Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy
Abstract
:1. Introduction
2. Melatonin and Sericin against the Skin Aging Process
3. Melanoma: A Tumor of Melanocyte Origin
4. State of Innovation in Melatonin-Polymer Wound Healing Patches
5. State of Innovation in Sericin-Polymer Wound Healing Patches
6. Discussion: Melatonin/Sericin Collagen Scaffolds as Possible Wound Healing Patches
7. Conclusions, Challenges and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Slominski, A.; Wortsman, J. Neuroendocrinology of the skin. Endocr. Rev. 2000, 21, 457–487. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Zmijewski, M.; Skobowiat, C.; Zbytek, B.; Slominski, R.; Steketee, J. Sensing the Environment: Regulation of Local and Global Homeostasis by the Skin’s Neuroendocrine System; Advances in Anatomy, Embryology and Cell Biology; Springer Science and Business Media: Dordrecht, The Netherlands, 2012; Volume 212, pp. 1–115. [Google Scholar]
- Bocheva, G.; Slominski, R.; Slominski, A. Neuroendocrine aspects of skin aging. Int. J. Mol. Sci. 2019, 20, 2798. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Miyamura, Y.; Wolber, R.; Smuda, C.; Reinhold, W.; Liu, H.; Kolbe, L.; Hearing, V. Regulation of human skin pigmentation In Situ by repetitive UV exposure: Molecular characterization of responses to UVA and/or UVB. J. Investig. Dermatol. 2010, 130, 1685–1696. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.; Pearse, A.; Marks, R.; Nishimori, Y.; Matsumoto, K.; Kawai, M. Degenerative Alterations of Dermal Collagen Fiber Bundles in Photodamaged Human Skin and UV-Irradiated Hairless Mouse Skin: Possible Effect on Decreasing Skin Mechanical Properties and Appearance of Wrinkles. J. Investig. Dermatol. 2001, 117, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
- Moan, J.; Grigalavicius, M.; Baturaite, Z.; Dahlback, A.; Juzeniene, A. The relationship between UV exposure and incidence of skin cancer. Photodermatol. Photoimmunol. Photomed. 2015, 31, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Bajgar, R.; Moukova, A.; Chalupnikova, N.; Kolarova, H. Differences in the effects of broad-band UVA and narrow-band UVB on epidermal keratinocytes. Int. J. Environ. Res. Public Health 2021, 18, 12480. [Google Scholar] [CrossRef] [PubMed]
- Berman, B. Basal cell carcinoma and actinic keratoses: Patients’ perceptions of their disease and current treatments. Int. J. Dermatol. 2001, 40, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Brash, D.; Rudolph, J.; Simon, J.; Lin, A.; McKenna, G.; Baden, H.; Halperin, A.; Ponten, J. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 1991, 88, 10124–10128. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.; Nickoonahand, N.; Morgan, M. Changing demographics and pathology of nonmelanoma skin cancer in the last 30 years. Semin. Cutan. Med. Surg. 2004, 23, 80–83. [Google Scholar] [CrossRef]
- Ley, R.D. Ultraviolet radiation A-induced precursors of cutaneous melanoma in Monodelphis domestica. Cancer Res. 1997, 57, 3682–3684. [Google Scholar]
- Gidanian, S.; Mentelle, M.; Meyskens, F.; Farmer, P. Melanosomal damage in normal human melanocytes induced by UVB and metal uptake—A basis for the pro-oxidant state of melanoma. Photochem. Photobiol. 2008, 84, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Bjorn, L. Photobiology: The Science of Life and Light, 2nd ed.; Springer: New York, NY, USA, 2008. [Google Scholar]
- Morison, W. Phototherapy and Photochemotherapy for Skin Disease, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Gilchrest, B. Photodamage, 1st ed.; Blackwell Science: Cambridge, MA, USA, 1995. [Google Scholar]
- Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Skobowiat, C.; Dowdy, J.; Sayre, R.; Tuckey, R.; Slominski, A. Cutaneous hypothalamic-pituitary-adrenal axis homolog: Regulation by ultraviolet radiation. Am. J. Physiol. Endocrinol. Metab. 2011, 301, 484–493. [Google Scholar] [CrossRef]
- Slominski, R.M.; Chen, J.Y.; Raman, C.; Slominski, A.T. Photo-neuro-immuno-endocrinology: How the ultraviolet radiation regulates the body, brain, and immune system. Proc. Natl. Acad. Sci. USA 2024, 121, e2308374121. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A. Ultraviolet radiation (UVR) activates central neuro-endocrine-immune system. Photodermatol. Photoimmunol. Photomed. 2015, 31, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Skobowiat, C.; Slominski, A. UVB Activates Hypothalamic-Pituitary-Adrenal Axis in C57BL/6 Mice. J. Investig. Dermatol. 2015, 135, 1638–1648. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Tuckey, R.C.; Jetten, A.M.; Holick, M.F. Recent Advances in Vitamin D Biology: Something New under the Sun. J. Investig. Dermatol. 2023, 143, 2340–2342. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Slominski, A.T. Photobiology of vitamin D. In Feldman and Pike’s Vitamin D; Hewison, M., Ed.; Academic Press: Oxford, UK, 2024; pp. 27–45. [Google Scholar]
- Cockell, C.; Gerda, H. The History of the UV Radiation Climate of the Earth—Theoretical and Space-based Observations. Photochem. Photobiol. 2001, 73, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Cockell, C. Ultraviolet radiation and the photobiology of earth’s early oceans. Orig. Life Evol. Biosph. 2000, 30, 467–500. [Google Scholar] [CrossRef]
- Dworkin, J.; Deamer, D.; Sandford, S.; Allamandola, L. Self-assembling amphiphilic molecules: Synthesis in simulated interstellar/precometary ices. Proc. Natl. Acad. Sci. USA 2001, 98, 815–819. [Google Scholar] [CrossRef]
- Slominski, A.; Zmijewski, M.; Plonka, P.; Szaflarski, J.; Paus, R. How UV Light Touches the Brain and Endocrine System through Skin, and Why. Endocrinology 2018, 159, 1992–2007. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Slominski, R.; Pyza, E.; Kleszczyński, K.; Tuckey, R.; Reiter, R.J.; Holick, M.; Slominski, A.T. Evolutionary formation of melatonin and vitamin D in early life forms: Insects take centre stage. Biol. Rev. 2024; in press. [Google Scholar] [CrossRef]
- Ho, Y.; Wu, J.; Chang, C. A new natural antioxidant biomaterial from Cinnamomum osmophloeum Kanehira leaves represses melanogenesis and protects against DNA damage. Antioxidants 2019, 8, 474. [Google Scholar] [CrossRef] [PubMed]
- Bose, V.; Balaganesan, V.; Govindaraj, G.; Veerichetty, V. Cellular antioxidant and cytotoxic activity of astaxanthin and ellagic acid on UV irradiated skin melanoma cells and gel formulation. Mater. Today Proc. 2023; in press. [Google Scholar]
- Galano, A.; Tan, D.; Reiter, R. Melatonin: A versatile protector against oxidative DNA damage. Molecules 2018, 23, 530. [Google Scholar] [CrossRef] [PubMed]
- Salucci, S.; Burattini, S.; Buontempo, F.; Martelli, A.; Falcieri, E.; Battistelli, M. Protective effect of different antioxidant agents in UVB-irradiated keratinocytes. Eur. J. Histochem. 2017, 61, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Kleszczyński, K.; Zwicker, S.; Tukaj, S.; Kasperkiewicz, M.; Zillikens, D.; Wolf, R.; Fischer, T.W. Melatonin compensates silencing of heat shock protein 70 and suppresses ultraviolet radiation-induced inflammation in human skin ex vivo and cultured keratinocytes. J. Pineal Res. 2015, 58, 117–126. [Google Scholar] [CrossRef] [PubMed]
- López-Burillo, S.; Tan, D.; Rodriguez-Gallego, V.; Manchester, L.; Mayo, J.; Sainz, R.; Reiter, R. Melatonin and its derivatives cyclic 3-hydroxymelatonin, N1-acetyl-N2-formyl-5-methoxykynuramine and 6-methoxymelatonin reduce oxidative DNA damage induced by Fenton reagents. J. Pineal Res. 2003, 34, 178–184. [Google Scholar] [CrossRef]
- Sliwinski, T.; Rozej, W.; Morawiec-Bajda, A.; Morawiec, Z.; Reiter, R.; Blasiak, J. Protective action of melatonin against oxidative DNA damage—Chemical inactivation versus base-excision repair. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2007, 634, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.; Kleszczyński, K.; Hardkop, L.; Kruse, N.; Zillikens, D. Melatonin enhances antioxidative enzyme gene expression (CAT, GPx, SOD), prevents their UVR-induced depletion, and protects against the formation of DNA damage (8-hydroxy-2’-deoxyguanosine) in Ex Vivo human skin. J. Pineal Res. 2013, 54, 303–312. [Google Scholar] [CrossRef]
- Hu, X.; Tian, X.; Yang, C.; Ling, F.; Liu, H.; Zhu, X.; Pei, M.; Yang, H.; Liu, T.; Xu, Y.; et al. Melatonin-loaded self-healing hydrogel targets mitochondrial energy metabolism and promotes annulus fibrosus regeneration. Mater. Today Bio 2023, 23, 100811. [Google Scholar] [CrossRef]
- Wei, L.; Yu, M.; Xie, D.; Wang, L.; Ye, C.; Zhu, Q.; Liu, F.; Yang, L. Melatonin-stimulated MSC-derived exosomes improve diabetic wound healing through regulating macrophage M1 and M2 polarization by targeting the PTEN/AKT pathway. Stem Cell Res. Ther. 2020, 11, 259. [Google Scholar]
- Rupesh, D.; Acharya, C.; Bindu, P.; Kundu, S. Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts. BMB Rep. 2008, 41, 236–241. [Google Scholar]
- Boni, B.; Lamboni, L.; Bakadia, B.; Hussein, S.; Yang, G. Combining silk sericin and surface micropatterns in bacterial cellulose dressings to control fibrosis and enhance wound healing. Eng. Sci. 2020, 10, 68–77. [Google Scholar] [CrossRef]
- Slominski, A.; Zmijewski, M.; Semak, I.; Kim, T.; Janjetovic, Z.; Slominski, R.; Zmijewski, J. Melatonin, mitochondria, and the skin. Cell. Mol. Life Sci. 2017, 74, 3913–3925. [Google Scholar] [CrossRef] [PubMed]
- Holtkamp, C.; Warmus, D.; Bonowicz, K.; Gagat, M.; Linowiecka, K.; Wolnicka-Glubisz, A.; Reiter, R.; Böhm, M.; Słominski, A.; Steinbrink, K.; et al. Ultraviolet Radiation-Induced Mitochondrial Disturbances Are Attenuated by Metabolites of Melatonin in Human Epidermal Keratinocytes. Metabolites 2023, 13, 861. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Kleszczyński, K.; Semak, I.; Janjetovic, Z.; Żmijewski, M.; Kim, T.; Slominski, R.; Reiter, R.; Fischer, T. Local melatoninergic system as the protector of skin integrity. Int. J. Mol. Sci. 2014, 15, 17705–17732. [Google Scholar] [CrossRef] [PubMed]
- Kleszczyński, K.; Tukaj, S.; Kruse, N.; Zillikens, D.; Fischer, T. Melatonin prevents ultraviolet radiation-induced alterations in plasma membrane potential and intracellular pH in human keratinocytes. J. Pineal Res. 2013, 54, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Acuña-Castroviejo, D.; Escames, G.; Venegas, C.; Díaz-Casado, M.; Lima-Cabello, E.; López, L.; Sergio Rosales-Corral, D.; Reiter, R. Extrapineal melatonin: Sources, regulation, and potential functions. Cell. Mol. Life Sci. 2014, 71, 2997–3025. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Wortsman, J.; Tobin, D. The cutaneous serotoninergic/melatoninergic system: Securing a place under the sun. FASEB J. 2015, 19, 176–194. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Hardeland, R.; Zmijewski, M.; Slominski, R.; Reiter, R.; Paus, R. Melatonin: A Cutaneous Perspective on its Production, Metabolism, and Functions. J. Investig. Dermatol. 2018, 138, 490–499. [Google Scholar] [CrossRef]
- Vasey, C.; McBride, J.; Penta, K. Circadian rhythm dysregulation and restoration: The role of melatonin. Nutrients 2021, 13, 3480. [Google Scholar] [CrossRef]
- Du Plessis, S.; Hagenaar, K.; Lampiao, F. The In Vitro effects of melatonin on human sperm function and its scavenging activities on NO and ROS. Andrologia 2010, 42, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Fu, A.; Hoffman, A.; Zheng, T.; Zhu, Y. Melatonin enhances DNA repair capacity possibly by affecting genes involved in DNA damage responsive pathways. BMC Cell Biol. 2013, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, K.; Plomp, R.; Lao, O.; Middleton, B.; Revell, V.; Skene, D.; Kayser, M. Effect of sleep deprivation on rhythms of clock gene expression and melatonin in humans. Chronobiol. Int. 2013, 30, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Pugazhenthi, K.; Kapoor, M.; Clarkson, A.; Hall, I.; Appleton, I. Melatonin accelerates the process of wound repair in full-thickness incisional wounds. J. Pineal Res. 2008, 44, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Alam, S.; Jain, A.; Ansari, K.; Mandal, B. Protective activity of silk sericin against UV radiation-induced skin damage by downregulating oxidative stress. ACS Appl. Bio Mater. 2018, 1, 2120–2132. [Google Scholar] [CrossRef] [PubMed]
- Young, A. Chromophores in human skin. Phys. Med. Biol. 1997, 42, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Akturk, O.; Tezcaner, A.; Bilgili, H.; Deveci, M.; Gecit, M.; Keskin, D. Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J. Biosci. Bioeng. 2011, 112, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Tao, G.; Cai, R.; Wang, Y.; Zuo, H.; He, H. Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing. Mater. Sci. Eng. C 2021, 119, 111597. [Google Scholar] [CrossRef] [PubMed]
- Chirila, T.; Suzuki, S.; McKirdy, N. Further development of silk sericin as a biomaterial: Comparative investigation of the procedures for its isolation from Bombyx mori silk cocoons. Prog. Biomater. 2016, 5, 135–145. [Google Scholar] [CrossRef]
- Chirila, T.; Suzuki, S.; Bray, L.; Barnett, N.; Harkin, D. Evaluation of silk sericin as a biomaterial: In Vitro growth of human corneal limbal epithelial cells on Bombyx mori sericin membranes. Prog. Biomater. 2013, 2, 14. [Google Scholar] [CrossRef]
- Kundu, B.; Kundu, S. Silk sericin/polyacrylamide In Situ forming hydrogels for dermal reconstruction. Biomaterials 2012, 33, 7456–7467. [Google Scholar] [CrossRef] [PubMed]
- Mandal, B.; Priya, A.; Kundu, S. Novel silk sericin/gelatin 3-D scaffolds and 2-D films: Fabrication and characterization for potential tissue engineering applications. Acta Biomater. 2009, 5, 3007–3020. [Google Scholar] [CrossRef] [PubMed]
- Aramwit, P.; Damrongsakkul, S.; Kanokpanont, S.; Srichana, T. Properties and antityrosinase activity of sericin from various extraction methods. Biotechnol. Appl. Biochem. 2010, 55, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Jena, K.; Pandey, J.; Kumari, R.; Sinha, A.; Gupta, V.; Singh, G. Tasar silk fiber waste sericin: New source for anti-elastase, anti-tyrosinase and anti-oxidant compounds. Int. J. Biol. Macromol. 2018, 114, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Chlapanidas, T.; Faragò, S.; Lucconi, G.; Perteghella, S.; Galuzzi, M.; Mantelli, M.; Avanzini, M.; Tosca, M.; Marazzi, M.; Vigo, D.; et al. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and In Vitro immunomodulatory activities. Int. J. Biol. Macromol. 2013, 58, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qi, C.; Tao, K.; Zhang, J.; Zhang, J.; Xu, L.; Jiang, X.; Zhang, Y.; Huang, L.; Xie, H.; et al. Sericin/dextran injectable hydrogel as an optically trackable drug delivery system for malignant melanoma treatment. ACS Appl. Mater. Interfaces 2016, 8, 6411–6422. [Google Scholar] [CrossRef] [PubMed]
- Villani, A.; Scalvenzi, M.; Micali, G.; Lacarrubba, F.; Fornaro, L.; Martora, F.; Potestio, L. Management of Advanced Invasive Melanoma: New Strategies. Adv. Ther. 2023, 40, 3381–3394. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zheng, H.; Zhou, L.; Cheng, F.; Liu, Z.; Zhang, H.; Zhang, Q. Injectable redox and light responsive MnO2 hybrid hydrogel for simultaneous melanoma therapy and multidrug-resistant bacteria-infected wound healing. Biomaterials 2020, 260, 120314. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Zhang, D.; Tang, Y.; Guo, Z.; Lin, K.; Yu, Y.; Li, J.; Cai, Q. Fibrous dressing containing bioactive glass with combined chemotherapy and wound healing promotion for post-surgical treatment of melanoma. Biomater. Adv. 2023, 149, 213387. [Google Scholar] [CrossRef]
- Dhall, S.; Do, D.; Garcia, M.; Wijesinghe, D.; Brandon, A.; Kim, J.; Sanchez, A.; Lyubovitsky, J.; Gallagher, S.; Nothnagel, E.; et al. A novel model of chronic wounds: Importance of redox imbalance and biofilm-forming bacteria for establishment of chronicity. PLoS ONE 2014, 9, e109848. [Google Scholar] [CrossRef]
- Dryden, M. Complicated skin and soft tissue infection. J. Antimicrob. Chemother. 2010, 65, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Widgerow, A.; King, K.; Tocco-Tussardi, I.; Banyard, D.; Chiang, R.; Awad, A.; Afzel, H.; Bhatnagel, S.; Melkumyan, S.; Wirth, G.; et al. The burn wound exudate—An under-utilized resource. Burns 2015, 41, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Razzaq, A.; Khan, N.; Iqbal, H.; Ni, J. Chitosan/poly (3-hydroxy butyric acid-co-3-hydroxy valeric acid) electrospun nanofibers with cephradine for superficial incisional skin wound infection management. Int. J. Biol. Macromol. 2023, 250, 126229. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Talukdar, S.; Kundu, S. Potential of 2D crosslinked sericin membranes with improved biostability for skin tissue engineering. Cell Tissue Res. 2012, 347, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Jiang, X.; Jiang, M.; Guo, Y.; Liu, Y.; Ming, P.; Li, S.; Zhou, P.; Cai, R.; Yu, K.; et al. Biocompatible gellan gum/sericin hydrogels containing halloysite@ polydopamine nanotubes with hemostasis and photothermal antibacterial properties for promoting infectious wound repair. Mater. Des. 2023, 227, 111744. [Google Scholar] [CrossRef]
- Oviedo, M.; Montoya, Y.; Alvarez, C.; Bustamante, J. Influence of Electrospinning Parameters on the Physicochemical Properties of Polycaprolactone, Chitosan, and Sericin Membranes. Mater. Proc. 2023, 11, 5. [Google Scholar] [CrossRef]
- Rui, Z.; Li, X.; Sun, B.; Zhang, Y.; Zhang, D.; Tang, Z.; Chen, X.; Wang, C. Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Int. J. Biol. Macromol. 2014, 68, 92–97. [Google Scholar]
- Sood, A.; Bhaskar, R.; Won, S.; Seok, Y.; Kumar, A.; Han, S. Disulfide bond-driven hyaluronic acid/sericin nanoparticles for wound-healing application. J. Nanostruct. Chem. 2023, 13, 463–480. [Google Scholar] [CrossRef]
- Lee, H.; Jang, M.; Park, B.; Um, I. Structural Characteristics and Properties of Redissolved Silk Sericin. Polymers 2023, 15, 3405. [Google Scholar] [CrossRef]
- Teh, T.; Toh, S.; Goh, J. Optimization of the silk scaffold sericin removal process for retention of silk fibroin protein structure and mechanical properties. Biomed. Mater. 2010, 5, 35008. [Google Scholar] [CrossRef]
- Turbiani, F.; Tomadon, J.; Seixas, F.; Gimenes, M. Properties and structure of sericin films: Effect of the crosslinking degree. Chem. Eng. Trans. 2011, 24, 1489–1494. [Google Scholar]
- Wang, J.; Shang, J.; Ren, F.; Leng, X. Study of the physical properties of whey protein: Sericin protein-blended edible films. Eur. Food Res. Technol. 2010, 231, 109–116. [Google Scholar] [CrossRef]
- Sothornvit, R.; Chollakup, R. Properties of sericin–glucomannan composite films. Int. J. Food Sci. Technol. 2009, 44, 1395–1400. [Google Scholar] [CrossRef]
- Roubenoff, R.; Harris, T.; Abad, L.; Wilson, P.; Dallal, G.; Dinarello, C. Monocyte cytokine production in an elderly population: Effect of age and inflammation. J. Gerontol. A Biol. Sci. Med. Sci. 1998, 53, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Gorni, D.; Finco, A. Oxidative stress in elderly population: A prevention screening study. Aging Med. 2020, 3, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Makrantonaki, E.; Bekou, V.; Zouboulis, C. Genetics and skin aging. Derm.-Endocrinol. 2012, 4, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, S.; Maymone, M.; Vashi, N. Aging in skin of color. Clin. Dermatol. 2019, 37, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Mazzoccoli, G.; De Cata, A.; Greco, A.; Damato, M.; Marzulli, N.; Dagostino, M.; Carughi, S.; Perfetto, F.; Tarquini, R. Aging related changes of circadian rhythmicity of cytotoxic lymphocyte subpopulations. J. Circadian Rhytm. 2010, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Barth, E.; Srivastava, A.; Wengerodt, D.; Stojiljkovic, M.; Axer, H.; Witte, O.; Kretz, A.; Marz, M. Age-dependent expression changes of circadian system-related genes reveal a potentially conserved link to aging. Aging 2021, 13, 25694–25716. [Google Scholar] [CrossRef]
- Gorelik, S.; Belousova, O.; Treneva, E.; Bulgakova, S.; Zakharova, N.; Nesterenko, S. Effect of daily rhythms of cortisol secretion on the rate of aging in men. Arch. Razi Inst. 2022, 77, 1233–1239. [Google Scholar]
- Martinez-Nicolas, A.; Madrid, J.; García, F.; Campos, M.; Moreno-Casbas, M.; Almaida-Pagán, P.; Lucas-Sanchez, A.; Rol, M. Circadian monitoring as an aging predictor. Sci. Rep. 2018, 8, 15027. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, N.; Prime, S. Keratinocytes synthesize and activate cortisol. J. Cell. Biochem. 2011, 112, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- Jackson, E.; Heidl, M.; Imfeld, D.; Meeus, L.; Schuetz, R.; Campiche, R. Discovery of a highly selective MC1R agonists pentapeptide to be used as a skin pigmentation enhancer and with potential anti-aging properties. Int. J. Mol. Sci. 2019, 20, 6143. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Slominski, R.M.; Raman, C.; Chen, J.Y.; Athar, M.; Elmets, C. Neuroendocrine signaling in the skin with a special focus on the epidermal neuropeptides. Am. J. Physiol. Cell Physiol. 2022, 323, C1757–C1776. [Google Scholar] [CrossRef] [PubMed]
- Bocheva, G.; Slominski, R.; Slominski, A. The impact of vitamin D on skin aging. Int. J. Mol. Sci. 2021, 22, 9097. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Brożyna, A.; Zmijewski, M.; Jóźwicki, W.; Jetten, A.; Mason, R.; Tuckey, R.; Elmets, C. Vitamin D signaling and melanoma: Role of vitamin D and its receptors in melanoma progression and management. Lab. Investig. 2017, 97, 706–724. [Google Scholar] [CrossRef] [PubMed]
- Janjetovic, Z.; Slominski, A.T. Promising Functions of Novel Vitamin D Derivatives as Cosmetics: A New Fountain of Youth in Skin Aging and Skin Protection. Cosmetics 2024, 11, 37. [Google Scholar] [CrossRef]
- Slominski, A.; Brożyna, A.; Skobowiat, C.; Zmijewski, M.; Kim, T.; Janjetovic, Z.; Oak, A.; Jozwicki, W.; Jetten, A.; Mason, R.S.; et al. On the role of classical and novel forms of vitamin D in melanoma progression and management. J. Steroid. Biochem. Mol. Biol. 2018, 177, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Noh, E.; Park, J.; Song, H.; Kim, J.; Lee, M.; Song, H.; Hong, O.; Whang, P.; Han, M.; Kwon, K.; et al. Skin aging-dependent activation of the PI3K signaling pathway via downregulation of PTEN increases intracellular ROS in human dermal fibroblasts. Oxid. Med. Cell. Longev. 2016, 2016, 6354261. [Google Scholar] [CrossRef]
- Bratic, A.; Larsson, N.G. The role of mitochondria in aging. J. Clin. Investig. 2013, 123, 951–957. [Google Scholar] [CrossRef]
- Trifunovic, A.; Wredenberg, A.; Falkenberg, M.; Spelbrink, J.N.; Rovio, A.T.; Bruder, C.E.; Bohlooly, Y.M.; Gidlöf, S.; Oldfors, A.; Wibom, R.; et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 2004, 429, 417–423. [Google Scholar] [CrossRef] [PubMed]
- McCullough, J.L.; Kelly, K.M. Prevention and treatment of skin aging. Ann. N. Y. Acad. Sci. 2006, 1067, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, Y.; Ye, K.; Picard, M.; Gu, Z. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genom. 2017, 18, 890. [Google Scholar] [CrossRef]
- Anderson, A.; Bowman, A.; Boulton, S.; Manning, P.; Birch-Machin, M. A role for human mitochondrial complex II in the production of reactive oxygen species in human skin. Redox Biol. 2014, 2, 1016–1022. [Google Scholar] [CrossRef] [PubMed]
- Zungu, I.; Hawkins Evans, D.; Abrahamse, H. Mitochondrial responses of normal and injured human skin fibroblasts following low level laser irradiation—An In Vitro study. Photochem. Photobiol. 2009, 85, 987–996. [Google Scholar] [CrossRef]
- Birch-Machin, M.; Bowman, A. Oxidative stress and ageing. Br. J. Dermatol. 2016, 175, 26–29. [Google Scholar] [CrossRef]
- Reiter, R.J.; Mayo, J.C.; Tan, D.X.; Sainz, R.M.; Alatorre-Jimenez, M.; Qin, L. Melatonin as an antioxidant: Under promises but over delivers. J. Pineal Res. 2016, 61, 259–278. [Google Scholar] [CrossRef]
- Tan, D.X.; Chen, L.D.; Poeggeler, B.; Manchester, L.C.; Reiter, R.J. Melatonin: A potent endogenous hydroxyl radical scavenger. Endocrine 1993, 1, 57–60. [Google Scholar]
- Reiter, R.; Tan, D.; Rosales-Corral, S.; Galano, A.; Jou, M.; Acuna-Castroviejo, D. Melatonin mitigates mitochondrial meltdown: Interactions with SIRT3. Int. J. Mol. Sci. 2018, 19, 2439. [Google Scholar] [CrossRef]
- Hardeland, R. Antioxidant protection by melatonin: Multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 2005, 27, 119–130. [Google Scholar] [CrossRef]
- Reiter, R.; Rosales-Corral, S.; Tan, D.; Jou, M.; Galano, A.; Xu, B. Melatonin as a mitochondria-targeted antioxidant: One of evolution’s best ideas. Cell. Mol. Life Sci. 2017, 74, 3863–3881. [Google Scholar] [CrossRef]
- Reiter, R.; Tan, D.; Manchester, L.; Qi, W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: Are view of the evidence. Cell Biochem. Biophys. 2001, 34, 237–256. [Google Scholar] [CrossRef]
- Bonnefont-Rousselot, D.; Collin, F. Melatonin: Action as antioxidant and potential applications in human disease and aging. Toxicology 2010, 278, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Yuksel Egrilmez, M.; Kocturk, S.; Aktan, S.; Oktay, G.; Resmi, H.; Simsek Keskin, H.; Akdogan, G.; Ozkan, S. Melatonin prevents UVB-induced skin photoaging by inhibiting oxidative damage and MMP expression through JNK/AP-1 signaling pathway in human dermal fibroblasts. Life 2022, 12, 950. [Google Scholar] [CrossRef]
- Ayata, A.; Mollaoglu, H.; Yilmaz, H.; Akturk, O.; Ozguner, F.; Altuntas, I. Oxidative stress-mediated skin damage in an experimental mobile phone model can be prevented by melatonin. J. Dermatol. 2004, 31, 878–883. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Najafi, M.; Kavyiani, N.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S. Anti-inflammatory activity of melatonin: A focus on the role of NLRP3 inflammasome. Inflammation 2021, 44, 1207–1222. [Google Scholar] [CrossRef] [PubMed]
- Mayo, J.; Sainz, R.; Tan, D.; Hardeland, R.; Leon, J.; Rodriguez, C.; Reiter, R.J. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J. Neuroimmunol. 2005, 165, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Manchester, L.; Qin, L.; Reiter, R. Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int. J. Mol. Sci. 2016, 17, 2124. [Google Scholar] [CrossRef]
- Hardeland, R. Melatonin and inflammation-story of a double-edged blade. J. Pineal Res. 2018, 65, e12525. [Google Scholar] [CrossRef]
- Galano, A.; Tan, D.X.; Reiter, R.J. On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J. Pineal Res. 2013, 54, 245–257. [Google Scholar] [CrossRef]
- Tan, D.; Manchester, L.; Burkhardt, S.; Sainz, R.; Mayo, J.; Kohen, R.; Shohami, E.; Huo, Y.; Hardeland, R.; Reiter, R. N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J. 2001, 15, 2294–2296. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Fischer, T.W.; Zmijewski, M.; Wortsman, J.; Semak, I.; Zbytek, B.; Slominski, R.; Tobin, D. On the role of melatonin in skin physiology and pathology. Endocrine 2005, 27, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.; Zmijewski, M.; Zbytek, B.; Sweatman, T.; Slominski, R.; Wortsman, J.; Slominski, A. Oncostatic effects of the indole melatonin and expression of its cytosolic and nuclear receptors in cultured human melanoma cell lines. Int. J. Oncol. 2006, 29, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Galano, A.; Tan, D.; Reiter, R. Melatonin as a naturally against oxidative stress: A physicochemical examination. J. Pineal Res. 2011, 51, 1–16. [Google Scholar] [CrossRef]
- Kobayashi, H.; Kromminga, A.; Dunlop, T.; Tychsen, B.; Conrad, F.; Suzuki, N.; Memezawa, A.; Bettermann, A.; Aiba, S.; Carlberg, C.; et al. A role of melatonin in neuroectodermal-mesodermal interactions: The hair follicle synthesizes melatonin and expresses functional melatonin receptors. FASEB J. 2005, 19, 1710–1712. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, Z.; Cao, J.; Dong, Y.; Chen, Y. Melatonin improves skin barrier damage caused by sleep restriction through gut microbiota. J. Pineal Res. 2023, 75, e12874. [Google Scholar] [CrossRef]
- Skobowiat, C.; Brożyna, A.; Janjetovic, Z.; Jeayeng, S.; Oak, A.; Kim, T.; Panich, U.; Reiter, R.; Slominski, A. Melatonin and its derivatives counteract the ultraviolet B radiation-induced damage in human and porcine skin ex vivo. J. Pineal Res. 2018, 65, e12501. [Google Scholar] [CrossRef]
- Izykowska, I.; Cegielski, M.; Gebarowska, E.; Podhorska-Okolow, M.; Piotrowska, A.; Zabel, M.; Dziegiel, P. Effect of melatonin on human keratinocytes and fibroblasts subjected to UVA and UVB radiation In Vitro. In Vivo 2009, 23, 739–745. [Google Scholar]
- Kleszczynski, K.; Hardkop, L.; Fischer, T. Differential effects of melatonin as a broad range UV-damage preventive dermato-endocrine regulator. Derm.-Endocrinol. 2011, 3, 27–31. [Google Scholar] [CrossRef]
- Cho, J.; Kim, C.; Lee, K. Modification of gene expression by melatonin in UVB-irradiated HaCaT keratinocyte cell lines using a cDNA microarray. Oncol. Rep. 2007, 17, 573–577. [Google Scholar] [CrossRef]
- Kleszczynski, K.; Zillikens, D.; Fischer, T. Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (γ-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK). J. Pineal Res. 2016, 61, 187–197. [Google Scholar] [PubMed]
- Fischer, T.; Zmijewski, M.; Wortsman, J.; Slominski, A. Melatonin maintains mitochondrial membrane potential and attenuates activation of initiator (casp-9) and effector caspases (casp-3/casp-7) and PARP in UVR-exposed HaCaT keratinocytes. J. Pineal Res. 2008, 44, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.; Sweatman, T.; Semak, I.; Sayre, R.; Wortsman, J.; Slominski, A. Constitutive and UV-induced metabolism of melatonin in keratinocytes and cell-free systems. FASEB J. 2006, 20, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Lee, W.; Suh, S.; Kim, S.; Lee, S.; Ryoo, Y.; Kim, B. Melatonin reduces ultraviolet-B induced cell damage and polyamine levels in human skin fibroblasts in culture. Exp. Mol. Med. 2003, 35, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Rezzani, R.; Rodella, L.; Favero, G.; Damiani, G.; Paganelli, C.; Reiter, R. Attenuation of ultraviolet A-induced alterations in NIH3T3 dermal fibroblasts by melatonin. Br. J. Dermatol. 2014, 170, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, Y.; Suh, S.; Mun, K.; Kim, B.; Lee, K. The effects of the melatonin on ultraviolet-B irradiated cultured dermal fibroblasts. J. Dermatol. Sci. 2001, 27, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Janjetovic, Z.; Jarrett, S.; Lee, E.; Duprey, C.; Reiter, R.; Slominski, A. Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. Sci. Rep. 2017, 7, 1274. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Moon, J.; Nazim, U.; Lee, Y.; Seol, J.; Eo, S.; Lee, J.; Park, S. Melatonin protects skin keratinocyte from hydrogen peroxide-mediated cell death via theSIRT1 pathway. Oncotarget 2016, 7, 12075–12088. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, D.; Avitabile, D.; Shiota, M.; Yokomizo, A.; Naito, S.; Bizzarri, M.; Torrisi, M. Nuclear redox imbalance affects circadian oscillation in HaCaT keratinocytes. Int. J. Biochem. Cell Biol. 2015, 65, 113–124. [Google Scholar] [CrossRef]
- Haslam, I.; Jadkauskaite, L.; Szabo, I.; Staege, S.; Hesebeck-Brinckmann, J.; Jenkins, G.; Bhogal, R.; Lim, F.; Farjo, N.; Farjo, B.; et al. Oxidative damage control in a human (mini-) organ: Nrf2 activation protects against oxidative stress-induced hair growth inhibition. J. Investig. Dermatol. 2017, 137, 295–304. [Google Scholar] [CrossRef]
- Scheuer, C. Melatonin for prevention of erythema and oxidative stress in response to ultraviolet radiation. Dan. Med. J. 2017, 64, B5358. [Google Scholar] [PubMed]
- Dong, K.; Goyarts, E.; Rella, A.; Pelle, E.; Wong, Y.; Pernodet, N. Age associated decrease of MT-1 melatonin receptor in human dermal skin fibroblasts impairs protection against UV-induced DNA damage. Int. J. Mol. Sci. 2020, 21, 326. [Google Scholar] [CrossRef] [PubMed]
- Scheuer, C.; Pommergaard, H.C.; Rosenberg, J.; Gogenur, I. Dose dependent sun protective effect of topical melatonin: A randomized, placebo-controlled, double-blind study. J. Dermatol. Sci. 2016, 84, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kleszczynski, K.; Janjetovic, Z.; Sweatman, T.; Lin, Z.; Li, W. Metabolism of melatonin and biological activity of intermediates of melatoninergic pathway in human skin cells. FASEB J. 2013, 27, 2742–2755. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Chassalevris, N.; Mazurkiewicz, J.; Maurer, M.; Paus, R. Murine skin as a target for melatonin bioregulation. Exp. Dermatol. 1994, 3, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Kim, T.K.; Slominski, R.M.; Song, Y.; Qayyum, S.; Placha, W.; Janjetovic, Z.; Kleszczyński, K.; Atigadda, V.; Song, Y.; et al. Melatonin and Its Metabolites Can Serve as Agonists on the Aryl Hydrocarbon Receptor and Peroxisome Proliferator-Activated Receptor Gamma. Int. J. Mol. Sci. 2023, 24, 15496. [Google Scholar] [CrossRef] [PubMed]
- Aramwit, P.; Kanokpanont, S.; Nakpheng, T.; Srichana, T. The effect of sericin from various extraction methods on cell viability and collagen production. Int. J. Mol. Sci. 2010, 11, 2200–2211. [Google Scholar] [CrossRef]
- Aramwit, P.; Kanokpanont, S.; De-Eknamkul, W.; Kamei, K.; Srichana, T. The effect of sericin with variable amino-acid content from different silk strains on the production of collagen and nitric oxide. J. Biomater. Sci. Polym. Ed. 2009, 20, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Kitisin, T.; Maneekan, P.; Luplertlop, N. In Vitro characterization of silk sericin as an anti-aging agent. J. Agric. Sci. 2013, 5, 54–62. [Google Scholar] [CrossRef]
- Sangwong, G.; Sumida, M.; Sutthikhum, V. Antioxidant activity of chemically and enzymatically modified sericin extracted from cocoons of Bombyx mori. Biocatal. Agric. Biotechnol. 2016, 5, 155–161. [Google Scholar] [CrossRef]
- Kanpipit, N.; Nualkaew, N.; Thapphasaraphong, S. The Potential of Purple Waxy Corn Cob (Zea mays L.) Extract Loaded-Sericin Hydrogel for Anti-Hyperpigmentation, UV Protection and Anti-Aging Properties as Topical Product Applications. Pharmaceuticals 2023, 16, 35. [Google Scholar] [CrossRef] [PubMed]
- Parashar, P.; Pal, S.; Dwivedi, M.; Saraf, S. Augmented Therapeutic Efficacy of Naringenin through Microemulsion-Loaded Sericin Gel against UVB-Induced Photoaging. AAPS PharmSciTech 2020, 21, 215. [Google Scholar] [CrossRef] [PubMed]
- Berardesca, E.; Ardigo, M.; Cameli, N.; Mariano, M.; Agozzino, M.; Matts, P. Randomized, double-blinded, vehicle-controlled, split-face study to evaluate the effects of topical application of a Gold Silk Sericin/Niacinamide/Signaline complex on biophysical parameters related to skin ageing. Int. J. Cosmet. Sci. 2015, 37, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.; Wang, Z.; Datta, S.; Varani, J.; Kang, S.; Voorhees, J. Pathophysiology of premature skin aging induced by ultraviolet light. N. Engl. J. Med. 1997, 337, 1419–1429. [Google Scholar] [CrossRef] [PubMed]
- Hudson, L.; Rashdan, E.; Bonn, C.; Chavan, B.; Rawlings, D.; Birch-Machin, M. Individual and combined effects of the infrared, visible, and ultraviolet light components of solar radiation on damage biomarkers in human skin cells. FASEB J. 2020, 34, 3874–3883. [Google Scholar] [CrossRef] [PubMed]
- Barresi, C.; Stremnitzer, C.; Mlitz, V.; Kezic, S.; Kammeyer, A.; Ghannadan, M.; Posa-Markaryan, K.; Selden, C.; Tschachler, E.; Eckhart, L. Increased sensitivity of histidinemic mice to UVB radiation suggests a crucial role of endogenous urocanic acid in photoprotection. J. Investig. Dermatol. 2011, 131, 188–194. [Google Scholar] [CrossRef]
- Andor, N.; Graham, T.; Jansen, M.; Xia, L.; Aktipis, C.; Petritsch, C.; Ji, H.; Maley, C. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 2016, 22, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Dalle Carbonare, L.; Minoia, A.; Vareschi, A.; Piritore, F.; Zouari, S.; Gandini, A.; Meneghel, M.; Elia, R.; Lorenzi, P.; Antoniazzi, F.; et al. Exploring the Interplay of RUNX2 and CXCR4 in Melanoma Progression. Cells 2024, 13, 408. [Google Scholar] [CrossRef] [PubMed]
- Colebatch, A.; Scolyer, R. Trajectories of premalignancy during the journey from melanocyte to melanoma. Pathology 2018, 50, 16–23. [Google Scholar] [CrossRef]
- Elder, D.; Gimotty, P.; Guerry, D. Cutaneous melanoma: Estimating survival and recurrence risk based on histopathologic features. Dermatol. Ther. 2005, 18, 369–385. [Google Scholar] [CrossRef]
- Baade, P.; Whiteman, D.; Janda, M.; Cust, A.; Neale, R.; Smithers, B.; Green, A.; Khosrotehrani, K.; Mar, V.; Soyer, P.; et al. Long-term deaths from melanoma according to tumor thickness at diagnosis. Int. J. Cancer 2020, 147, 1391–1396. [Google Scholar] [CrossRef]
- Owen, C.; Shoushtari, A.; Chauhan, D.; Palmieri, D.J.; Lee, B.; Rohaan, M.; Mangana, J.; Atkinson, V.; Zaman, F.; Young, A.; et al. Management of early melanoma recurrence despite adjuvant anti-PD-1 antibody therapy. Ann. Oncol. 2020, 31, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Dedeilia, A.; Lwin, T.; Li, S.; Tarantino, G.; Tunsiricharoengul, S.; Lawless, A.; Sharova, T.; Liu, D.; Boland, G.; Cohen, S. Factors Affecting Recurrence and Survival for Patients with High-Risk Stage II Melanoma. Ann. Surg. Oncol. 2024, 31, 2713–2726. [Google Scholar] [CrossRef]
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.; Vries, E.; Whiteman, D.; Bray, F. Global burden of cutaneous melanoma in 2020 and projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, L.; Levine, E.; Shen, P.; Votanopoulos, K. Role of surgery for metastatic melanoma. Surg. Clin. 2020, 100, 127–139. [Google Scholar] [CrossRef]
- Joyce, D.; Skitzki, J. Surgical management of primary cutaneous melanoma. Surg. Clin. 2020, 100, 61–70. [Google Scholar] [CrossRef]
- Koizumi, S.; Inozume, T.; Nakamura, Y. Current surgical management for melanoma. J. Dermatol. 2024, 51, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Patil, T.; Rohiwal, S.; Tiwari, A. Stem cells: Therapeutic implications in chemotherapy and radiotherapy resistance in cancer therapy. Curr. Stem Cell Res. Ther. 2023, 18, 750–765. [Google Scholar] [CrossRef]
- Pires, L.; Demidov, V.; Wilson, B.; Salvio, A.; Moriyama, L.; Bagnato, V.; Vitkin, I.; Kurachi, C. Dual-agent photodynamic therapy with optical clearing eradicates pigmented melanoma in preclinical tumor models. Cancers 2020, 12, 1956. [Google Scholar] [CrossRef]
- Mallidi, S.; Anbil, S.; Bulin, A.; Obaid, G.; Ichikawa, M.; Hasan, T. Beyond the barriers of light penetration: Strategies, perspectives and possibilities for photodynamic therapy. Theranostics 2016, 6, 2458–2487. [Google Scholar] [CrossRef]
- Rio, A.; Mas, J.O.; Moreno, G.; Sanchez, D.; Castresana, I.; Cuxart, J. Reconstruction Using Perforator Propeller Flaps After Malignant Melanoma Resection of the Lower Extremity. Plast. Surg. 2022, 32, 276–282. [Google Scholar]
- Wing, W. Reconstruction of head and neck melanoma defects. Oral Maxillofac. Surg. Clin. 2020, 34, 283–298. [Google Scholar]
- Mohiuddin, J.; Chu, B.; Facciabene, A.; Poirier, K.; Wang, X.; Doucette, A.; Zheng, C.; Xu, W.; Anstadt, E.; Amaravadi, R.; et al. Association of antibiotic exposure with survival and toxicity in patients with melanoma receiving immunotherapy. J. Nat. Cancer Inst. 2021, 113, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Huynh, M.; Olaiya, O.; Kim, P.; Gallo, L.; Dunn, E.; Farrokhyar, F.; McRae, M.; Voinescos, S.; McRae, M. A comparison of skin grafts versus local flaps for facial skin cancer from the patient perspective: Protocol for a feasibility study. Jpn. J. Clin. Oncol. 2023, 53, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Mamsen, F.; Kiilerich, C.; Hesselfeldt-Nielsen, J.; Saltvig, I.; Remvig, C.; Trøstrup, H.; Schmidt, V. Risk stratification of local flaps and skin grafting in skin cancer-related facial reconstruction: A retrospective single-center study of 607 patients. J. Pers. Med. 2022, 12, 2067. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, Y.; Hou, Z.; Luo, B.; Li, C.; Jiang, K.; Liu, J.; Yao, G.; Tang, J. Application of dermal regenerative template in reconstructing skin defects after plantar malignant melanoma excision. J. BUON 2021, 26, 2146–2153. [Google Scholar]
- Heo, J.; Jeon, E.; Joo, K.; Cha, H. Locoregional melanoma therapy by tissue adhesive microneedle patch-assisted trans-tumoral delivery of anticancer drug. Biotechnol. Bioprocess Eng. 2023, 28, 473–482. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, Y.; Chen, T.; Lao, C.; Gao, H.; Wei, R.; Feng, B.; Zhi, W.; Weng, J.; Wang, J. A distinctive nanocomposite hydrogel integrated platform for the healing of wound after the resection of melanoma. Materialia 2020, 14, 100931. [Google Scholar] [CrossRef]
- Du, S.; Suo, H.; Xie, G.; Lyu, Q.; Mo, M.; Xie, Z.; Zhou, N.; Zhang, L.; Tao, J.; Zhu, J. Self-powered and photothermal electronic skin patches for accelerating wound healing. Nano Energy 2022, 93, 106906. [Google Scholar] [CrossRef]
- Andreassi, L. UV exposure as a risk factor for skin cancer. Expert Rev. Dermatol. 2011, 6, 445–454. [Google Scholar] [CrossRef]
- Cho, E.; Rosner, B.; Colditz, G. Risk factors for melanoma by body site. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 1241–1244. [Google Scholar] [CrossRef]
- Bauer, J.; Garbe, C. Acquired melanocytic nevi as risk factor for melanoma development. A comprehensive review of epidemiological data. Pigment Cell Res. 2003, 16, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Castañeda, L.; Nova, J.; Tovar-Parra, J. Frequency of mutations in BRAF, NRAS, and KIT in different populations and histological subtypes of melanoma: A systemic review. Melanoma Res. 2020, 30, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Potrony, M.; Puig-Butillé, J.; Aguilera, P.; Badenas, C.; Carrera, C.; Malvehy, J.; Puig, S. Increased prevalence of lung, breast, and pancreatic cancers in addition to melanoma risk in families bearing the cyclin-dependent kinase inhibitor 2A mutation: Implications for genetic counseling. J. Am. Acad. Dermatol. 2014, 71, 888–895. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.; Pilarski, R.; Massengill, J.; Christopher, B.; Noss, R.; Davidorf, F. Melanoma candidate genes CDKN2A/p16/INK4A, p14ARF, and CDK4 sequencing in patients with uveal melanoma with relative high-risk for hereditary cancer predisposition. Melanoma Res. 2011, 21, 175–179. [Google Scholar] [CrossRef]
- Roesch, A.; Volkenandt, M. Dermatology, 3rd ed.; Springer: Berlin, Germany, 2009; pp. 1416–1432. [Google Scholar]
- Li, B.; Smith, C.; Laing, J.; Gober, M.; Liu, L.; Aurelian, L. Overload of the heat-shock protein H11/HspB8 triggers melanoma cell apoptosis through activation of transforming growth factor-β-activated kinase 1. Oncogene 2007, 26, 3521–3531. [Google Scholar] [CrossRef]
- Knudsen, S.; Schardt, A.; Buhl, T.; Boeckmann, L.; Schön, M.; Neumann, C.; Haenssle, H. Enhanced T-cell activation by immature dendritic cells loaded with HSP70-expressing heat-killed melanoma cells. Exp. Dermatol. 2010, 19, 108–116. [Google Scholar] [CrossRef]
- Park, K.; Kim, D.; Choi, H.; Kim, K.; Chung, J.; Eun, H.; Lee, S.; Seo, J.S. Overexpression of HSP70 prevents ultraviolet B-induced apoptosis of a human melanoma cell line. Arch. Dermatol. Res. 2000, 292, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Cardile, V.; Caggia, S.; Gunther, G.; Troncoso, N.; Garbarino, J. Boldo prevents UV light and nitric oxide-mediated plasmid DNA damage and reduces the expression of Hsp70 protein in melanoma cancer cells. J. Pharm. Pharmacol. 2011, 63, 1219–1229. [Google Scholar] [CrossRef]
- Roh, B.; Kim, D.; Cho, M.; Park, Y.; Whang, K. Expression of heat shock protein 70 in human skin cells as a photoprotective function after UV exposure. Ann. Dermatol. 2008, 20, 184. [Google Scholar] [CrossRef]
- Lanneau, D.; Brunet, M.; Frisan, E.; Solary, E.; Fontenay, M.; Garrido, C. Heat shock proteins: Essential proteins for apoptosis regulation. J. Cell. Mol. Med. 2008, 12, 743–761. [Google Scholar] [CrossRef] [PubMed]
- Assefa, Z.; Van Laethem, A.; Garmyn, M.; Agostinis, P. Ultraviolet radiation-induced apoptosis in keratinocytes: On the role of cytosolic factors. Biochim. Biophys. Acta Rev. Cancer 2005, 1755, 90–106. [Google Scholar] [CrossRef] [PubMed]
- Strozyk, E.; Kulms, D. The role of AKT/mTOR pathway in stress response to UV-irradiation: Implication in skin carcinogenesis by regulation of apoptosis, autophagy and senescence. Int. J. Mol. Sci. 2013, 14, 15260–15285. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, J.; Negrín, G.; Estévez, F.; Loro, J.; Reiter, R.; Quintana, J. Melatonin decreases cell proliferation and induces melanogenesis in human melanoma SK-MEL-1 cells. J. Pineal Res. 2010, 49, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Brożyna, A.; Jóźwicki, W.; Roszkowski, K.; Filipiak, J.; Slominski, A. Melanin content in melanoma metastases affects the outcome of radiotherapy. Oncotarget 2016, 7, 17844–17853. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.; Wiechmann, A.; Hu, D. Melatonin receptors in human uveal melanocytes and melanoma cells. J. Pineal Res. 2000, 28, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.; Visconti, M.; Castrucci, A. Melatonin biological activity and binding sites in human melanoma cells. J. Pineal Res. 2003, 34, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, M.; von Gall, C.; Wicht, H.; Korf, H.W. The Role of the Melatoninergic System in Circadian and Seasonal Rhythms-Insights From Different Mouse Strains. Front. Physiol. 2022, 13, 883637. [Google Scholar] [CrossRef] [PubMed]
- Gautier, C.; Theret, I.; Lizzo, G.; Ferry, G.; Guénin, S.P.; Boutin, J.A. Why Are We Still Cloning Melatonin Receptors? A Commentary. Methods Mol. Biol. 2022, 2550, 267–281. [Google Scholar]
- Song, Y.; Wang, S. Melatonin synergistically enhances docetaxel induced endoplasmic reticulum stress to promote apoptosis by suppressing NF-κB activation in cervical cancer. Med. Oncol. 2023, 40, 219. [Google Scholar] [CrossRef]
- Xiong, Y.; Ma, C.; Li, Q.; Zhang, W.; Zhao, H.; Ren, P.; Zhang, K.; Lei, X. Melatonin ameliorates simulated-microgravity-induced mitochondrial dysfunction and lipid metabolism dysregulation in hepatocytes. FASEB J. 2023, 37, 14947. [Google Scholar] [CrossRef] [PubMed]
- Slominski, R.M.; Sarna, T.; Płonka, P.M.; Raman, C.; Brożyna, A.A.; Slominski, A.T. Melanoma, Melanin, and Melanogenesis: The Yin and Yang Relationship. Front. Oncol. 2022, 12, 842496. [Google Scholar] [CrossRef] [PubMed]
- Möller, J.; Linowiecka, K.; Gagat, M.; Brożyna, A.; Foksiński, M.; Wolnicka-Glubisz, A.; Pyza, E.; Reiter, R.; Tulic, M.; Slominski, A.; et al. Melanogenesis Is Directly Affected by Metabolites of Melatonin in Human Melanoma Cells. Int. J. Mol. Sci. 2023, 24, 14947. [Google Scholar] [CrossRef]
- Stefan, J.; Kim, T.K.; Schedel, F.; Janjetovic, Z.; Crossman, D.K.; Steinbrink, K.; Slominski, R.M.; Zmijewski, J.; Tulic, M.; Reiter, R.; et al. Differential and overlapping effects of melatonin and its metabolites on keratinocyte function: Bioinformatics and metabolic analyses. Antioxidants 2021, 10, 618. [Google Scholar] [CrossRef] [PubMed]
- Slominski, R.M.; Raman, C.; Chen, J.Y.; Slominski, A.T. How cancer hijacks the body’s homeostasis through the neuroendocrine system. Trends Neurosci. 2023, 46, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A.; Case, J.; Takahashi, Y.; Lee, T.; Mori, W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 1958, 80, 2587. [Google Scholar] [CrossRef]
- Tan, D.X.; Manchester, L.; Reiter, R.; Plummer, B.; Limson, J.; Weintraub, S.; Qi, W. Melatonin directly scavenges hydrogen peroxide: A potentially new metabolic pathway of melatonin biotransformation. Free Radic. Biol. Med. 2000, 29, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Galano, A. On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals. Phys. Chem. Chem. Phys. 2011, 13, 7178–7188. [Google Scholar] [CrossRef] [PubMed]
- Horstman, J.; Wrona, M.; Dryhurst, G. Further insights into the reaction of melatonin with hydroxyl radical. Bioorg. Chem. 2002, 30, 371–382. [Google Scholar] [CrossRef]
- Schaefer, M.; Hardeland, R. The melatonin metabolite N1-acetyl-5-methoxykynuramine is a potent singlet oxygen scavenger. J. Pineal Res. 2009, 46, 49–52. [Google Scholar] [CrossRef]
- Harasimowicz, J.; Marques, K.; Silva, A.; Costa, R.; Prior, J.; Rodrigues, S.; Santos, J. Chemiluminometric evaluation of melatonin and selected melatonin precursors’ interaction with reactive oxygen and nitrogen species. Anal. Biochem. 2012, 420, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Squadrito, G.; Uppu, R.; Pryor, W. Reaction of peroxynitrite with melatonin: A mechanistic study. Chem. Res. Toxicol. 1999, 12, 526–534. [Google Scholar] [CrossRef]
- Noda, Y.; Mori, A.; Liburdy, R.; Packer, L. Melatonin and its precursors scavenge nitric oxide. J. Pineal Res. 1999, 27, 159–163. [Google Scholar] [CrossRef]
- Miguel, R.; Martínez, A. A new free radical scavenging cascade involving melatonin and three of its metabolites (3OHM, AFMK and AMK). Comput. Theor. Chem. 2018, 1123, 111–118. [Google Scholar]
- Mingzhuang, H.; Zhang, Y.; Liu, Y.; Ge, X.; Hu, X.; Zhao, Z.; Tian, X.; Liu, T.; Yang, H.; Chen, X.; et al. Biomimetic melatonin-loaded silk fibroin/GelMA scaffold strengthens cartilage repair through retrieval of mitochondrial functions. J. Mater. Sci. Technol. 2023, 146, 102–112. [Google Scholar]
- Azizoğlu, G.; Azizoğlu, E.; Barker, T.; Özer, Ö. Single and multi-dose drug loaded electrospun fiber mats for wound healing applications. J. Drug Deliv. Sci. Technol. 2023, 81, 104168. [Google Scholar] [CrossRef]
- Yamei, W.; Xiao, D.; Tang, Y.; Xia, Y.; Zhong, Y.; Zhang, L.; Sui, X.; Wang, B.; Feng, X.; Xu, H.; et al. Carboxymethyl cellulose-based injectable hydrogel loaded with a composite of melatonin and γ-cyclodextrin with antioxidant property for diabetic wound repair. Cellulose 2023, 30, 1791–1810. [Google Scholar]
- Atila, D.; Keskin, D.; Lee, Y.; Lin, F.; Hasirci, V.; Tezcaner, A. Injectable methacrylated gelatin/thiolated pectin hydrogels carrying melatonin/tideglusib-loaded core/shell PMMA/silk fibroin electrospun fibers for vital pulp regeneration. Colloids Surf. B 2023, 222, 113078. [Google Scholar] [CrossRef]
- Păncescu, F.; Rikabi, A.; Oprea, O.; Grosu, A.; Nechifor, A.; Grosu, V.A.; Tanczos, S.Z.; Dumitru, F.; Nechifor, G.; Bungău, S. Chitosan–sEPDM and Melatonin–Chitosan–sEPDM Composite Membranes for Melatonin Transport and Release. Membranes 2023, 13, 282. [Google Scholar] [CrossRef]
- Borrego-Sánchez, A.; Muñoz-Santiburcio, D.; Viseras, C.; Hernández-Laguna, A.; Sainz-Díaz, I. Melatonin/nanoclay hybrids for skin delivery. Appl. Clay Sci. 2022, 218, 106417. [Google Scholar] [CrossRef]
- Yao, Z.; Qian, Y.; Jin, Y.; Wang, S.; Li, J.; Yuan, W.E.; Fan, C. Biomimetic multilayer polycaprolactone/sodium alginate hydrogel scaffolds loaded with melatonin facilitate tendon regeneration. Carbohydr. Polym. 2022, 277, 118865. [Google Scholar] [CrossRef]
- Tingkuo, C.; Jiang, H.; Li, X.; Zhang, D.; Zhu, Y.; Chen, X.; Yang, H. Proliferation and differentiation study of melatonin functionalized polycaprolactone/gelatin electrospun fibrous scaffolds for nerve tissue engineering. Int. J. Biol. Macromol. 2022, 197, 103–110. [Google Scholar]
- Kaczmarek-Szczepańska, B.; Pin, J.; Zasada, L.; Sonne, M.; Reiter, R.; Słomiński, A.; Steinbrink, K.; Kleszczyński, K. Assessment of melatonin-cultured collagen/chitosan scaffolds cross-linked by a glyoxal solution as biomaterials for wound healing. Antioxidants 2022, 11, 570. [Google Scholar] [CrossRef]
- Nongmaithem, C.; Bhattacharya, K.; Marbaniang, D.; Pal, P.; Ray, S.; Mazumder, B. Evaluation of a novel melatonin-loaded gelatin sponge as a wound dressing. J. Vasc. Nur. 2022, 40, 2–10. [Google Scholar]
- Chen, K.; Tong, C.; Yang, J.; Cong, P.; Liu, Y.; Shi, X.; Liu, X.; Zhang, J.; Zou, R.; Xiao, K.; et al. Injectable melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel accelerates wound healing by reducing inflammation and promoting angiogenesis and collagen deposition. J. Mater. Sci. Technol. 2021, 63, 236–245. [Google Scholar] [CrossRef]
- Kaczmarek-Szczepańska, B.; Ostrowska, J.; Kozłowska, J.; Szota, Z.; Brożyna, A.; Dreier, R.; Reiter, R.; Słomiński, A.; Steinbrink, K.; Kleszczyński, K. Evaluation of polymeric matrix loaded with melatonin for wound dressing. Int. J. Mol. Sci. 2021, 22, 5658. [Google Scholar] [CrossRef]
- Mirmajidi, T.; Chogan, F.; Rezayan, A.; Sharifi, A. In Vitro and In Vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int. J. Pharm. 2021, 596, 120213. [Google Scholar] [CrossRef]
- Weilin, Z.; Zhao, W.; Li, Q.; Zhao, D.; Qu, J.; Yuan, Z.; Cheng, Z.; Zhu, X.; Zhuang, X.; Zhang, Z. 3D-printing magnesium–polycaprolactone loaded with melatonin inhibits the development of osteosarcoma by regulating cell-in-cell structures. J. Nanobiotechnol. 2021, 19, 263. [Google Scholar]
- Ragothaman, M.; Villalan, A.; Dhanasekaran, A.; Palanisamy, T. Bio-hybrid hydrogel comprising collagen-capped silver nanoparticles and melatonin for accelerated tissue regeneration in skin defects. Mater. Sci. Eng. C 2021, 128, 112328. [Google Scholar] [CrossRef]
- Sinohara, H. Glycopeptides isolated from sericin of the silkworm, Bombyx mori. Comp. Biochem. Physiol. B Biochem. Comp. Biochem. 1979, 63, 87–91. [Google Scholar] [CrossRef]
- Hoyoung, L.; Ahn, D.; Jeon, E.; Fam, D.; Lee, J.; Lee, W. Macroscopic assembly of sericin toward self-healable silk. Biomacromolecules 2021, 22, 4337–4346. [Google Scholar]
- Pornanong, A.; Siritientong, T.; Kanokpanont, S.; Srichana, T. Formulation and characterization of silk sericin–PVA scaffold crosslinked with genipin. Int. J. Biol. Macromol. 2010, 47, 668–675. [Google Scholar]
- Kunz, R.; Brancalhão, R.; Ribeiro, L.; Natali, M. Silkworm sericin: Properties and biomedical applications. BioMed Res. Int. 2016, 2, 1–19. [Google Scholar] [CrossRef]
- Rupesh, D.; Mandal, M.; Ghosh, S.; Kundu, S. Silk sericin protein of tropical tasar silkworm inhibits UVB-induced apoptosis in human skin keratinocytes. Mol. Cell. Biochem. 2008, 311, 111–119. [Google Scholar]
- Praveen, K.; Mandal, B. Silk sericin induced pro-oxidative stress leads to apoptosis in human cancer cells. Food Chem. Toxicol. 2019, 123, 275–287. [Google Scholar]
- Dash, R.; Ghosh, S.; Kaplan, D.; Kundu, S. Purification and biochemical characterization of a 70 kDa sericin from tropical tasar silkworm, Antheraea mylitta. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 147, 129–134. [Google Scholar] [CrossRef]
- Kato, N.; Sato, S.; Yamanaka, A.; Yamada, H.; Fuwa, N.; Nomura, M. Silk Protein, Sericin, Inhibits Lipid Peroxidation and Tyrosinase Activity. Biosci. Biotechnol. Biochem. 1998, 62, 145–147. [Google Scholar] [CrossRef]
- Bakadia, B.; Lamboni, L.; Ahmed, A.; Zheng, R.; Boni, B.; Shi, Z.; Song, S.; Souho, T.; Mukole, B.; Qi, F.; et al. Antibacterial silk sericin/poly (vinyl alcohol) hydrogel with antifungal property for potential infected large burn wound healing: Systemic evaluation. Smart Mater. Med. 2023, 4, 37–58. [Google Scholar] [CrossRef]
- Fariha, M.; Tahir, H.; Ali, S.; Ali, A.; Tehreem, A.; Durr, S.; Zaidi, S.; Adnan, M.; Ijaz, F. Characterization and Evaluation of Silk Sericin-Based Hydrogel: A Promising Biomaterial for Efficient Healing of Acute Wounds. ACS Omega 2023, 8, 32090–32098. [Google Scholar]
- Jayavardhini, B.; Dharmalingam, S.; Sathyaraj, W.; Rajendran, S.; Rymbai, S.; Senthil, R.; Atchudan, R. Sericin/Human Placenta-Derived Extracellular Matrix Scaffolds for Cutaneous Wound Treatment—Preparation, Characterization, In Vitro and In Vivo Analyses. Pharmaceutics 2023, 15, 362. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Li, Y.; Zhang, G.; Wu, T.; Wei, Y.; Cao, X.; Yan, H.; Liang, P.; Yan, Z.; et al. Resveratrol loaded native silk fiber-sericin hydrogel double interpenetrating bioactive wound dressing facilitates full-thickness skin wound healing. Biomed. Mater. 2023, 18, 045007. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.; Ismail, A.; Aziz, M.; Akbari, M.; Hadisi, Z.; Omidi, M.; Chen, X. Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In Vitro and In Vivo assessment. Int. J. Biomol. Macromol. 2020, 149, 513–521. [Google Scholar] [CrossRef]
- Ekasurya, W.; Joses, S.; Dita, P.; Asri, P.; Asri, L. Synthesis and Degradation Properties of Sericin/PVA Hydrogels. Gels 2023, 9, 76. [Google Scholar] [CrossRef]
- Jingwen, L.; Cui, T.; Xu, X.; Du, Y.; Wang, L.; Chen, S.; Pang, J. Robust Alcohol Soluble Polyurethane/Chitosan/Silk Sericin (APU/CS/SS) Nanofiber Scaffolds Toward Artificial Skin Extracellular Matrices via Microfluidic Blow-Spinning. Adv. Fiber Mater. 2023, 5, 349–361. [Google Scholar]
- Piyachat, C.; Pengsuk, C.; Lirdprapamongkol, K.; Thanyacharoen, T.; Techasakul, S.; Svasti, J.; Nooeaid, P. Turmeric Herb Extract-Incorporated Biopolymer Dressings with Beneficial Antibacterial, Antioxidant and Anti-Inflammatory Properties for Wound Healing. Polymers 2023, 15, 1090. [Google Scholar] [CrossRef]
- Yusu, W.; Li, H.; Xu, L.; Yan, J.; Wang, X. Preparation and properties of temperature-sensitive silver-loaded antibacterial sericin/poly (N-isopropylacrylamide) hydrogel. J. Macromol. Sci. B 2023, 1–15. [Google Scholar]
- Wang, K.; Hazra, R.; Ma, Q.; Khan, M.; Hoque, A.; Jiang, L.; Quadir, M.; Zhang, Y.; Wang, S.; Han, G. Robust biocompatible bacterial cellulose/silk nonwoven fabric/silk sericin sandwich membrane with strong UV-blocking and antioxidant properties. Cellulose 2023, 30, 3973–3993. [Google Scholar] [CrossRef]
- Griffanti, G.; McKee, M.; Nazhat, S. Mineralization of Bone Extracellular Matrix-like Scaffolds Fabricated as Silk Sericin-Functionalized Dense Collagen–Fibrin Hybrid Hydrogels. Pharmaceutics 2023, 15, 1087. [Google Scholar] [CrossRef]
- Nantaprapa, T.; Sonjan, S.; Promkrainit, S.; Daengmankhong, J.; Phimnuan, P.; Mahasaranon, S.; Jongjitwimol, J.; Charoensit, P.; Ross, G.; Viennet, C.; et al. Porous Poly (2-hydroxyethyl methacrylate) Hydrogel Scaffolds for Tissue Engineering: Influence of Crosslinking Systems and Silk Sericin Concentration on Scaffold Properties. Polymers 2023, 15, 4052. [Google Scholar] [CrossRef]
- Boni, B.; Lamboni, L.; Mao, L.; Bakadia, B.; Shi, Z.; Yang, G. In Vivo performance of microstructured bacterial cellulose-silk sericin wound dressing: Effects on fibrosis and scar formation. Eng. Sci. 2022, 19, 175–185. [Google Scholar] [CrossRef]
- El-Samad, L.; Hassan, M.; Basha, A.; El-Ashram, S.; Radwan, E.; Aziz, K.; Tamer, T.; Augustyniak, M.; El Wakil, A. Carboxymethyl cellulose/sericin-based hydrogels with intrinsic antibacterial, antioxidant, and anti-inflammatory properties promote re-epithelization of diabetic wounds in rats. Int. J. Pharm. 2022, 629, 122328. [Google Scholar] [CrossRef] [PubMed]
- Moise, B.; Boni, B.; Ahmed, A.; Zheng, R.; Shi, Z.; Ullah, M.; Lamboni, L.; Yang, G. In Situ synthesized porous bacterial cellulose/poly (vinyl alcohol)-based silk sericin and azithromycin release system for treating chronic wound biofilm. Macromol. Biosci. 2022, 22, 2200201. [Google Scholar]
- Konstantina, C.; Karavasili, C.; Adamoudi, E.; Bouropoulos, N.; Tzetzis, D.; Bakopoulou, A.; Fatouros, D. Silk sericin/PLGA electrospun scaffolds with anti-inflammatory drug-eluting properties for periodontal tissue engineering. Biomater. Adv. 2022, 133, 112723. [Google Scholar]
- Apirujee, P.; Reddy, N.; Aramwit, P. Enhancing clinical applications of PVA hydrogel by blending with collagen hydrolysate and silk sericin. J. Polym. Res. 2022, 29, 110. [Google Scholar]
- Karthick, S.; Manjari, K.; Devi, M. Biocompatible and bioactive PVA/Sericin/Chitosan nanofibrous wound dressing matrix. Appl. Surf. Sci. Adv. 2023, 13, 100362. [Google Scholar] [CrossRef]
- Barnthip, N.; Teeka, J.; Kantha, P.; Teepoo, S.; Damjuti, W. Fabrication and characterization of polycaprolactone/cellulose acetate blended nanofiber mats containing sericin and fibroin for biomedical application. Sci. Rep. 2022, 12, 22370. [Google Scholar] [CrossRef]
- Gök, Z.; Yiğitoğlu, M.; Vargel, İ.; Şahin, Y.; Alçığır, M. Synthesis, characterization and wound healing ability of PET based nanofiber dressing material coated with silk sericin capped-silver nanoparticles. Mater. Chem. Phys. 2021, 259, 124043. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, D.; Ji, N.; Lee, S.; Wang, G.; Zheng, Y.; Zhang, X.; Yang, L.; Qin, Z.; Yang, Y. Bioinspired design of sericin/chitosan/Ag@ MOF/GO hydrogels for efficiently combating resistant bacteria, rapid hemostasis, and wound healing. Polymers 2021, 13, 2812. [Google Scholar] [CrossRef]
- Akolpoğlu, B.; Gündüz, U.; Tezcaner, A.; Keskin, D. Topical delivery of heparin from PLGA nanoparticles entrapped in nanofibers of sericin/gelatin scaffolds for wound healing. Int. J. Pharm. 2021, 597, 120207. [Google Scholar] [CrossRef]
- Lin, N.; Zuo, B. Silk sericin/fibroin electrospinning dressings: A method for preparing a dressing material with high moisture vapor transmission rate. J. Biomater. Sci. Polym. Ed. 2021, 32, 1983–1997. [Google Scholar] [CrossRef]
- İnal, M.; Gün Gök, Z.; Kartal, E.; Verim, N.; Murat, S.; Apaydın, T.; Yiğitoğlu, M. The Fabrication of Poly (Σ-caprolactone)–Poly (ethylene oxide) Sandwich Type Nanofibers Containing Sericin-Capped Silver Nanoparticles as an Antibacterial Wound Dressing. J. Nanosci. Nanotechnol. 2021, 21, 3041–3049. [Google Scholar] [CrossRef] [PubMed]
- Arango, M.; Osorio, Y.; Osorno, J.; Parra, S.; Alvarez-López, C. Effect of Ethanol Post-Treatments over Sericin Scaffolds for Tissue Engineering Applications. J. Polym. Environ. 2023, 31, 1800–1811. [Google Scholar] [CrossRef]
- Baptista-Silva, S.; Borges, S.; Costa-Pinto, A.; Costa, R.; Amorim, M.; Dias, J.; Ramos, O.; Alves, P.; Granja, P.; Soares, R.; et al. In Situ forming silk sericin-based hydrogel: A novel wound healing biomaterial. ACS Biomater. Sci. Eng. 2021, 7, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
- Kukula-Koch, W.; Szwajgier, D.; Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Głowniak, K.; Meissner, H. Is Phytomelatonin Complex Better than Synthetic Melatonin? The Assessment of the Antiradical and Anti-Inflammatory Properties. Molecules 2021, 26, 6087. [Google Scholar] [CrossRef]
- Joyjamras, K.; Chaotham, C.; Chanvorachote, P. Response surface optimization of enzymatic hydrolysis and ROS scavenging activity of silk sericin hydrolysates. Pharm. Biol. 2022, 60, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Intagliata, S.; Spadaro, A.; Lorenti, M.; Panico, A.; Siciliano, E.; Barbagallo, S.; Macaluso, B.; Kamble, S.; Modica, M.; Montenegro, L. In Vitro antioxidant and anti-glycation activity of resveratrol and its novel triester with trolox. Antioxidants 2020, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Dusman, T.; Volpato de Oliveira, T.; Giacobbo de Marco, I.; Palioto, G.; Düsman, E. Bioactive compounds and antioxidant, antimicrobial and cytotoxic activities of extracts of Curcuma longa. J. Food Meas. Charact. 2021, 15, 3752–3760. [Google Scholar]
- Slominski, A.; Chaiprasongsuk, A.; Janjetovic, Z.; Kim, T.; Stefan, J.; Slominski, R.; Hanumanthu, V.; Raman, C.; Qayyum, S.; Song, Y.; et al. Photoprotective Properties of Vitamin D and Lumisterol Hydroxyderivatives. Cell Biochem. Biophys. 2020, 78, 165–180. [Google Scholar] [CrossRef]
- Chaiprasongsuk, A.; Janjetovic, Z.; Kim, T.; Tuckey, R.; Li, W.; Raman, C.; Panich, U.; Slominski, A. CYP11A1-derived vitamin D3 products protect against UVB-induced inflammation and promote keratinocytes differentiation. Free Radic. Biol. Med. 2020, 1, 87–98. [Google Scholar] [CrossRef]
- Chaiprasongsuk, A.; Janjetovic, Z.; Kim, T.; Jarrett, S.; D’Orazio, J.; Holick, M.; Tang, E.; Tuckey, R.; Panich, U.; Li, W.; et al. Protective effects of novel derivatives of vitamin D3 and lumisterol against UVB-induced damage in human keratinocytes involve activation of Nrf2 and p53 defense mechanisms. Redox Biol. 2019, 24, 101206. [Google Scholar] [CrossRef]
- Moreno, A.; Freitas Saito, R.; Tiago, M.; Massaro, R.; Pagni, R.; Pegoraro, R.; Cruz Souza, P.; Reiter, R.; Campa, A.; Soengas, M.; et al. Melatonin inhibits human melanoma cells proliferation and invasion via cell cycle arrest and cytoskeleton remodeling. Melatonin Res. 2020, 3, 194–209. [Google Scholar] [CrossRef]
- Joyjamras, K.; Netcharoensirisuk, P.; Roytrakul, S.; Chanvorachote, P.; Chaotham, C. Recycled Sericin Hydrolysates Modified by Alcalase® Suppress Melanogenesis in Human Melanin-Producing Cells via Modulating MITF. Int. J. Mol. Sci. 2022, 23, 3925. [Google Scholar] [CrossRef] [PubMed]
- Bisevac, J.; Djukic, M.; Stanojevic, I.; Stevanovic, I.; Mijuskovic, Z.; Djuric, A.; Gobeljic, B.; Banovic, T.; Vojvodic, D. Association between oxidative stress and melanoma progression. J. Med. Biochem. 2018, 37, 12–20. [Google Scholar] [CrossRef] [PubMed]
Invention | Matrix Polymer | Active Substance | Application | Origin | Year | Literature |
---|---|---|---|---|---|---|
Biomimetic melatonin-loaded silk fibroin/GelMA scaffolds | Silk fibroin/ gel methacrylate | Melatonin | Cartilage repair | Natural/ synthetic | 2023 | [213] |
Melatonin-loaded polycaprolactone fiber mats | Polycaprolactone | Melatonin | Wound healing | Synthetic | 2023 | [214] |
Carboxymethyl cellulose-based injectable hydrogel loaded with a composite of melatonin and γ-cyclodextrin | Carboxymethyl cellulose | Melatonin and γ-cyclodextrin | Diabetic wound repair | Synthetic | 2023 | [215] |
Injectable methacrylated gelatin/thiolated pectin hydrogels carrying melatonin/tideglusib-loaded core/shell PMMA/silk fibroin electrospun fibers | Methacrylated gelatin/thiolated pectin hydrogels | Melatonin/ tideglusib | Vital pulp regeneration | Synthetic | 2023 | [216] |
Chitosan–sEDMPand melatonin–chitosan–sEDMPcomposite membranes | Chitosan-sulfonated ethylene–propylene– diene terpolymer (Chi-sEPDM) membrane Sulfonated ethylene–propylene– diene terpolymer (sEPDM) membrane | Melatonin | Membranes | Synthetic | 2023 | [217] |
Melatonin/nanoclay hybrids | Nanoclay | Melatonin | Skin delivery | Natural | 2022 | [218] |
Biomimetic multilayer polycaprolactone/ sodium alginate hydrogel scaffolds loaded with melatonin | Polycaprolactone/ sodium alginate | Melatonin | Tendon regeneration | Natural/ synthetic | 2022 | [219] |
Melatonin-polycaprolactone/ gelatin electrospun fibrous scaffolds | Polycaprolactone/ gelatin | Melatonin | Nerve tissue engineering | Natural/ synthetic | 2022 | [220] |
Melatonin-cultured collagen/ chitosan scaffolds cross-linked by a glyoxal solution | Collagen/chitosan 3D scaffolds cross-linked by glyoxal | Melatonin | Skin tissue engineering | Natural/ synthetic | 2022 | [221] |
Melatonin-loaded gelatin sponge | Gelatin sponge | Melatonin | Wound dressing | Natural | 2022 | [222] |
Melatonin-loaded carboxymethyl chitosan (CMCS)-based hydrogel | Carboxymethyl chitosan (CMCS)-based hydrogel | Melatonin | Wound healing | Synthetic | 2021 | [223] |
Polymeric matrix loaded with melatonin | Chitosan/collagen (CTS/Coll)-contained biomaterials | Melatonin | Wound healing | Natural/ synthetic | 2021 | [224] |
Nanofiber wound dressing loaded with melatonin | Chitosan– polycaprolactone (PCL)/polyvinylalcohol (PVA) | Melatonin | Wound dressing | Synthetic | 2021 | [225] |
3D-printing magnesium–polycaprolactone loaded with melatonin | Polycaprolactone | Melatonin | Osteosarcoma treatment | Synthetic | 2021 | [226] |
Bio-hybrid hydrogel comprising collagen-capped silver nanoparticles and melatonin | Bio-hybrid hydrogel system comprising collagen and aminated xanthan gum | Silver nanoparticles and melatonin | Tissue regeneration in skin defects | Natural/ synthetic | 2021 | [227] |
Invention | Matrix Polymer | Active Substance | Application | Origin | Year | Literature |
---|---|---|---|---|---|---|
Silk sericin/poly (vinyl alcohol) hydrogel | Poly (vinyl alcohol) hydrogel | Sericin | Infected large burn wound healing | Natural/synthetic | 2023 | [236] |
Silk sericin-based hydrogel | Sodium carboxy-methyl- cellulose and polyvinylalcohol | Sericin | Acute wounds | Natural/ synthetic | 2023 | [237] |
Sericin/human placenta-derived extracellular matrix scaffolds | Placenta-derived extracellular matrix | Sericin/ human placenta | Wound treatment | Natural | 2023 | [238] |
Resveratrol loaded native silk fiber-sericin hydrogel | Hydrogel | Resveratrol | Wound healing | Natural | 2023 | [239] |
PVA/sericin/ chitosan nanofibrous matrix | PVA/sericin/ chitosan | Sericin | Wound dressing | Natural/ synthetic | 2023 | [240] |
Sericin/PVA hydrogels | Sericin/PVA hydrogels | Sericin | Wound dressing | Natural/ synthetic | 2023 | [241] |
Robust alcohol soluble polyurethane/chitosan/ silk sericin (APU/CS/SS) nanofiber artificial skin | Robust alcohol soluble polyurethane/ chitosan/ silk sericin | N/A | Artificial skin | Natural/ synthetic | 2023 | [242] |
Turmeric-loaded carboxymethyl cellulose/silk sericin dressings | Carboxymethyl cellulose/silk sericin | Turmeric | Wound healing | Natural/ synthetic | 2023 | [243] |
Silver-loaded anti-bacterial sericin/poly (N-isopropylacrylamide) hydrogel | Sericin/poly (N-isopropylacrylamide) hydrogel | Silver/ sericin | Wound healing | Natural/ synthetic | 2023 | [244] |
Cellulose/silk nonwoven fabric/silk sericin sandwich membrane | Cellulose/silk nonwoven fabric/silk sericin | Sericin | Wound healing | Natural/ synthetic | 2023 | [245] |
Silk sericin- functionalized dense collagen/fibrin hybrid hydrogels | Collagen/fibrin | Sericin/ collagen | Regenerative scaffolds | Natural | 2023 | [246] |
Sericin poly(2-hydroxyethyl methacrylate) hydrogel scaffolds | Poly(2-hydroxyethyl methacrylate) | Sericin | Tissue engineering | Natural/ synthetic | 2023 | [247] |
Microstructured bacterial cellulose-silk sericin | Cellulose-silk sericin | Sericin | Wound dressing | Natural/ synthetic | 2022 | [248] |
Carboxymethyl cellulose/sericin-based hydrogels | Carboxymethyl cellulose/sericin | Sericin | Wound healing | Natural/ synthetic | 2022 | [249] |
Porous bacterial cellulose/poly(vinyl alcohol)-based silk sericin and azithromycin release system | Cellulose/ poly(vinyl alcohol)-based silk sericin | Sericin/ azithromycin | Wound healing | Natural/ synthetic | 2022 | [250] |
Silk sericin/PLGA electrospun scaffolds | Silk sericin/ poly lactide- co-glycolic acid | Sericin | Periodontal tissue engineering | Natural/ synthetic | 2022 | [251] |
Polyvinyl alcohol (PVA) hydrogel with collagen hydrolysate and silk sericin | PVA/collagen/ sericin | Collagen/ sericin | Wound healing | Natural/ synthetic | 2022 | [252] |
PVA/sericin/ chitosan nanofibrous wound dressing matrix | PVA/sericin/ chitosan | Sericin | Wound dressing matrix | Natural/ synthetic | 2022 | [253] |
Polycaprolactone/ cellulose acetate blended nanofiber mats containing sericin and fibroin for biomedical application | Polycaprolactone/cellulose acetate/sericin/fibroin | Sericin | Biomedical application | Natural/ synthetic | 2022 | [254] |
PET-based nanofiber dressing material coated with silk sericin capped-silver nanoparticles | Poly (ethylene terephthalate)-g- poly (hydroxyethylmethacrylate) (PET-g-HEMA) nanofibers | Silver nanoparticles | Wound dressing | Natural/ synthetic | 2021 | [255] |
Silver nanoparticles@organic frameworks/ graphene oxide (Ag@MOF–GO) in sericin/chitosan/ polyvinyl alcohol hydrogel | Sericin/chitosan/ polyvinyl alcohol | Silver nanoparticles | Wound healing | Natural/ synthetic | 2021 | [256] |
Poly(lactic-co-glycolic acid) (PLGA) nanoparticles incorporated into sericin/gelatin nanofibers | Sericin/gelatin | Poly(lactic-co-glycolic acid) nanoparticles | Wound healing | Natural/ synthetic | 2021 | [257] |
Silk sericin/ fibroin electrospinning dressings | Silk sericin/ fibroin | Sericin | Wound dressing | Natural/ synthetic | 2021 | [258] |
Poly(Σ-caprolactone) poly(ethylene oxide) sandwich type nanofibers containing sericin-capped silver nanoparticles | Poly(Σ-caprolactone)/poly(ethylene oxide) | Silver nanoparticles | Wound healing | Natural/ synthetic | 2021 | [259] |
Sericin scaffolds with ethanol post-treatments | Sericin | Sericin | Tissue engineering | Natural/ synthetic | 2023 | [260] |
Horseradish perozidase- mediated cross-linked sericin hydrogels | Sericin treated HRP/H2O2 | Sericin | Wound healing | Natural/ synthetic | 2021 | [261] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamiak, K.; Gaida, V.A.; Schäfer, J.; Bosse, L.; Diemer, C.; Reiter, R.J.; Slominski, A.T.; Steinbrink, K.; Sionkowska, A.; Kleszczyński, K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. Int. J. Mol. Sci. 2024, 25, 4858. https://doi.org/10.3390/ijms25094858
Adamiak K, Gaida VA, Schäfer J, Bosse L, Diemer C, Reiter RJ, Slominski AT, Steinbrink K, Sionkowska A, Kleszczyński K. Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. International Journal of Molecular Sciences. 2024; 25(9):4858. https://doi.org/10.3390/ijms25094858
Chicago/Turabian StyleAdamiak, Katarzyna, Vivian A. Gaida, Jasmin Schäfer, Lina Bosse, Clara Diemer, Russel J. Reiter, Andrzej T. Slominski, Kerstin Steinbrink, Alina Sionkowska, and Konrad Kleszczyński. 2024. "Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy" International Journal of Molecular Sciences 25, no. 9: 4858. https://doi.org/10.3390/ijms25094858
APA StyleAdamiak, K., Gaida, V. A., Schäfer, J., Bosse, L., Diemer, C., Reiter, R. J., Slominski, A. T., Steinbrink, K., Sionkowska, A., & Kleszczyński, K. (2024). Melatonin/Sericin Wound Healing Patches: Implications for Melanoma Therapy. International Journal of Molecular Sciences, 25(9), 4858. https://doi.org/10.3390/ijms25094858