hollak, C.E.; Overkleeft, H.; Scheij, S.; Ghauharali, K.; van Breemen, M.J.; Ferraz, M.J.; Groener, J.E.; Maas, M.; et al. Elevated plasma glucosylsphingosine in Gaucher disease: Relation to phenotype, storage cell markers, and therapeutic response. Blood 2011, 118, e118–e127. [Google Scholar] [CrossRef]
- Neumann, J.; Bras, J.; Deas, E.; O’Sullivan, S.S.; Parkkinen, L.; Lachmann, R.H.; Li, A.; Holton, J.; Guerreiro, R.; Paudel, R.; et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 2009, 132 Pt 7, 1783–1794. [Google Scholar] [CrossRef]
- Sidransky, E.; Samaddar, T.; Tayebi, N. Mutations in GBA are associated with familial Parkinson disease susceptibility and age at onset. Neurology 2009, 73, 1424–1425. [Google Scholar] [CrossRef] [PubMed]
- Blandini, F.; Cilia, R.; Cerri, S.; Pezzoli, G.; Schapira, A.H.V.; Mullin, S.; Lanciego, J.L. Glucocerebrosidase mutations and synucleinopathies: Toward a model of precision medicine. Mov. Disord. 2019, 34, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Granek, Z.; Barczuk, J.; Siwecka, N.; Rozpędek-Kamińska, W.; Kucharska, E.; Majsterek, I. GBA1 gene mutations in α-synucleinopathies-molecular mechanisms underlying pathology and their clinical significance. Int. J. Mol. Sci. 2023, 24, 2044. [Google Scholar] [CrossRef] [PubMed]
- Van Rossum, A.; Holsopple, M. Enzyme replacement or substrate reduction? A review of Gaucher disease treatment options. Hosp. Pharm. 2016, 51, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Beutler, E. Enzyme replacement in Gaucher disease. PLoS Med. 2004, 1, e21. [Google Scholar] [CrossRef]
- Coutinho, M.F.; Santos, J.I.; Alves, S. Less is more: Substrate reduction therapy for lysosomal storage disorders. Int. J. Mol. Sci. 2016, 17, 1065. [Google Scholar] [CrossRef]
- Shemesh, E.; Deroma, L.; Bembi, B.; Deegan, P.; Hollak, C.; Weinreb, N.J.; Cox, T.M. Enzyme replacement and substrate reduction therapy for Gaucher disease. Cochrane Database Syst. Rev. 2015, 3, CD010324. [Google Scholar] [CrossRef]
- Fan, J.-Q.; Ishii, S. Active-site-specific chaperone therapy for Fabry disease. FEBS J. 2007, 274, 4962–4971. [Google Scholar] [CrossRef]
- Germain, D.P.; Fan, J.Q. Pharmacological chaperone therapy by active-site-specific chaperones in Fabry disease: In vitro and preclinical studies. Int. J. Clin. Pharmacol. Ther. 2009, 47 (Suppl. 1), S111–S117. [Google Scholar] [PubMed]
- Weber, P.; Thonhofer, M.; Averill, S.; Davies, G.J.; Santana, A.G.; Müller, P.; Nasseri, S.A.; Offen, W.A.; Pabst, B.M.; Paschke, E.; et al. Mechanistic insights into the chaperoning of human lysosomal-galactosidase activity: Highly functionalized aminocyclopentanes and C-5a-substituted derivatives of 4-epi-isofagomine. Molecules 2020, 25, 4025. [Google Scholar] [CrossRef] [PubMed]
- Rudinskiy, M.; Pons-Vizcarra, M.; Soldà, T.; Fregno, I.; Bergmann, T.J.; Ruano, A.; Delgado, A.; Morales, S.; Barril, X.; Bellotto, M.; et al. Validation of a highly sensitive HaloTag-based assay to evaluate the potency of a novel class of allosteric β-Galactosidase correctors. PLoS ONE 2023, 18, e0294437. [Google Scholar] [CrossRef]
- Cubero, E.; Ruano, A.; Delgado, A.; Barril, X.; Morales, S.; Trapero, A.; Leoni, L.; Bellotto, M.; Maj, R.; Guzmán, B.C.-F.; et al. Discovery of allosteric regulators with clinical potential to stabilize alpha-L-iduronidase in mucopolysaccharidosis type I. PLoS ONE 2024, 19, e0303789. [Google Scholar] [CrossRef]
- Shaaltiel, Y.; Bartfeld, D.; Hashmueli, S.; Baum, G.; Brill-Almon, E.; Galili, G.; Dym, O.; Boldin-Adamsky, S.A.; Silman, I.; Sussman, J.L.; et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol. J. 2007, 5, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Seco, J.; Luque, F.J.; Barril, X. Binding site detection and druggability index from first principles. J. Med. Chem. 2009, 52, 2363–2371. [Google Scholar] [CrossRef]
- Barril, X.; Alvarez-Garcia, D.; Schmidtke, P. Method of Binding Site and Binding Energy Determination by Mixed Explicit Solvent Simulations. Patent WO2013092922A2, 27 June 2013. Available online: https://patentimages.storage.googleapis.com/77/0b/d3/ffef95960db6fe/WO2013092922A2.pdf (accessed on 8 October 2024).
- Alvarez-Garcia, D.; Schmidtke, P.; Cubero, E.; Barril, X. Extracting atomic contributions to binding free energy using molecular dynamics simulations with mixed solvents (MDmix). Curr. Drug Discov. Technol. 2022, 19, 62–68. [Google Scholar] [CrossRef]
- Alvarez-Garcia, D.; Seco, J.; Schmidtke, P.; Barril, X. Druggability prediction. In Protein-Ligand Interactions; Wiley-VCH: Weinheim, Germany, 2012; pp. 265–282. [Google Scholar]
- Alvarez-Garcia, D.; Barril, X. Molecular simulations with solvent competition quantify water displaceability and provide accurate interaction maps of protein binding sites. J. Med. Chem. 2014, 57, 8530–8539. [Google Scholar] [CrossRef]
- Ruiz-Carmona, S.; Alvarez-Garcia, D.; Foloppe, N.; Garmendia-Doval, A.B.; Juhos, S.; Schmidtke, P.; Barril, X.; Hubbard, R.E.; Morley, S.D. rDock: A fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput. Biol. 2014, 10, e1003571. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.; Ninomiya, H.; Suzuki, M.; Inoue, T.; Sawa, M.; Iida, M.; Ida, H.; Eto, Y.; Ogawa, S.; Ohno, K.; et al. Enzyme enhancement activity of N-octyl-beta-valienamine on beta-glucosidase mutants associated with Gaucher disease. Biochim. Biophys. Acta 2007, 1772, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Schuck, P. Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu. Rev. Biophys. Biomol. Struct. 1997, 26, 541–566. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, N.A.; Drescher, M.J.; Sheikhali, S.A.; Khan, K.M.; Hatfield, J.S.; Dickson, M.J.; Drescher, D.G. Molecular identification of an N-type Ca2+ channel in saccular hair cells. Neuroscience 2006, 139, 1417–1434. [Google Scholar] [CrossRef]
- García-Sanz, P.; Orgaz, L.; Bueno-Gil, G.; Espadas, I.; Rodríguez-Traver, E.; Kulisevsky, J.; Gutierrez, A.; Dávila, J.C.; González-Polo, R.A.; Fuentes, J.M.; et al. N370S-GBA1 mutation causes lysosomal cholesterol accumulation in Parkinson’s disease. Mov. Disord. 2017, 32, 1409–1422. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, J.; Gegg, M.E.; Migdalska-Richards, A.; Doherty, M.K.; Whitfield, P.D.; Schapira, A.H.V. Autophagic lysosome reformation dysfunction in glucocerebrosidase deficient cells: Relevance to Parkinson disease. Hum. Mol. Gen. 2016, 25, 3432–3445. [Google Scholar] [CrossRef] [PubMed]
- Collins, L.M.; Drouin-Ouellet, J.; Kuan, W.L.; Cox, T.; Barker, R.A. Dermal fibroblasts from patients with Parkinson’s disease have normal GCase activity and autophagy compared to patients with PD and GBA mutations. F1000Research 2017, 6, 1751. [Google Scholar] [CrossRef] [PubMed]
- Galvagnion, C.; Cerri, S.; Schapira, A.H.V.; Blandini, F.; Di Monte, D.A. Sphingolipid changes in Parkinson L444P GBA mutation fibroblasts promote α-synuclein aggregation. bioRxiv 2020. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Ribelles, L.; Arranz-Amo, J.A.; Hernández-Vara, J.; Samaniego-Toro, D.; Enriquez-Calzada, S.; Pozo, S.L.; Camprodon-Gomez, M.; Laguna, A.; Gonzalo, M.A.; Ferrer, R.; et al. Evaluation of a liquid chromatography-tandem mass spectrometry method for the analysis of glucosylceramide and galactosylceramide isoforms in cerebrospinal fluid of Parkinson’s disease patients. Anal. Chem. 2024, 96, 12875–12882. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Romero, A.; Fernandez-Gonzalez, I.; Riera, J.; Montpeyo, M.; Albert-Bayo, M.; Lopez-Royo, T.; Castillo-Sanchez, P.; Carnicer-Caceres, C.; Arranz-Amo, J.A.; Castillo-Ribelles, L.; et al. Lysosomal lipid alterations caused by glucocerebrosidase deficiency promote lysosomal dysfunction, chaperone-mediated-autophagy deficiency, and alpha-synuclein pathology. NPJ Parkinson’s Dis. 2022, 8, 126. [Google Scholar] [CrossRef]
- Filograna, R.; Civiero, L.; Ferrari, V.; Codolo, G.; Greggio, E.; Bubacco, L.; Beltramini, M.; Bisaglia, M. Analysis of the catecholaminergic phenotype in human SH-SY5Y and BE(2)-M17 neuroblastoma cell lines upon differentiation. PLoS ONE 2015, 10, e0136769. [Google Scholar] [CrossRef]
Compound | 2 | 3 |
---|---|---|
Dose-response | Yes | Yes |
KD (µM) | 29.8 | 50.7 |
Rmax (RU) | 35.57 | 22.73 |
Offset (RU) | 1.959 | −1.406 |
Chi2 (RU2) | 1.28 | 2.61 |
Time (h) | Plasma Concentration (ng/mL) | Brain Concentration (n/g) | Brain-Kp |
---|---|---|---|
0.25 | 1967.97 | 8601.53 | 4.37 |
2 | 65.13 | 221.14 | 3.29 |
8 | 11.42 | 13.64 | 1.16 |
Genotype | Phenotype | Source |
---|---|---|
wild-type (WT) | Healthy individual | GM03377, Coriell |
p.L444P/p.L444P | Gaucher type II | GM08760, Coriell |
p.N370S/84gg | Gaucher type I | GM00372, Coriell |
p.N188S/p.S107L | Gaucher type II | 20843, Telethon |
p.L444P/p.WT | Parkinson | C.0006794, Vall d’Hebron Research Institute |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montpeyo, M.; Pérez-Carmona, N.; Cubero, E.; Delgado, A.; Ruano, A.; Carrillo, J.; Bellotto, M.; Martinez-Vicente, M.; Garcia-Collazo, A.M. Developing Allosteric Chaperones for GBA1-Associated Disorders—An Integrated Computational and Experimental Approach. Int. J. Mol. Sci. 2025, 26, 9. https://doi.org/10.3390/ijms26010009
Montpeyo M, Pérez-Carmona N, Cubero E, Delgado A, Ruano A, Carrillo J, Bellotto M, Martinez-Vicente M, Garcia-Collazo AM. Developing Allosteric Chaperones for GBA1-Associated Disorders—An Integrated Computational and Experimental Approach. International Journal of Molecular Sciences. 2025; 26(1):9. https://doi.org/10.3390/ijms26010009
Chicago/Turabian StyleMontpeyo, Marta, Natàlia Pérez-Carmona, Elena Cubero, Aida Delgado, Ana Ruano, Jokin Carrillo, Manolo Bellotto, Marta Martinez-Vicente, and Ana Maria Garcia-Collazo. 2025. "Developing Allosteric Chaperones for GBA1-Associated Disorders—An Integrated Computational and Experimental Approach" International Journal of Molecular Sciences 26, no. 1: 9. https://doi.org/10.3390/ijms26010009
APA StyleMontpeyo, M., Pérez-Carmona, N., Cubero, E., Delgado, A., Ruano, A., Carrillo, J., Bellotto, M., Martinez-Vicente, M., & Garcia-Collazo, A. M. (2025). Developing Allosteric Chaperones for GBA1-Associated Disorders—An Integrated Computational and Experimental Approach. International Journal of Molecular Sciences, 26(1), 9. https://doi.org/10.3390/ijms26010009