Dielectric Response of Different Alcohols in Water-Rich Binary Mixtures from THz Ellipsometry
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Akpa, B.; D’Agostino, C.; Gladden, L.; Hindle, K.; Manyar, H.; McGregor, J.; Li, R.; Neurock, M.; Sinha, N.; Stitt, E.; et al. Solvent effects in the hydrogenation of 2-butanone. J. Catal. 2012, 289, 30–41. [Google Scholar] [CrossRef]
- Hilser, V.J. Finding the wet spots. Nature 2011, 469, 166–167. [Google Scholar] [CrossRef] [PubMed]
- Ball, P. Water—An enduring mystery. Nature 2008, 452, 291–292. [Google Scholar] [CrossRef] [PubMed]
- Palo, D.R.; Dagle, R.A.; Holladay, J.D. Methanol steam reforming for hydrogen production. Chem. Rev. 2007, 107, 3992–4021. [Google Scholar] [CrossRef] [PubMed]
- Onori, G.; Santucci, A. Dynamical and structural properties of water/alcohol mixtures. J. Mol. Liq. 1996, 69, 161–181. [Google Scholar] [CrossRef]
- Li, R.; D’Agostino, C.; McGregor, J.; Mantle, M.D.; Zeitler, J.A.; Gladden, L.F. Mesoscopic structuring and dynamics of alcohol/water solutions probed by terahertz time-domain spectroscopy and pulsed field gradient nuclear magnetic resonance. J. Phys. Chem. B 2014, 118, 10156–10166. [Google Scholar] [CrossRef] [PubMed]
- Skaf, M.S.; Ladanyi, B.M. Molecular dynamics simulation of solvation dynamics in methanol-water mixtures. J. Phys. Chem. 1996, 100, 18258–18268. [Google Scholar] [CrossRef]
- Harpham, M.R.; Levinger, N.E.; Ladanyi, B.M. An investigation of water dynamics in binary mixtures of water and dimethyl sulfoxide. J. Phys. Chem. B 2008, 112, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Griffith, O.; Dehlinger, P.; Van, S. Shape of the hydrophobic barrier of phospholipid bilayers (evidence for water penetration in biological membranes). J. Membr. Biol. 1974, 15, 159–192. [Google Scholar] [CrossRef]
- Davidson, D.; Franks, F. Water: A comprehensive treatise. Clathrate Hydrates 1973, 2, 115–234. [Google Scholar]
- Dougan, L.; Hargreaves, R.; Bates, S.; Finney, J.; Reat, V.; Soper, A.; Crain, J. Segregation in aqueous methanol enhanced by cooling and compression. J. Chem. Phys. 2005, 122, 174514. [Google Scholar] [CrossRef] [PubMed]
- Corsaro, C.; Spooren, J.; Branca, C.; Leone, N.; Broccio, M.; Kim, C.; Chen, S.H.; Stanley, H.E.; Mallamace, F. Clustering dynamics in water/methanol mixtures: A nuclear magnetic resonance study at 205 K < T< 295 K. J. Phys. Chem. B 2008, 112, 10449–10454. [Google Scholar] [PubMed]
- Lin, K.; Hu, N.; Zhou, X.; Liu, S.; Luo, Y. Reorientation dynamics in liquid alcohols from Raman spectroscopy. J. Raman Spectrosc. 2012, 43, 82–88. [Google Scholar] [CrossRef]
- Rezus, Y.; Bakker, H. Observation of immobilized water molecules around hydrophobic groups. Phys. Rev. Lett. 2007, 99, 148301. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, Z.; Papari, G.P.; Andreone, A. Probing the Molecular Dynamics of Aqueous Binary Solutions with THz Time-Domain Ellipsometry. Sensors 2023, 23, 2292. [Google Scholar] [CrossRef] [PubMed]
- Baxter, J.B.; Guglietta, G.W. Terahertz spectroscopy. Anal. Chem. 2011, 83, 4342–4368. [Google Scholar] [CrossRef] [PubMed]
- Yomogida, Y.; Sato, Y.; Nozaki, R.; Mishina, T.; Nakahara, J. Dielectric study of normal alcohols with THz time-domain spectroscopy. J. Mol. Liq. 2010, 154, 31–35. [Google Scholar] [CrossRef]
- Dexheimer, S.L. Terahertz Spectroscopy: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Mazaheri, Z.; Koral, C.; Andreone, A. Accurate THz ellipsometry using calibration in time domain. Sci. Rep. 2022, 12, 7342. [Google Scholar] [CrossRef] [PubMed]
- George, J.; Sastry, N.V. Densities, dynamic viscosities, speeds of sound, and relative permittivities for water + alkanediols (propane-1, 2-and-1, 3-diol and butane-1, 2-,-1, 3-,-1, 4-, and-2, 3-diol) at different temperatures. J. Chem. Eng. Data 2003, 48, 1529–1539. [Google Scholar] [CrossRef]
- Tan, N.Y.; Li, R.; Bräuer, P.; D’Agostino, C.; Gladden, L.F.; Zeitler, J.A. Probing hydrogen-bonding in binary liquid mixtures with terahertz time-domain spectroscopy: A comparison of Debye and absorption analysis. Phys. Chem. Chem. Phys. 2015, 17, 5999–6008. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.W.; Arbab, M.H. Effective Debye relaxation models for binary solutions of polar liquids at terahertz frequencies. Phys. Chem. Chem. Phys. 2021, 23, 4426–4436. [Google Scholar] [CrossRef]
- Sato, T.; Buchner, R. Dielectric relaxation spectroscopy of 2-propanol–water mixtures. J. Chem. Phys. 2003, 118, 4606–4613. [Google Scholar] [CrossRef]
- Møller, U.; Cooke, D.G.; Tanaka, K.; Jepsen, P.U. Terahertz reflection spectroscopy of Debye relaxation in polar liquids. J. Opt. Soc. Am. B 2009, 26, A113–A125. [Google Scholar] [CrossRef]
- Yada, H.; Nagai, M.; Tanaka, K. Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy. Chem. Phys. Lett. 2008, 464, 166–170. [Google Scholar] [CrossRef]
- Nazarov, M.M.; Cherkasova, O.P.; Shkurinov, A.P. Study of the dielectric function of aqueous solutions of glucose and albumin by THz time-domain spectroscopy. Quantum Electron. 2016, 46, 488. [Google Scholar] [CrossRef]
- Sengwa, R.; Sankhla, S.; Shinyashiki, N. Dielectric parameters and hydrogen bond interaction study of binary alcohol mixtures. J. Solut. Chem. 2008, 37, 137–153. [Google Scholar] [CrossRef]
- Chakraborty, S.; Pyne, P.; Mitra, R.K.; Mahanta, D.D. Hydrogen bond structure and associated dynamics in micro-heterogeneous and in phase separated alcohol-water binary mixtures: A THz time-domain spectroscopic investigation. J. Mol. Liq. 2023, 382, 121998. [Google Scholar] [CrossRef]
- Lou, J.; Hatton, T.A.; Laibinis, P.E. Effective dielectric properties of solvent mixtures at microwave frequencies. J. Phys. Chem. A 1997, 101, 5262–5268. [Google Scholar] [CrossRef]
- Sihvola, A. Mixing rules with complex dielectric coefficients. Subsurf. Sens. Technol. Appl. 2000, 1, 393–415. [Google Scholar] [CrossRef]
- Lapuerta, M.; Rodríguez-Fernández, J.; Patiño-Camino, R.; Cova-Bonillo, A.; Monedero, E.; Meziani, Y.M. Determination of optical and dielectric properties of blends of alcohol with diesel and biodiesel fuels from terahertz spectroscopy. Fuel 2020, 274, 117877. [Google Scholar] [CrossRef]
- Chen, L.; Liao, D.G.; Guo, X.G.; Zhao, J.Y.; Zhu, Y.M.; Zhuang, S.L. Terahertz time-domain spectroscopy and micro-cavity components for probing samples: A review. Front. Inf. Technol. Electron. Eng. 2019, 20, 591–607. [Google Scholar] [CrossRef]
- Kindt, J.; Schmuttenmaer, C. Far-infrared dielectric properties of polar liquids probed by femtosecond terahertz pulse spectroscopy. J. Phys. Chem. 1996, 100, 10373–10379. [Google Scholar] [CrossRef]
- Kaiser, A.; Ritter, M.; Nazmutdinov, R.; Probst, M. Hydrogen bonding and dielectric spectra of ethylene glycol–water mixtures from molecular dynamics simulations. J. Phys. Chem. B 2016, 120, 10515–10523. [Google Scholar] [CrossRef] [PubMed]
- McGregor, J.; Li, R.; Zeitler, J.A.; D’Agostino, C.; Collins, J.H.; Mantle, M.D.; Manyar, H.; Holbrey, J.D.; Falkowska, M.; Youngs, T.G.; et al. Structure and dynamics of aqueous 2-propanol: A THz-TDS, NMR and neutron diffraction study. Phys. Chem. Chem. Phys. 2015, 17, 30481–30491. [Google Scholar] [CrossRef] [PubMed]
- Halder, R.; Jana, B. On the Correlation between Pair Hydrophobicity and Mixing Enthalpies in Water-Alcohol Binary Mixtures. J. Phys. Chem. B 2020, 124, 8023–8031. [Google Scholar] [CrossRef] [PubMed]
- Frank, H.S.; Evans, M.W. Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; Partial molal entropy in dilute solutions; Structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 1945, 13, 507–532. [Google Scholar] [CrossRef]
- Arik, E.; Altan, H.; Esenturk, O. Dielectric properties of ethanol and gasoline mixtures by terahertz spectroscopy and an effective method for determination of ethanol content of gasoline. J. Phys. Chem. A 2014, 118, 3081–3089. [Google Scholar] [CrossRef]
- Das Mahanta, D.; Islam, S.I.; Choudhury, S.; Das, D.K.; Mitra, R.K.; Barman, A. Contrasting hydration dynamics in DEM and DMSO aqueous solutions: A combined optical pump-probe and GHz-THz dielectric relaxation investigation. J. Mol. Liq. 2019, 290, 111194. [Google Scholar] [CrossRef]
- Piekarski, H.; Jóźwiak, M.; Woźnicka, J.; Bald, A.; Szejgis, A. Some physicochemical properties of aqueous solutions of isomeric butanediols. Phys. Chem. Liq. 1995, 30, 195–207. [Google Scholar] [CrossRef]
- Ballal, D.; Chapman, W.G. Hydrophobic and hydrophilic interactions in aqueous mixtures of alcohols at a hydrophobic surface. J. Chem. Phys. 2013, 139, 114706. [Google Scholar] [CrossRef] [PubMed]
- Sennikov, P.; Shkrunin, V.; Raldugin, D.; Tokhadze, K. Weak Hydrogen Bonding in Ethanol and Water Solutions of Liquid Volatile Inorganic Hydrides of Group IV-VI Elements (SiH4, GeH4, PH3, AsH3, H2S, and H2Se). 1. IR Spectroscopy of H-Bonding in Ethanol Solutions in Hydrides. J. Phys. Chem. 1996, 100, 6415–6420. [Google Scholar] [CrossRef]
- Mazaheri, Z.; Koral, C.; Andreone, A.; Marino, A. Terahertz time-domain ellipsometry: Tutorial. J. Opt. Soc. Am. A 2022, 39, 1420–1433. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, H. Spectroscopic Ellipsometry: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
Liquid | |||||||
---|---|---|---|---|---|---|---|
Water | 3.1 | 78.4 | - | 4 | 8.8 ± 0.5 | - | 0.20 ± 0.02 |
2-Propanol | 2 | 19.4 | 4.8 | 3.9 | 351 | 4.8 ± 0.9 | 0.35 ± 0.04 |
Methanol | 1.8 | 32.5 | 4.9 | 2.8 | 52 | 1.94 ± 0.04 | 0.51 ± 0.04 |
Ethanol | 1.9 | 24.4 | 4.4 | 3 | 161 | 4.9 ± 0.8 | 0.50 ± 0.03 |
Ethane-1,2-diol | 2.5 | 42 | 6.6 | 3.7 | 120 | 1.84 ± 0.02 | 0.10 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazaheri, Z.; Papari, G.P.; Andreone, A. Dielectric Response of Different Alcohols in Water-Rich Binary Mixtures from THz Ellipsometry. Int. J. Mol. Sci. 2024, 25, 4240. https://doi.org/10.3390/ijms25084240
Mazaheri Z, Papari GP, Andreone A. Dielectric Response of Different Alcohols in Water-Rich Binary Mixtures from THz Ellipsometry. International Journal of Molecular Sciences. 2024; 25(8):4240. https://doi.org/10.3390/ijms25084240
Chicago/Turabian StyleMazaheri, Zahra, Gian Paolo Papari, and Antonello Andreone. 2024. "Dielectric Response of Different Alcohols in Water-Rich Binary Mixtures from THz Ellipsometry" International Journal of Molecular Sciences 25, no. 8: 4240. https://doi.org/10.3390/ijms25084240
APA StyleMazaheri, Z., Papari, G. P., & Andreone, A. (2024). Dielectric Response of Different Alcohols in Water-Rich Binary Mixtures from THz Ellipsometry. International Journal of Molecular Sciences, 25(8), 4240. https://doi.org/10.3390/ijms25084240