Unveiling the Hidden Regulators: The Impact of lncRNAs on Zoonoses
Abstract
1. Introduction
2. LncRNAs in Bacterial Zoonoses
2.1. Tuberculosis
2.2. Colibacillosis
2.3. Brucellosis
2.4. Salmonellosis
2.5. Pseudomonas aeruginosa Infection
2.6. Listeriosis
2.7. Staphylococcosis
Pathogen | LncRNA | Category | Function or Mechanism | Reference |
---|---|---|---|---|
Mtb | lncRNA-CD244 | Host antisense lncRNA | Regulate T-cell responses against TB infection | [36] |
NEAT1 | Host intergenic lncRNA | Regulate the inflammatory responses in macrophages | [37,93] | |
XLOC_012582 | Host intergenic lncRNA | Regulate the expression of SOCS3 | [38] | |
PCED1B-AS1 | Host antisense lncRNA | Modulate macrophage apoptosis and autophagy by targeting miR-155 | [39] | |
lincRNA-EPS | Host intergenic lncRNA | Regulate apoptosis and autophagy of macrophages via JNK/MAPK signaling | [94] | |
lincRNA-Cox2 | Host intergenic lncRNA | Regulate macrophage apoptosis | [95] | |
lnc-EST12 | Host intergenic lncRNA | Regulate anti-Mtb innate immunity through FUBP3 | [40] | |
DANCR | Host intergenic lncRNA | Restrain intracellular survival of Mtb via miR-1301-3p and miR-5194 | [41] | |
XIST | Host intergenic lncRNA | Promote the polarization of macrophages to the M1 phenotype via miR-125b-5p/A20/NF-κB axis | [42] | |
MIAT | Host intergenic lncRNA | Regulate autophagy and antimicrobial responses | [43] | |
MIR99AHG | Host intergenic lncRNA | Promote Mtb growth by regulating inflammation and macrophage polarization | [44] | |
LINC00870 | Host intergenic lncRNA | Biomarker | [45] | |
CCAT1 | Host intergenic lncRNA | Biomarker | [45] | |
LOC152742 | Host intergenic lncRNA | Biomarker | [45] | |
MIR3945HG | Host intergenic lncRNA | Biomarker | [46] | |
E. coli | FUT3-AS1 | Host antisense lncRNA | Modulates E. coli susceptibility via histone H4 modifications | [49] |
lncRSPH9-4 | Host sense overlapping lncRNA | Disrupt endothelial barrier via miR-17-5p/MMP3 axis | [52] | |
lncC11orf54-1 | Host intronic lncRNA | Modulate neuroinflammation responses | [51] | |
DDIT-AS1 | Host antisense lncRNA | Modulate DDIT4 expression and promote neuroinflammation responses | [53] | |
XIST | Host intergenic lncRNA | Regulate NF-κB/NLRP3 inflammasome pathway | [54] | |
HOTAIR | Host antisense lncRNA | Promote kidney injury in sepsis | [55] | |
SOX2OT | Host sense overlapping lncRNA | Mitigate LPS-induced injuries in cardiomyocytes | [56] | |
MALAT1 | Host intergenic lncRNA | Regulate macrophage polarization | [57] | |
Brucella | lnc_000428 | Host antisense lncRNA | Regulate Brucella intracellular replication | [60] |
Gm28309 | Host intronic lncRNA | Regulate inflammatory and anti-Brucella responses via NF-κB/NLRP3 signaling | [61] | |
linc-MAF-4 | Host intergenic lncRNA | Biomarker | [62] | |
IFNG-AS1 | Host intergenic lncRNA | Biomarker | [63] | |
S. typhimurium | LNCGM1082 | Host intergenic lncRNA | Activate NLRC4 and induce resistance to S. typhimurium | [66] |
NeST (IFNG-AS1) | Host intergenic lncRNA | Modulate host susceptibility to pathogens by altering epigenetic marking of IFNγ-encoding chromatin | [67] | |
TVX1 | Host intergenic lncRNA | Attenuated S. typhimurium-induced microglial inflammation | [68] | |
NEAT1 | Host intergenic lncRNA | Biomarker | [65] | |
P. aeruginosa | MEG3 | Host intergenic lncRNA | Influence the proliferation of P. aeruginosa by miR-138/IL-1β axis | [71] |
NRIR | Host intergenic lncRNA | Affect the maturation of dendritic cell and the activation of T cell | [72] | |
MEG9 | Host intergenic lncRNA | Biomarker | [70] | |
BLACAT1 | Host intronic lncRNA | Biomarker | [70] | |
L. monocytogenes | lincRNA-EPS | Host intergenic lncRNA | Impair the host defense against L. monocytogenes infection | [79,80] |
lincRNA-Cox2 | Host intergenic lncRNA | Regulate migration and phagocytosis of macrophages | [81] | |
AS-IL-1α | Host antisense lncRNA | A regulator of innate immune response by regulating IL-1α transcription | [82] | |
SROS1 | Host intergenic lncRNA | Promote IFN-γ-STAT1-mediated innate immunity | [83] | |
lasRNAs | Pathogen-derived lncRNA | Represent a regulatory pattern that connect adjacent genes with opposing functions | [84] | |
S. aureus | BMNCR | Host intronic lncRNA | Influence the proliferation and apoptosis of epithelial cells | [91] |
LRRC75A-AS | Host antisense lncRNA | Regulate the expression of tight junctions and affect inflammation | [92] | |
SSR42 | Pathogen-derived lncRNA | Modulate the expression of several virulence factors | [89,90] |
3. LncRNAs in Viral Zoonoses
3.1. Rabies
3.2. Ebola Virus Disease
3.3. Flavivirus Infection
3.4. AIDS
3.5. Influenza
3.6. Herpesvirus Infection
3.7. Coronavirus Disease
Pathogen | LncRNA | Category | Function or Mechanism | Reference |
---|---|---|---|---|
RABV | EDAL | Host intergenic lncRNA | Inhibit the replication of neurotropic virus | [102,103] |
DENV (Flaviviridae) | NEAT1 | Host intergenic lncRNA | Affect antiviral response and viral replication in dengue infection | [113] |
ERGAL | Host intergenic lncRNA | Promote stability and integrity of vascular endothelial barrier during DENV infection | [114] | |
JEV (Flaviviridae) | SUSAJ1 | Host sense overlapping lncRNA | Inhibit JEV proliferation and replication | [115,116] |
Flaviviridae | JINR1 | Host intergenic lncRNA | Regulate viral replication and cell death | [117] |
ZAP-IT1 | Host intronic lncRNA | Exert antiviral effect in an IFN-independent manner | [118] | |
MALAT1 | Host intergenic lncRNA | Potential antiviral function | [119] | |
Gm20559 | Host intergenic lncRNA | Modulate the expression of various pro-inflammatory cytokines during flavivirus infection | [120] | |
sfRNAs/ xrRNAs | Pathogen-derived lncRNA | Impact viral replication | [121] | |
HIV | RUNXOR | Host sense overlapping lncRNA | Regulate multiple immunosuppressive signaling molecules | [126,164] |
HOTAIRM1 | Host intergenic lncRNA | Increase levels of immunosuppressive molecules | [127] | |
GAS5 | Host antisense lncRNA | Control HIV replication, regulate the activity and longevity of CD4 T cells | [128,129] | |
NKILA | Host antisense lncRNA | Inhibit HIV-1 replication by suppressing HIV-1 LTR promoter activity | [130] | |
Influenza viruses | PSMB8-AS1 | Host antisense lncRNA | Promotes influenza virus replication | [137,138] |
LINC01191 (VIN) | Host intergenic lncRNA | Regulate viral protein synthesis | [137,140] | |
DANCR | Host intergenic lncRNA | Involved in respiratory infections and regulate inflammation | [137,139] | |
BCAR4 | Host intergenic lncRNA | Biomarker | [137] | |
LncRNA#61 | Host sense overlapping lncRNA | Suppress viral replication, mediate host immune responses | [141] | |
LncRNA#45 | Host intronic lncRNA | Function as a broad-spectrum antiviral factor | [142] | |
CHROMR | Host antisense lncRNA | Restrict influenza virus replication by sequestering IRF2/IRF2BP2 complex | [143] | |
lncNSPL | Host intergenic lncRNA | Influence influenza immune escape by modulating IFN-I expression | [144] | |
RDUR | Host intergenic lncRNA | Regulate innate immunity against virus by controlling IFN-β and ISGs | [145] | |
PRV (Orthoherpesviridae) | lnc_000641 | Host intergenic lncRNA | Influence PRV replication through JAK-STAT1 pathway | [149] |
lncA02830 | Host intronic lncRNA | Affect PRV replication in a IFN-dependent manner | [150] | |
NOIR1/NOIR2 | Pathogen-derived lncRNA | Locate in the IR region of the PRV | [152] | |
PTO/PTO-US1 | Pathogen-derived lncRNA | Overlap with the oriS region of the PRV | [152] | |
CTO-S/CTO-L | Pathogen-derived lncRNA | Function as TATA boxes in herpesviruses | [152] | |
AZURE | Pathogen-derived lncRNA | Locate in the IR-US overlapping region of the PRV | [152] | |
EBV (Orthoherpesviridae) | H19 | Host intergenic lncRNA | Biomarker | [151] |
SARS-CoV-2 | GAS5 | Host antisense lncRNA | Affect SARS-CoV-2 invasion via GAS5/miRNA-200/ACE2 axis | [159] |
SNHG15 | Host intergenic lncRNA | Aid SARS-CoV-2 entry through RABL2A, facilitate memory CD8+ T cell production | [160] | |
PIRAT | Host intergenic lncRNA | Modulate systemic antiviral responses to SARS-CoV-2 | [161] | |
LUCAT1 | Host intergenic lncRNA | Modulate systemic antiviral responses to SARS-CoV-2 | [161] | |
XIST | Host intergenic lncRNA | Biomarker | [162] | |
ZFY-AS1 | Host antisense lncRNA | Biomarker | [162] | |
TTTY14 | Host intergenic lncRNA | Biomarker | [162] | |
MALAT1 | Host intergenic lncRNA | Biomarker | [163] | |
MEG3 | Host intergenic lncRNA | Biomarker | [163] |
4. LncRNAs in Parasitic Zoonoses
4.1. Malaria
4.2. Schistosomiasis
4.3. Cryptosporidiosis
4.4. Toxoplasmosis
4.5. Echinococcosis
Pathogen | LncRNA | Category | Function or Mechanism | Reference |
---|---|---|---|---|
Plasmodium | GDV1 | Pathogen-derived lncRNA | Regulate sexual development | [171,172] |
TARE-3-lncRNA/TARE-6-lncRNA | Pathogen-derived lncRNA | Affect the intra-erythrocytic developmental cycle of Plasmodium | [172,173,174] | |
Var-specific lncRNA | Pathogen-derived lncRNA | Enhance the virulence of P. falciparum by modulating var | [175] | |
LncRNA-ch14 | Pathogen-derived lncRNA | Regulate gametocyte development | [170] | |
ENMSUSG00000111521.1 | Host antisense lncRNA | Regulate host immunity by TGF-β/Smad2/3 signaling | [176] | |
XLOC_038009 | Host intergenic lncRNA | Regulate host immunity by TGF-β/Smad2/3 signaling | [176] | |
XLOC_058629 | Host intergenic lncRNA | Regulate host immunity by TGF-β/Smad2/3 signaling | [176] | |
XLOC_065676 | Host intergenic lncRNA | Regulate host immunity by TGF-β/Smad2/3 signaling | [176] | |
MALAT1 | Host intergenic lncRNA | Function as a negative regulator of cellular immune response | [177] | |
Schistosoma | SmLINC101519 | Pathogen-derived lncRNA | Regulate the motility of adult worms | [179] |
SmLINC175062 | Pathogen-derived lncRNA | Regulate the motility of adult worms | [179] | |
SmLINC110998 | Pathogen-derived lncRNA | Regulate the motility of adult worms | [179] | |
Gm16685 | Host antisense lncRNA | Promote M1 macrophage polarization by regulating miR-205-5p | [183] | |
H19 | Host intergenic lncRNA | Influence S. japonica infection via H19/miR-130b-3p/Cyp4a14 axis | [184] | |
Cryptosporidium | U90926 | Host intergenic lncRNA (peptide coding) | Regulate cell autonomous antiparasitic defense in a pro-parasitic manner | [186] |
Nostrill | Host intergenic lncRNA | Promote antiparasitic defense through regulating NF-κB p65 | [187] | |
NR_045064 | Host intergenic lncRNA | Promote host defense against Cryptosporidium by modulating NOS2/CSF2 | [188] | |
XR_001779380 | Host intergenic lncRNA | Relevant to anti-Cryptosporidium defense in a IFN- dependent manner | [189] | |
NR_033736 | Host intergenic lncRNA | Contribute to host innate defense against Cryptosporidium | [190] | |
Toxoplasma | Csf1-lnc | Host sense overlapping lncRNA | Controlled by secretory kinase ROP16 | [192] |
Socs2-lnc | Host sense overlapping lncRNA | Controlled by secretory kinase ROP16 | [192] | |
lncRNA147410.3 | Host antisense lncRNA | Affect microglial proliferation, differentiation and apoptosis by targeting Hoxb3 | [193] | |
lncRNA-11496 | Host sense overlapping lncRNA | Affect microglial proliferation, differentiation and apoptosis by targeting Mef2c | [194] | |
NONSHAT022487 | Host antisense lncRNA | Suppress the expression of the immune-related molecule UNC93B1 | [195] | |
Echinococcus | lncRNA028466 | Host intergenic lncRNA | Be involved in cytokine expression of Th1 and Th2 | [200] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomori, O.; Oluwayelu, D.O. Domestic Animals as Potential Reservoirs of Zoonotic Viral Diseases. Annu. Rev. Anim. Biosci. 2023, 11, 33–55. [Google Scholar] [CrossRef]
- Kalawat, U.; Mohan, A. Endemic, Emerging and Re-Emerging Zoonotic Diseases: The Way Forward! J. Clin. Sci. Res. 2023, 12, 79–80. [Google Scholar] [CrossRef]
- Head, J.R.; Bumburidi, Y.; Mirzabekova, G.; Rakhimov, K.; Dzhumankulov, M.; Salyer, S.J.; Knust, B.; Berezovskiy, D.; Kulatayeva, M.; Zhetibaev, S.; et al. Risk Factors for and Seroprevalence of Tickborne Zoonotic Diseases among Livestock Owners, Kazakhstan. Emerg. Infect. Dis. 2020, 26, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Plowright, R.K.; Parrish, C.R.; McCallum, H.; Hudson, P.J.; Ko, A.I.; Graham, A.L.; Lloyd-Smith, J.O. Pathways to Zoonotic Spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Parrish, C.R.; Holmes, E.C.; Morens, D.M.; Park, E.-C.; Burke, D.S.; Calisher, C.H.; Laughlin, C.A.; Saif, L.J.; Daszak, P. Cross-Species Virus Transmission and the Emergence of New Epidemic Diseases. Microbiol. Mol. Biol. Rev. 2008, 72, 457–470. [Google Scholar] [CrossRef] [PubMed]
- The ENCODE Project Consortium. An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature 2012, 489, 57–74. [Google Scholar] [CrossRef] [PubMed]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.-L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef]
- Ponting, C.P.; Haerty, W. Genome-Wide Analysis of Human Long Noncoding RNAs: A Provocative Review. Annu. Rev. Genom. Hum. Genet. 2022, 23, 153–172. [Google Scholar] [CrossRef]
- Volders, P.-J.; Anckaert, J.; Verheggen, K.; Nuytens, J.; Martens, L.; Mestdagh, P.; Vandesompele, J. LNCipedia 5: Towards a Reference Set of Human Long Non-Coding RNAs. Nucleic Acids Res. 2019, 47, D135–D139. [Google Scholar] [CrossRef]
- Li, Z.; Liu, L.; Feng, C.; Qin, Y.; Xiao, J.; Zhang, Z.; Ma, L. LncBook 2.0: Integrating Human Long Non-Coding RNAs with Multi-Omics Annotations. Nucleic Acids Res. 2022, 51, D186–D191. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, C.; Wu, M. New Insights into Long Noncoding RNAs and Their Roles in Glioma. Mol. Cancer 2018, 17, 61. [Google Scholar] [CrossRef]
- St Laurent, G.; Wahlestedt, C.; Kapranov, P. The Landscape of Long Non-Coding RNA Classification. Trends Genet. 2015, 31, 239–251. [Google Scholar] [CrossRef]
- Cabili, M.N.; Dunagin, M.C.; McClanahan, P.D.; Biaesch, A.; Padovan-Merhar, O.; Regev, A.; Rinn, J.L.; Raj, A. Localization and Abundance Analysis of Human lncRNAs at Single-Cell and Single-Molecule Resolution. Genome Biol. 2015, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Bridges, M.C.; Daulagala, A.C.; Kourtidis, A. LNCcation: lncRNA Localization and Function. J. Cell Biol. 2021, 220, e202009045. [Google Scholar] [CrossRef] [PubMed]
- Guh, C.-Y.; Hsieh, Y.-H.; Chu, H.-P. Functions and Properties of Nuclear lncRNAs-from Systematically Mapping the Interactomes of lncRNAs. J. Biomed. Sci. 2020, 27, 44. [Google Scholar] [CrossRef] [PubMed]
- Vance, K.W.; Ponting, C.P. Transcriptional Regulatory Functions of Nuclear Long Noncoding RNAs. Trends Genet. 2014, 30, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yan, Z.; Fu, C.; Wen, X.; Jia, L.; Zhou, L.; Du, Z.; Wang, C.; Wang, Y.; Chen, J.; et al. LncRNA Osilr9 Coordinates Promoter DNA Demethylation and the Intrachromosomal Loop Structure Required for Maintaining Stem Cell Pluripotency. Mol. Ther. J. Am. Soc. Gene Ther. 2023, 31, 1791–1806. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.W.; Xu, J.; Sun, R.; Mumbach, M.R.; Carter, A.C.; Chen, Y.G.; Yost, K.E.; Kim, J.; He, J.; Nevins, S.A.; et al. Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element. Cell 2018, 173, 1398–1412.e22. [Google Scholar] [CrossRef] [PubMed]
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef] [PubMed]
- Sirey, T.M.; Roberts, K.; Haerty, W.; Bedoya-Reina, O.; Rogatti-Granados, S.; Tan, J.Y.; Li, N.; Heather, L.C.; Carter, R.N.; Cooper, S.; et al. The Long Non-Coding RNA Cerox1 Is a Post Transcriptional Regulator of Mitochondrial Complex I Catalytic Activity. eLife 2019, 8, e45051. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Y.; Zhang, Y.; Yang, J.; Zhang, M.; Li, S.; Xue, G.; Li, X.; Zhang, X.; Yang, J.; et al. Cytoplasmic Sequestration of P53 by lncRNA-CIRPILalleviates Myocardial Ischemia/Reperfusion Injury. Commun. Biol. 2022, 5, 716. [Google Scholar] [CrossRef]
- Slavoff, S.A.; Mitchell, A.J.; Schwaid, A.G.; Cabili, M.N.; Ma, J.; Levin, J.Z.; Karger, A.D.; Budnik, B.A.; Rinn, J.L.; Saghatelian, A. Peptidomic Discovery of Short Open Reading Frame-Encoded Peptides in Human Cells. Nat. Chem. Biol. 2013, 9, 59–64. [Google Scholar] [CrossRef]
- Matsumoto, A.; Pasut, A.; Matsumoto, M.; Yamashita, R.; Fung, J.; Monteleone, E.; Saghatelian, A.; Nakayama, K.I.; Clohessy, J.G.; Pandolfi, P.P. mTORC1 and Muscle Regeneration Are Regulated by the LINC00961-Encoded SPAR Polypeptide. Nature 2017, 541, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-Z.; Chen, M.; Chen, D.; Gao, X.-C.; Zhu, S.; Huang, H.; Hu, M.; Zhu, H.; Yan, G.-R. A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresses Colon Cancer Growth. Mol. Cell 2017, 68, 171–184.e6. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Zhang, C.; Ji, Y.; Ge, M.-K.; Yu, Y.; Zhang, N.; Yang, S.; Yu, J.-X.; Shen, S.-M.; Chen, G.-Q. Epithelial Cells-Enriched lncRNA SNHG8 Regulates Chromatin Condensation by Binding to Histone H1s. Cell. Death. Differ. 2022, 29, 1569–1581. [Google Scholar] [CrossRef]
- Qin, W.; Qi, X.; Xie, Y.; Wang, H.; Wu, S.; Sun, M.; Bao, W. LncRNA446 Regulates Tight Junctions by Inhibiting the Ubiquitinated Degradation of Alix after Porcine Epidemic Diarrhea Virus Infection. J. Virol. 2023, 97, e01884-22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, M.; Zhang, L.; Wang, W.; Hua, S.; Zhou, C.; Sun, X. Long Non-Coding RNAs and Immune Cells: Unveiling the Role in Viral Infections. Biomed. Pharmacother. Biomed. Pharmacother. 2023, 170, 115978. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Chen, H.; Luo, F.; Zhou, H.; Li, Z. Roles of Long Noncoding RNAs in Bacterial Infection. Life Sci. 2020, 263, 118579. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, Y.; Li, H. LncRNA, miRNA and lncRNA-miRNA Interaction in Viral Infection. Virus Res. 2018, 257, 25–32. [Google Scholar] [CrossRef]
- McDaniel, C.J.; Cardwell, D.M.; Moeller, R.B.; Gray, G.C. Humans and Cattle: A Review of Bovine Zoonoses. Vector Borne Zoonotic Dis. 2014, 14, 1–19. [Google Scholar] [CrossRef]
- Rahman, M.T.; Sobur, M.A.; Islam, M.S.; Ievy, S.; Hossain, M.J.; Zowalaty, M.E.E.; Rahman, A.T.; Ashour, H.M. Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms 2020, 8, 1405. [Google Scholar] [CrossRef]
- Olaru, I.D.; Walther, B.; Schaumburg, F. Zoonotic Sources and the Spread of Antimicrobial Resistance from the Perspective of Low and Middle-Income Countries. Infect. Dis. Poverty 2023, 12, 59. [Google Scholar] [CrossRef] [PubMed]
- Howard, N.C.; Khader, S.A. Immunometabolism during Mycobacterium tuberculosis Infection. Trends Microbiol. 2020, 28, 832–850. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.D.; Mott, D.; Sutiwisesak, R.; Lu, Y.-J.; Raso, F.; Stowell, B.; Babunovic, G.H.; Lee, J.; Carpenter, S.M.; Way, S.S.; et al. Mycobacterium tuberculosis-Specific CD4+ and CD8+ T Cells Differ in Their Capacity to Recognize Infected Macrophages. PLoS Pathog. 2018, 14, e1007060. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhong, H.; Xie, X.; Chen, C.Y.; Huang, D.; Shen, L.; Zhang, H.; Chen, Z.W.; Zeng, G. Long Noncoding RNA Derived from CD244 Signaling Epigenetically Controls CD8+ T-Cell Immune Responses in Tuberculosis Infection. Proc. Natl. Acad. Sci. USA 2015, 112, E3883–E3892. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tan, Y.; Zhang, X.; Cheng, M.; Hu, J.; Liu, J.; Chen, X.; Zhu, J. Comprehensive Identification of Immuno-Related Transcriptional Signature for Active Pulmonary Tuberculosis by Integrated Analysis of Array and Single Cell RNA-Seq. J. Infect. 2022, 85, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Xu, X.; Xue, J.; Duan, W.; Yi, Z. Deregulated lncRNAs in B Cells from Patients with Active Tuberculosis. PLoS ONE 2017, 12, e0170712. [Google Scholar] [CrossRef]
- Li, M.; Cui, J.; Niu, W.; Huang, J.; Feng, T.; Sun, B.; Yao, H. Long Non-Coding PCED1B-AS1 Regulates Macrophage Apoptosis and Autophagy by Sponging miR-155 in Active Tuberculosis. Biochem. Biophys. Res. Commun. 2019, 509, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Xie, Y.; Xu, D.; Qu, Z.; Wu, J.; Zhou, Y.; Wei, Y.; Xiong, H.; Zhang, X.-L. Lnc-EST12, Which Is Negatively Regulated by Mycobacterial EST12, Suppresses Antimycobacterial Innate Immunity through Its Interaction with FUBP3. Cell. Mol. Immunol. 2022, 19, 883–897. [Google Scholar] [CrossRef]
- Qu, Y.; Jiang, D.; Liu, M.; Wang, H.; Xu, T.; Zhou, H.; Huang, M.; Shu, W.; Xu, G. LncRNA DANCR Restrained the Survival of Mycobacterium tuberculosis H37Ra by Sponging miR-1301-3p/miR-5194. Front. Microbiol. 2023, 14, 1119629. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.-B.; Li, L.-T.; Xi, J.-C.; Liu, H.-T.; Liu, Z.; Yu, L.; Tang, P.-F. Negative Pressure Promotes Macrophage M1 Polarization after Mycobacterium tuberculosis Infection via the lncRNA XIST/microRNA-125b-5p/A20/NF-κB Axis. Ann. N. Y. Acad. Sci. 2022, 1514, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Lou, J.; Zheng, X.-M.; Yang, X.-Y. LncRNA MIAT Regulates Autophagy and Apoptosis of Macrophage Infected by Mycobacterium tuberculosis through the miR-665/ULK1 Signaling Axis. Mol. Immunol. 2021, 139, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Gcanga, L.; Tamgue, O.; Ozturk, M.; Pillay, S.; Jacobs, R.; Chia, J.E.; Mbandi, S.K.; Davids, M.; Dheda, K.; Schmeier, S.; et al. Host-Directed Targeting of LincRNA-MIR99AHG Suppresses Intracellular Growth of Mycobacterium tuberculosis. Nucleic Acid Ther. 2022, 32, 421–437. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Liu, Y.; Ma, Y.; Yang, F.; Ruan, Y.; Xu, J.-F.; Pi, J. Advances of Long Non-Coding RNAs as Potential Biomarkers for Tuberculosis: New Hope for Diagnosis? Pharmaceutics 2023, 15, 2096. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, J.; Wang, J.; Wen, Q.; Wang, H.; He, J.; Hu, S.; He, W.; Du, X.; Liu, S.; et al. Microarray Analysis of Long Noncoding RNA and mRNA Expression Profiles in Human Macrophages Infected with Mycobacterium tuberculosis. Sci. Rep. 2016, 6, 38963. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, X.; Tong, P.; Zheng, B.; Zhu, M.; Peng, B.; Wang, J.; Liu, Y. RNA-Seq Analysis of Long Non-Coding RNA in Human Intestinal Epithelial Cells Infected by Shiga Toxin-Producing Escherichia coli. Cytokine 2024, 173, 156421. [Google Scholar] [CrossRef]
- Yang, R.; Wang, X.; Liu, H.; Chen, J.; Tan, C.; Chen, H.; Wang, X. Egr-1 Is a Key Regulator of the Blood-Brain Barrier Damage Induced by Meningitic Escherichia coli. Cell Commun. Signal. 2024, 22, 44. [Google Scholar] [CrossRef]
- Wu, Z.; Fan, H.; Jin, J.; Gao, S.; Huang, R.; Wu, S.; Bao, W. Insight into Mechanisms of Pig lncRNA FUT3-AS1 Regulating E. coli F18-Bacterial Diarrhea. PLoS Pathog. 2022, 18, e1010584. [Google Scholar] [CrossRef]
- Yang, B.; Yin, P.; Yang, R.; Xu, B.; Fu, J.; Zhi, S.; Dai, M.; Tan, C.; Chen, H.; Wang, X. Holistic Insights into Meningitic Escherichia coli Infection of Astrocytes Based on Whole Transcriptome Profiling. Epigenomics 2020, 12, 1611–1632. [Google Scholar] [CrossRef]
- Xu, B.; Yang, R.; Yang, B.; Li, L.; Chen, J.; Fu, J.; Qu, X.; Huo, D.; Tan, C.; Chen, H.; et al. Long Non-Coding RNA lncC11orf54-1 Modulates Neuroinflammatory Responses by Activating NF-κB Signaling during Meningitic Escherichia Coli Infection. Mol. Brain 2022, 15, 4. [Google Scholar] [CrossRef]
- Xu, B.; Yang, R.; Fu, J.; Yang, B.; Chen, J.; Tan, C.; Chen, H.; Wang, X. LncRSPH9-4 Facilitates Meningitic Escherichia Coli-Caused Blood-Brain Barrier Disruption via miR-17-5p/MMP3 Axis. Int. J. Mol. Sci. 2021, 22, 6343. [Google Scholar] [CrossRef]
- Yang, B.; Xu, B.; Yang, R.; Fu, J.; Li, L.; Huo, D.; Chen, J.; Yang, X.; Tan, C.; Chen, H.; et al. Long Non-Coding Antisense RNA DDIT4-AS1 Regulates Meningitic Escherichia Coli-Induced Neuroinflammation by Promoting DDIT4 mRNA Stability. Mol. Neurobiol. 2022, 59, 1351–1365. [Google Scholar] [CrossRef]
- Ma, M.; Pei, Y.; Wang, X.; Feng, J.; Zhang, Y.; Gao, M.-Q. LncRNA XIST Mediates Bovine Mammary Epithelial Cell Inflammatory Response via NF-κB/NLRP3 Inflammasome Pathway. Cell Prolif. 2019, 52, e12525. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, J.; Jiang, X.; Wang, H.; Pan, G. LncRNA HOX Transcript Antisense RNA Accelerated Kidney Injury Induced by Urine-Derived Sepsis through the miR-22/High Mobility Group Box 1 Pathway. Life Sci. 2018, 210, 185–191. [Google Scholar] [CrossRef]
- Zhu, W.; Peng, F.; Cui, X.; Li, J.; Sun, C. LncRNA SOX2OT Facilitates LPS-Induced Inflammatory Injury by Regulating Intercellular Adhesion Molecule 1 (ICAM1) via Sponging miR-215-5p. Clin. Immunol. 2022, 238, 109006. [Google Scholar] [CrossRef]
- Ahmad, I.; Naqvi, R.A.; Valverde, A.; Naqvi, A.R. LncRNA MALAT1/microRNA-30b Axis Regulates Macrophage Polarization and Function. Front. Immunol. 2023, 14, 1214810. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.B.; Lee, W.J.; Shin, M.K.; Jung, M.H.; Shin, S.W.; Yoo, A.N.; Kim, J.W.; Yoo, H.S. Early Transcriptional Responses of Internalization Defective Brucella Abortus Mutants in Professional Phagocytes, RAW 264.7. BMC Genom. 2013, 14, 426. [Google Scholar] [CrossRef] [PubMed]
- von Bargen, K.; Gorvel, J.P.; Salcedo, S.P. Internal Affairs: Investigating the Brucella Intracellular Lifestyle. FEMS Microbiol. Rev. 2012, 36, 533–562. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Hu, H.; Tian, M.; Zhuang, H.; Ding, C.; Yu, S. Differentially Expressed Long Noncoding RNAs in RAW264.7 Macrophages during Brucella Infection and Functional Analysis on the Bacterial Intracellular Replication. Sci. Rep. 2022, 12, 21320. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Guo, J.; Sun, Z.; Liu, L.; Zhao, T.; Li, J.; Tang, G.; Zhu, D.; Tao, T.; Zhang, H. Brucella-Induced Downregulation of lncRNA Gm28309 Triggers Macrophages Inflammatory Response Through the miR-3068-5p/NF-κB Pathway. Front. Immunol. 2020, 11, 805275. [Google Scholar] [CrossRef] [PubMed]
- Gheitasi, R.; Keramat, F.; Solgi, G.; Hajilooi, M. Investigation of Linc-MAF-4 Expression as an Effective Marker in Brucellosis. Mol. Immunol. 2020, 123, 60–63. [Google Scholar] [CrossRef]
- Gheitasi, R.; Jourghasemi, S.; Pakzad, I.; Hosseinpour Sarmadi, V.; Samieipour, Y.; Sekawi, Z.; Azizi Jalilian, F. A Potential Marker in Brucellosis, Long Non Coding RNA IFNG-AS1. Mol. Biol. Rep. 2019, 46, 6495–6500. [Google Scholar] [CrossRef] [PubMed]
- Poppe, C.; Smart, N.; Khakhria, R.; Johnson, W.; Spika, J.; Prescott, J. Salmonella typhimurium DT104: A Virulent and Drug-Resistant Pathogen. Can. Vet. J. 1998, 39, 559–565. [Google Scholar] [PubMed]
- Imamura, K.; Takaya, A.; Ishida, Y.; Fukuoka, Y.; Taya, T.; Nakaki, R.; Kakeda, M.; Imamachi, N.; Sato, A.; Yamada, T.; et al. Diminished Nuclear RNA Decay upon Salmonella Infection Upregulates Antibacterial Noncoding RNAs. EMBO J. 2018, 37, e97723. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yang, Y.; Wei, J.; Yue, J.; Wang, Y.; Zhang, Q.; Jin, M.; Wang, R.; Yang, X.; Zhang, J.; et al. LNCGM1082-Mediated NLRC4 Activation Drives Resistance to Bacterial Infection. Cell. Mol. Immunol. 2023, 20, 475–488. [Google Scholar] [CrossRef]
- Monack, D.M.; Chang, H.Y.; Brahic, M.; Kirkegaard, K. NeST, a Long Noncoding RNA, Controls Microbial Susceptibility and Epigenetic Activation of the Ifng Locus. Cell 2013, 152, 743. [Google Scholar] [CrossRef]
- Zou, W.; Zhang, J.; Zhang, K.; Peng, Z.; Xin, R.; Wang, L.; Li, J. Asiatic Acid Attenuates Inflammation Induced by Salmonella via Upregulating LncRNA TVX1 in Microglia. Int. J. Mol. Sci. 2022, 23, 10978. [Google Scholar] [CrossRef]
- Saleh, L.A.; Boyd, A.; Aragon, I.V.; Koloteva, A.; Spadafora, D.; Mneimneh, W.; Barrington, R.A.; Richter, W. Ablation of PDE4B Protects from Pseudomonas aeruginosa-Induced Acute Lung Injury in Mice by Ameliorating the Cytostorm and Associated Hypothermia. FASEB J. 2021, 35, e21797. [Google Scholar] [CrossRef]
- Balloy, V.; Koshy, R.; Perra, L.; Corvol, H.; Chignard, M.; Guillot, L.; Scaria, V. Bronchial Epithelial Cells from Cystic Fibrosis Patients Express a Specific Long Non-Coding RNA Signature upon Pseudomonas aeruginosa Infection. Front. Cell. Infect. Microbiol. 2017, 7, 218. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Fang, L.; Pu, Q.; Bu, H.; Zhu, P.; Chen, Z.; Yu, M.; Li, X.; Weiland, T.; Bansal, A.; et al. MEG3-4 Is a miRNA Decoy That Regulates IL-1β Abundance to Initiate and Then Limit Inflammation to Prevent Sepsis during Lung Infection. Sci. Signal. 2018, 11, eaao2387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Y.; Lu, Y.; Li, S.; Liu, J.; Zhang, Y.; Wang, L.; Li, M.; Luo, Y.; Zhang, W.; et al. N-3-(Oxododecanoyl)-L-Homoserine Lactone Suppresses Dendritic Cell Maturation by Upregulating the Long Noncoding RNA NRIR. J. Biosci. 2021, 46, 65. [Google Scholar] [CrossRef]
- Mogotu, M.W.; Abong, G.O.; Mburu, J.; Ndambi, O.A. Assessment of Hygiene Practices and Microbial Safety of Milk Supplied by Smallholder Farmers to Processors in Selected Counties in Kenya. Trop. Anim. Health Prod. 2022, 54, 220. [Google Scholar] [CrossRef] [PubMed]
- Indramohan, M.; Sieve, A.N.; Break, T.J.; Berg, R.E. Inflammatory Monocyte Recruitment Is Regulated by Interleukin-23 during Systemic Bacterial Infection. Infect. Immun. 2012, 80, 4099. [Google Scholar] [CrossRef] [PubMed]
- Dussurget, O.; Bierne, H.; Cossart, P. The Bacterial Pathogen Listeria monocytogenes and the Interferon Family: Type I, Type II and Type III Interferons. Front. Cell. Infect. Microbiol. 2014, 4, 50. [Google Scholar] [CrossRef]
- Quereda, J.J.; Dussurget, O.; Nahori, M.-A.; Ghozlane, A.; Volant, S.; Dillies, M.-A.; Regnault, B.; Kennedy, S.; Mondot, S.; Villoing, B.; et al. Bacteriocin from Epidemic Listeria Strains Alters the Host Intestinal Microbiota to Favor Infection. Proc. Natl. Acad. Sci. USA 2016, 113, 5706–5711. [Google Scholar] [CrossRef] [PubMed]
- Lam, G.Y.; Cemma, M.; Muise, A.M.; Higgins, D.E.; Brumell, J.H. Host and Bacterial Factors That Regulate LC3 Recruitment to Listeria monocytogenes during the Early Stages of Macrophage Infection. Autophagy 2013, 9, 985–995. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, D.; Chen, G.; Li, G.; Dou, S.; Wang, R.; Xiao, H.; Hou, C.; Li, Y.; Feng, J.; et al. Tim-3 Inhibits Macrophage Control of Listeria Monocytogenes by Inhibiting Nrf2. Sci. Rep. 2017, 7, 42095. [Google Scholar] [CrossRef]
- Atianand, M.K.; Hu, W.; Satpathy, A.T.; Shen, Y.; Ricci, E.P.; Alvarez-Dominguez, J.R.; Bhatta, A.; Schattgen, S.A.; McGowan, J.D.; Blin, J.; et al. A Long Noncoding RNA lincRNA-EPS Acts as a Transcriptional Brake to Restrain Inflammation. Cell 2016, 165, 1672–1685. [Google Scholar] [CrossRef]
- Agliano, F.; Fitzgerald, K.A.; Vella, A.T.; Rathinam, V.A.; Medvedev, A.E. Long Non-Coding RNA LincRNA-EPS Inhibits Host Defense Against Listeria monocytogenes Infection. Front. Cell. Infect. Microbiol. 2019, 9, 481. [Google Scholar] [CrossRef]
- Zhu, Y.; Lu, Y.; Yuan, L.; Ling, W.; Jiang, X.; Chen, S.; Hu, B. LincRNA-Cox2 Regulates IL6/JAK3/STAT3 and NF-κB P65 Pathway Activation in Listeria monocytogenes-Infected RAW264.7 Cells. Int. J. Med. Microbiol. 2021, 311, 151515. [Google Scholar] [CrossRef]
- Chan, J.; Atianand, M.; Jiang, Z.; Carpenter, S.; Aiello, D.; Elling, R.; Fitzgerald, K.A.; Caffrey, D.R. Cutting Edge: A Natural Antisense Transcript, AS-IL1α, Controls Inducible Transcription of the Proinflammatory Cytokine IL-1α. J. Immunol. 2015, 195, 1359–1363. [Google Scholar] [CrossRef]
- Xu, H.; Jiang, Y.; Xu, X.; Su, X.; Liu, Y.; Ma, Y.; Zhao, Y.; Shen, Z.; Huang, B.; Cao, X. Inducible Degradation of lncRNA Sros1 Promotes IFN-γ-Mediated Activation of Innate Immune Responses by Stabilizing Stat1 mRNA. Nat. Immunol. 2019, 20, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Wurtzel, O.; Sesto, N.; Mellin, J.R.; Karunker, I.; Edelheit, S.; Bécavin, C.; Archambaud, C.; Cossart, P.; Sorek, R. Comparative Transcriptomics of Pathogenic and Non-Pathogenic Listeria Species. Mol. Syst. Biol. 2012, 8, 583. [Google Scholar] [CrossRef]
- Foster, T. Staphylococcus. In Medical Microbiology; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; ISBN 978-0-9631172-1-2. [Google Scholar]
- Algammal, A.M.; Hetta, H.F.; Elkelish, A.; Alkhalifah, D.H.H.; Hozzein, W.N.; Batiha, G.E.-S.; El Nahhas, N.; Mabrok, M.A. Methicillin-Resistant Staphylococcus aureus (MRSA): One Health Perspective Approach to the Bacterium Epidemiology, Virulence Factors, Antibiotic-Resistance, and Zoonotic Impact. Infect. Drug Resist. 2020, 13, 3255–3265. [Google Scholar] [CrossRef]
- Wilke, G.A.; Wardenburg, J.B. Role of a Disintegrin and Metalloprotease 10 in Staphylococcus Aureus α-Hemolysin–Mediated Cellular Injury. Proc. Natl. Acad. Sci. USA 2010, 107, 13473–13478. [Google Scholar] [CrossRef]
- Duan, J.; Li, M.; Hao, Z.; Shen, X.; Liu, L.; Jin, Y.; Wang, S.; Guo, Y.; Yang, L.; Wang, L.; et al. Subinhibitory Concentrations of Resveratrol Reduce Alpha-Hemolysin Production in Staphylococcus Aureus Isolates by Downregulating saeRS. Emerg. Microbes Infect. 2018, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Horn, J.; Klepsch, M.; Manger, M.; Wolz, C.; Rudel, T.; Fraunholz, M. Long Noncoding RNA SSR42 Controls Staphylococcus Aureus Alpha-Toxin Transcription in Response to Environmental Stimuli. J. Bacteriol. 2018, 200, e00252-18. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.M.; Miller, E.W.; Benson, M.A.; Alonzo, F.; Yoong, P.; Torres, V.J.; Hinrichs, S.H.; Dunman, P.M. Characterization of SSR42, a Novel Virulence Factor Regulatory RNA That Contributes to the Pathogenesis of a Staphylococcus Aureus USA300 Representative. J. Bacteriol. 2012, 194, 2924–2938. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, T.; Ma, Y.; Wu, X.; Chu, S.; Yang, Z. Multiple Roles of LncRNA-BMNCR on Cell Proliferation and Apoptosis by Targeting miR-145/CBFB Axis in BMECs. Vet. Q. 2023, 43, 1–11. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Zhang, R.; Li, D.; Gao, M.-Q. LRRC75A Antisense lncRNA1 Knockout Attenuates Inflammatory Responses of Bovine Mammary Epithelial Cells. Int. J. Biol. Sci. 2020, 16, 251. [Google Scholar] [CrossRef] [PubMed]
- Aldakheel, F.M.; Syed, R.; Ahmed, M.; Xu, T. Modulation of lncRNA NEAT1 Overturns the Macrophages Based Immune Response in M. tuberculosis Infected Patients via miR-373 Regulation. J. Appl. Genet. 2023. [Google Scholar] [CrossRef]
- Ke, Z.; Lu, J.; Zhu, J.; Yang, Z.; Jin, Z.; Yuan, L. Down-Regulation of lincRNA-EPS Regulates Apoptosis and Autophagy in BCG-Infected RAW264.7 Macrophages via JNK/MAPK Signaling Pathway. Infect. Genet. Evol. 2020, 77, 104077. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yu, J.; Ma, C.; Gong, Z.; Wu, X.; Deng, G. Impact of Knockdown LincRNA-Cox2 on Apoptosis of Macrophage Infected with Bacillus Calmette-Guérin. Mol. Immunol. 2021, 130, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Heeney, J.L. Zoonotic Viral Diseases and the Frontier of Early Diagnosis, Control and Prevention. J. Intern. Med. 2006, 260, 399–408. [Google Scholar] [CrossRef]
- Reed, K.D. Viral Zoonoses. In Reference Module in Biomedical Sciences; Elsevier: Madison, WI, USA, 2018; ISBN 978-0-12-801238-3. [Google Scholar]
- Gan, H.; Hou, X.; Wang, Y.; Xu, G.; Huang, Z.; Zhang, T.; Lin, R.; Xue, M.; Hu, H.; Liu, M.; et al. Global Burden of Rabies in 204 Countries and Territories, from 1990 to 2019: Results from the Global Burden of Disease Study 2019. Int. J. Infect. Dis. 2023, 126, 136–144. [Google Scholar] [CrossRef]
- Diallo, M.K.; Diallo, A.O.; Dicko, A.; Richard, V.; Espié, E. Human Rabies Post Exposure Prophylaxis at the Pasteur Institute of Dakar, Senegal: Trends and Risk Factors. BMC Infect. Dis. 2019, 19, 321. [Google Scholar] [CrossRef]
- Zhao, P.; Guo, S.; Zhong, Z.; Yang, S.; Xia, X. Quantitative Characterization of the B Cell Receptor Repertoires of Human Immunized with Commercial Rabies Virus Vaccine. Hum. Vaccines Immunother. 2021, 17, 2538–2546. [Google Scholar] [CrossRef]
- Potratz, M.; Zaeck, L.M.; Weigel, C.; Klein, A.; Freuling, C.M.; Müller, T.; Finke, S. Neuroglia Infection by Rabies Virus after Anterograde Virus Spread in Peripheral Neurons. Acta Neuropathol. Commun. 2020, 8, 199. [Google Scholar] [CrossRef]
- Sui, B.; Chen, D.; Liu, W.; Wu, Q.; Tian, B.; Li, Y.; Hou, J.; Liu, S.; Xie, J.; Jiang, H.; et al. A Novel Antiviral lncRNA, EDAL, Shields a T309 O-GlcNAcylation Site to Promote EZH2 Lysosomal Degradation. Genome Biol. 2020, 21, 228. [Google Scholar] [CrossRef]
- Sui, B.; Zhao, J.; Zheng, J.; Zhou, M.; Chen, H.; Fu, Z.F.; Zhao, L. lncRNA EDAL Restricts Rabies Lyssavirus Replication in a Cell-Specific and Infection Route-Dependent Manner. J. Gen. Virol. 2022, 103, 001725. [Google Scholar] [CrossRef]
- Marí Saéz, A.; Weiss, S.; Nowak, K.; Lapeyre, V.; Zimmermann, F.; Düx, A.; Kühl, H.S.; Kaba, M.; Regnaut, S.; Merkel, K.; et al. Investigating the Zoonotic Origin of the West African Ebola Epidemic. EMBO Mol. Med. 2015, 7, 17–23. [Google Scholar] [CrossRef]
- Jacob, S.T.; Crozier, I.; Fischer, W.A.; Hewlett, A.; Kraft, C.S.; Vega, M.A.D.L.; Soka, M.J.; Wahl, V.; Griffiths, A.; Bollinger, L.; et al. Ebola Virus Disease. Nat. Rev. Dis. Primer 2020, 6, 13. [Google Scholar] [CrossRef]
- Santus, L.; Sopena-Rios, M.; García-Pérez, R.; Lin, A.E.; Adams, G.C.; Barnes, K.G.; Siddle, K.J.; Wohl, S.; Reverter, F.; Rinn, J.L.; et al. Single-Cell Profiling of lncRNA Expression during Ebola Virus Infection in Rhesus Macaques. Nat. Commun. 2023, 14, 3866. [Google Scholar] [CrossRef]
- Simmonds, P.; Becher, P.; Bukh, J.; Gould, E.A.; Meyers, G.; Monath, T.; Muerhoff, S.; Pletnev, A.; Rico-Hesse, R.; Smith, D.B.; et al. ICTV Virus Taxonomy Profile: Flaviviridae. J. Gen. Virol. 2017, 98, 2–3. [Google Scholar] [CrossRef]
- Brinton, M.A.; Basu, M. Functions of the 3′ and 5′ Genome RNA Regions of Members of the Genus Flavivirus. Virus Res. 2015, 206, 108–119. [Google Scholar] [CrossRef]
- Murugesan, A.; Manoharan, M. Dengue Virus. Emerg. Reemerging Viral Pathog. 2020, 1, 281–359. [Google Scholar] [CrossRef]
- Kumar, S.; Nyodu, R.; Maurya, V.K.; Saxena, S.K.; Kumar, S.; Nyodu, R.; Maurya, V.K.; Saxena, S.K. Pathogenesis and Host Immune Response during Japanese Encephalitis Virus Infection. In Innate Immunity in Health and Disease; IntechOpen: London, UK, 2021; ISBN 978-1-83880-766-5. [Google Scholar]
- Hsieh, J.T.; St. John, A.L. Japanese Encephalitis Virus and Its Mechanisms of Neuroinvasion. PLoS Pathog. 2020, 16, e1008260. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Qi, L.; Li, T.; Li, X.; Yang, D.; Cao, S.; Ye, J.; Wei, B. PD1+CCR2+CD8+ T Cells Infiltrate the Central Nervous System during Acute Japanese Encephalitis Virus Infection. Virol. Sin. 2019, 34, 538–548. [Google Scholar] [CrossRef] [PubMed]
- Saini, J.; Thapa, U.; Bandyopadhyay, B.; Vrati, S.; Banerjee, A. Knockdown of NEAT1 Restricts Dengue Virus Replication by Augmenting Interferon Alpha-Inducible Protein 27 via the RIG-I Pathway. J. Gen. Virol. 2023, 104. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Wang, H.; Cui, G.; Guo, Q.; Si, L.; Yan, H.; Fang, D.; Jiang, L.; Jiang, Z.; Zhou, J. ERG-Associated lncRNA (ERGAL) Promotes the Stability and Integrity of Vascular Endothelial Barrier During Dengue Viral Infection via Interaction With miR-183-5p. Front. Cell. Infect. Microbiol. 2020, 10, 477. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Yuan, Q.; Zhang, C.; Dai, Z.; Du, C.; Wang, H.; Li, X.; Yang, S.; Zhao, A. Inhibition of Japanese Encephalitis Virus Proliferation by Long Non-Coding RNA SUSAJ1 in PK-15 Cells. Virol. J. 2021, 18, 29. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Fan, J.; Wang, H.; Li, X.; Yang, S.; Zhao, A.; Zhou, X. LncRNA-SUSAJ1 Activates the ER Stress Pathway Inhibiting JEV Proliferation by Promoting PK15 Cells Apoptosis. Front. Biosci. Landmark Ed. 2022, 27, 260. [Google Scholar] [CrossRef]
- Tripathi, S.; Sengar, S.; Shree, B.; Mohapatra, S.; Basu, A.; Sharma, V. An RBM10 and NF-κB Interacting Host lncRNA Promotes JEV Replication and Neuronal Cell Death. J. Virol. 2023, 97, e0118323. [Google Scholar] [CrossRef]
- Huang, Y.; Su, Y.; Shen, L.; Huo, Z.; Chen, C.; Sun, T.; Tian, X.; Li, N.; Yang, C. A Novel IFNbeta-Induced Long Non-Coding RNA ZAP-IT1 Interrupts Zika Virus Replication in A549 Cells. Virol. Sin. 2022, 37, 904. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Vrati, S. The Malat1 Long Non-Coding RNA Is Upregulated by Signalling through the PERK Axis of Unfolded Protein Response during Flavivirus Infection. Sci. Rep. 2015, 5, 17794. [Google Scholar] [CrossRef]
- Mohapatra, S.; Tripathi, S.; Sharma, V.; Basu, A. Regulation of Microglia-Mediated Inflammation by Host lncRNA Gm20559 upon Flaviviral Infection. Cytokine 2023, 172, 156383. [Google Scholar] [CrossRef]
- Charley, P.A.; Wilusz, J. Standing Your Ground to Exoribonucleases: Function of Flavivirus Long Non-Coding RNAs. Virus Res. 2016, 212, 70–77. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Trends in Sexual Risk Behavior among High School Students—United States, 1990, 1991, and 1993. MMWR Morb. Mortal. Wkly. Rep. 1995, 44, 124–125, 131–132. [Google Scholar]
- van Schalkwyk, C.; Mahy, M.; Johnson, L.F.; Imai-Eaton, J.W. Updated Data and Methods for the 2023 UNAIDS HIV Estimates. J. Acquir. Immune Defic. Syndr. 2024, 95, e1–e4. [Google Scholar] [CrossRef]
- Sharp, P.M.; Hahn, B.H. Origins of HIV and the AIDS Pandemic. Cold Spring Harb. Perspect. Med. 2011, 1, a006841. [Google Scholar] [CrossRef] [PubMed]
- Le Goaster, J.; Bouree, P.; El Sissy, F.N.; Phuong Bui, F.; Pokossy Epee, J.; Rollin, P.; Tangy, F.; Haenni, A.-L. HSV-1/HSV-2 Infection-Related Cancers in Bantu Populations Driving HIV-1 Prevalence in Africa: Tracking the Origin of AIDS at the Onset of the 20th Century. Case Rep. Oncol. 2016, 9, 815–825. [Google Scholar] [CrossRef]
- Zhang, J.; Thakuri, B.K.C.; Zhao, J.; Nguyen, L.N.; Nguyen, L.N.T.; Khanal, S.; Cao, D.; Dang, X.; Schank, M.; Lu, Z.; et al. Long Noncoding RNA RUNXOR Promotes Myeloid-Derived Suppressor Cell Expansion and Functions via Enhancing Immunosuppressive Molecule Expressions during Latent HIV Infection. J. Immunol. 2021, 206, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Thakuri, B.K.C.; Zhao, J.; Nguyen, L.N.; Nguyen, L.N.T.; Cao, D.; Dang, X.; Khanal, S.; Schank, M.; Lu, Z.; et al. Long Noncoding RNA HOTAIRM1 Promotes Myeloid-Derived Suppressor Cell Expansion and Suppressive Functions through up-Regulating HOXA1 Expression during Latent HIV Infection. AIDS Lond. Engl. 2020, 34, 2211–2221. [Google Scholar] [CrossRef]
- Chen, L.; Chen, L.; Zuo, L.; Gao, Z.; Shi, Y.; Yuan, P.; Han, S.; Yin, J.; Peng, B.; He, X.; et al. Short Communication: Long Noncoding RNA GAS5 Inhibits HIV-1 Replication Through Interaction with miR-873. AIDS Res. Hum. Retroviruses 2018, 34, 544–549. [Google Scholar] [CrossRef]
- Nguyen, L.N.T.; Nguyen, L.N.; Zhao, J.; Schank, M.; Dang, X.; Cao, D.; Khanal, S.; Chand Thakuri, B.K.; Lu, Z.; Zhang, J.; et al. Long Non-Coding RNA GAS5 Regulates T Cell Functions via miR21-Mediated Signaling in People Living With HIV. Front. Immunol. 2021, 12, 601298. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Huan, C.; Yang, J.; Li, Z.; Zheng, B.; Wang, Y.; Zhang, W. NF-κB-Interacting Long Noncoding RNA Regulates HIV-1 Replication and Latency by Repressing NF-κB Signaling. J. Virol. 2020, 94, e01057-20. [Google Scholar] [CrossRef]
- Kuhn, J.H.; Abe, J.; Adkins, S.; Alkhovsky, S.V.; Avšič-Županc, T.; Ayllón, M.A.; Bahl, J.; Balkema-Buschmann, A.; Ballinger, M.J.; Baranwal, V.K.; et al. Annual (2023) Taxonomic Update of RNA-Directed RNA Polymerase-Encoding Negative-Sense RNA Viruses (Realm Riboviria: Kingdom Orthornavirae: Phylum Negarnaviricota). J. Gen. Virol. 2023, 104, 001864. [Google Scholar] [CrossRef]
- Mostafa, A.; Abdelwhab, E.M.; Mettenleiter, T.C.; Pleschka, S. Zoonotic Potential of Influenza A Viruses: A Comprehensive Overview. Viruses 2018, 10, 497. [Google Scholar] [CrossRef]
- Goneau, L.W.; Mehta, K.; Wong, J.; L’Huillier, A.G.; Gubbay, J.B. Zoonotic Influenza and Human Health-Part 1: Virology and Epidemiology of Zoonotic Influenzas. Curr. Infect. Dis. Rep. 2018, 20, 37. [Google Scholar] [CrossRef]
- Janke, B.H. Influenza A Virus Infections in Swine: Pathogenesis and Diagnosis. Vet. Pathol. 2014, 51, 410–426. [Google Scholar] [CrossRef]
- Wille, M.; Holmes, E.C. The Ecology and Evolution of Influenza Viruses. Cold Spring Harb. Perspect. Med. 2020, 10, a038489. [Google Scholar] [CrossRef]
- Richard, M.; Fouchier, R.A.M. Influenza A Virus Transmission via Respiratory Aerosols or Droplets as It Relates to Pandemic Potential. FEMS Microbiol. Rev. 2016, 40, 68–85. [Google Scholar] [CrossRef] [PubMed]
- Thatai, A.K.S.; Ammankallu, S.; Devasahayam Arokia Balaya, R.; Soman, S.P.; Nisar, M.; Babu, S.; John, L.; George, A.; Anto, C.K.; Sanjeev, D.; et al. VirhostlncR: A Comprehensive Database to Explore lncRNAs and Their Targets in Viral Infections. Comput. Biol. Med. 2023, 164, 107279. [Google Scholar] [CrossRef] [PubMed]
- More, S.; Zhu, Z.; Lin, K.; Huang, C.; Pushparaj, S.; Liang, Y.; Sathiaseelan, R.; Yang, X.; Liu, L. Long Non-Coding RNA PSMB8-AS1 Regulates Influenza Virus Replication. RNA Biol. 2019, 16, 340–353. [Google Scholar] [CrossRef] [PubMed]
- Meydan, C.; Madrer, N.; Soreq, H. The Neat Dance of COVID-19: NEAT1, DANCR, and Co-Modulated Cholinergic RNAs Link to Inflammation. Front. Immunol. 2020, 11, 590870. [Google Scholar] [CrossRef] [PubMed]
- Winterling, C.; Koch, M.; Koeppel, M.; Garcia-Alcalde, F.; Karlas, A.; Meyer, T.F. Evidence for a Crucial Role of a Host Non-Coding RNA in Influenza A Virus Replication. RNA Biol. 2014, 11, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, L.; Zheng, X.; Wang, G.; Chen, X.; Hu, Z.; Chen, Y.; Wang, X.; Gu, M.; Hu, S.; et al. Long Noncoding RNA #61 Exerts a Broad Anti-Influenza a Virus Effect by Its Long Arm Rings. Antivir. Res. 2023, 215, 105637. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zheng, X.; Li, J.; Wang, G.; Hu, Z.; Chen, Y.; Wang, X.; Gu, M.; Gao, R.; Hu, S.; et al. Long Noncoding RNA#45 Exerts Broad Inhibitory Effect on Influenza a Virus Replication via Its Stem Ring Arms. Virulence 2021, 12, 2443–2460. [Google Scholar] [CrossRef] [PubMed]
- van Solingen, C.; Cyr, Y.; Scacalossi, K.R.; de Vries, M.; Barrett, T.J.; de Jong, A.; Gourvest, M.; Zhang, T.; Peled, D.; Kher, R.; et al. Long Noncoding RNA CHROMR Regulates Antiviral Immunity in Humans. Proc. Natl. Acad. Sci. USA 2022, 119, e2210321119. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Y.; Sun, Z.; Gong, L.; Li, X.; Shi, F.; Yao, J.; Meng, Y.; Meng, X.; Zhang, Q.; et al. LncNSPL Facilitates Influenza A Viral Immune Escape by Restricting TRIM25-Mediated K63-Linked RIG-I Ubiquitination. iScience 2022, 25, 104607. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, J.; Liu, S.; Chen, B.; Xiao, M.; Li, Y.; Liao, Y.; Rai, K.R.; Zhao, Z.; Ouyang, J.; et al. RDUR, a lncRNA, Promotes Innate Antiviral Responses and Provides Feedback Control of NF-κB Activation. Front. Immunol. 2021, 12, 672165. [Google Scholar] [CrossRef]
- Gatherer, D.; Depledge, D.P.; Hartley, C.A.; Szpara, M.L.; Vaz, P.K.; Benkő, M.; Brandt, C.R.; Bryant, N.A.; Dastjerdi, A.; Doszpoly, A.; et al. ICTV Virus Taxonomy Profile: Herpesviridae 2021. J. Gen. Virol. 2021, 102, 001673. [Google Scholar] [CrossRef]
- Woźniakowski, G.; Samorek-Salamonowicz, E. Animal Herpesviruses and Their Zoonotic Potential for Cross-Species Infection. Ann. Agric. Environ. Med. AAEM 2015, 22, 191–194. [Google Scholar] [CrossRef]
- Yang, L.; Maruo, S.; Takada, K. CD21-Mediated Entry and Stable Infection by Epstein-Barr Virus in Canine and Rat Cells. J. Virol. 2000, 74, 10745–10751. [Google Scholar] [CrossRef]
- Fang, L.; Gao, Y.; Liu, X.; Bai, J.; Jiang, P.; Wang, X. Long Non-Coding RNA LNC_000641 Regulates Pseudorabies Virus Replication. Vet. Res. 2021, 52, 52. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhang, K.; Huang, W.; Tang, W.; Li, H.; Dong, W.; Gu, J.; Zhou, J. Identification of Functional lncRNAs in Pseudorabies Virus Type II Infected Cells. Vet. Microbiol. 2020, 242, 108564. [Google Scholar] [CrossRef] [PubMed]
- Hotoboc, I.E.; Fudulu, A.; Grigore, R.; Bertesteanu, S.; Huica, I.; Iancu, I.V.; Botezatu, A.; Bleotu, C.; Anton, G. The Association between lncRNA H19 and EZH2 Expression in Patients with EBV-Positive Laryngeal Carcinoma. Acta Otorhinolaryngol. Ital. 2021, 41, 537–543. [Google Scholar] [CrossRef]
- Tombácz, D.; Csabai, Z.; Oláh, P.; Balázs, Z.; Likó, I.; Zsigmond, L.; Sharon, D.; Snyder, M.; Boldogkői, Z. Full-Length Isoform Sequencing Reveals Novel Transcripts and Substantial Transcriptional Overlaps in a Herpesvirus. PLoS ONE 2016, 11, e0162868. [Google Scholar] [CrossRef]
- Woo, P.C.Y.; de Groot, R.J.; Haagmans, B.; Lau, S.K.P.; Neuman, B.W.; Perlman, S.; Sola, I.; van der Hoek, L.; Wong, A.C.P.; Yeh, S.-H. ICTV Virus Taxonomy Profile: Coronaviridae 2023. J. Gen. Virol. 2023, 104, 001843. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Zhao, J.; Li, L.; Huang, X.; Yang, H.; Cheng, J.; Liu, C.; Zhang, G. Pathogenic Characteristics of a QX-like Infectious Bronchitis Virus Strain SD in Chickens Exposed at Different Ages and Protective Efficacy of Combining Live Homologous and Heterologous Vaccination. Vet. Res. 2020, 51, 86. [Google Scholar] [CrossRef]
- Alluwaimi, A.M.; Alshubaith, I.H.; Al-Ali, A.M.; Abohelaika, S. The Coronaviruses of Animals and Birds: Their Zoonosis, Vaccines, and Models for SARS-CoV and SARS-CoV2. Front. Vet. Sci. 2020, 7, 582287. [Google Scholar] [CrossRef]
- Graham, R.L.; Baric, R.S. Recombination, Reservoirs, and the Modular Spike: Mechanisms of Coronavirus Cross-Species Transmission. J. Virol. 2010, 84, 3134–3146. [Google Scholar] [CrossRef]
- Ye, Z.-W.; Yuan, S.; Yuen, K.-S.; Fung, S.-Y.; Chan, C.-P.; Jin, D.-Y. Zoonotic Origins of Human Coronaviruses. Int. J. Biol. Sci. 2020, 16, 1686–1697. [Google Scholar] [CrossRef]
- Tortorici, M.A.; Walls, A.C.; Joshi, A.; Park, Y.-J.; Eguia, R.T.; Miranda, M.C.; Kepl, E.; Dosey, A.; Stevens-Ayers, T.; Boeckh, M.J.; et al. Structure, Receptor Recognition, and Antigenicity of the Human Coronavirus CCoV-HuPn-2018 Spike Glycoprotein. Cell 2022, 185, 2279–2291.e17. [Google Scholar] [CrossRef] [PubMed]
- Ayeldeen, G.; Shaker, O.G.; Amer, E.; Zaafan, M.A.; Herzalla, M.R.; Keshk, M.A.; Abdelhamid, A.M. The Impact of lncRNA-GAS5/miRNA-200/ACE2 Molecular Pathway on the Severity of COVID-19. Curr. Med. Chem. 2024, 31, 1142–1151. [Google Scholar] [CrossRef] [PubMed]
- Pushparaj, S.; Gandikota, C.; Vaddadi, K.; Liang, Y.; Liu, L. SNHG15 Aids SARS-CoV-2 Entry via RABL2A. RNA Biol. 2023, 20, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Aznaourova, M.; Schmerer, N.; Janga, H.; Zhang, Z.; Pauck, K.; Bushe, J.; Volkers, S.M.; Wendisch, D.; Georg, P.; Ntini, E.; et al. Single-Cell RNA Sequencing Uncovers the Nuclear Decoy lincRNA PIRAT as a Regulator of Systemic Monocyte Immunity during COVID-19. Proc. Natl. Acad. Sci. USA 2022, 119, e2120680119. [Google Scholar] [CrossRef] [PubMed]
- Askari, N.; Hadizadeh, M.; Rashidifar, M. A New Insight into Sex-Specific Non-Coding RNAs and Networks in Response to SARS-CoV-2. Infect. Genet. Evol. 2022, 97, 105195. [Google Scholar] [CrossRef] [PubMed]
- Genena, S.E.S.R.; Fadhil, M.M.; Mansour, M.M.; Attwa, A.H.M.; Khalil, M.M.I.M. Expression Pattern of Long Non-Coding RNAs MALAT1 and MEG3 in COVID-19 Patients. J. Gene Med. 2023, 25, e3532. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Zhou, L.; Wang, H.; Chen, N.; Jia, L.; Wang, C.; Wang, Y.; Chen, J.; Wen, X.; Niu, C.; et al. Profiling the Epigenetic Interplay of lncRNA RUNXOR and Oncogenic RUNX1 in Breast Cancer Cells by Gene in Situ Cis-Activation. Am. J. Cancer Res. 2019, 9, 1635–1649. [Google Scholar] [PubMed]
- Mathison, B.A.; Pritt, B.S. The Landscape of Parasitic Infections in the United States. Mod. Pathol. 2023, 36, 100217. [Google Scholar] [CrossRef] [PubMed]
- Alonso, P.L. The Role of Mass Drug Administration of Antimalarials. Am. J. Trop. Med. Hyg. 2020, 103, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Olajide, J.S.; Olopade, B.; Cai, J. Functional Intricacy and Symmetry of Long Non-Coding RNAs in Parasitic Infections. Front. Cell. Infect. Microbiol. 2021, 11, 751523. [Google Scholar] [CrossRef] [PubMed]
- Leija-Montoya, A.G.; González-Ramírez, J.; Martínez-Coronilla, G.; Mejía-León, M.E.; Isiordia-Espinoza, M.; Sánchez-Muñoz, F.; Chávez-Cortez, E.G.; Pitones-Rubio, V.; Serafín-Higuera, N. Roles of microRNAs and Long Non-Coding RNAs Encoded by Parasitic Helminths in Human Carcinogenesis. Int. J. Mol. Sci. 2022, 23, 8173. [Google Scholar] [CrossRef] [PubMed]
- Garrigós, M.; Ylla, G.; Martínez-de la Puente, J.; Figuerola, J.; Ruiz-López, M.J. Two Avian Plasmodium Species Trigger Different Transcriptional Responses on Their Vector Culex Pipiens. Mol. Ecol. 2023, 00, e17240. [Google Scholar] [CrossRef]
- Batugedara, G.; Lu, X.M.; Hristov, B.; Abel, S.; Chahine, Z.; Hollin, T.; Williams, D.; Wang, T.; Cort, A.; Lenz, T.; et al. Novel Insights into the Role of Long Non-Coding RNA in the Human Malaria Parasite, Plasmodium falciparum. Nat. Commun. 2023, 14, 5086. [Google Scholar] [CrossRef]
- Filarsky, M.; Fraschka, S.A.; Niederwieser, I.; Brancucci, N.M.B.; Carrington, E.; Carrió, E.; Moes, S.; Jenoe, P.; Bártfai, R.; Voss, T.S. GDV1 Induces Sexual Commitment of Malaria Parasites by Antagonizing HP1-Dependent Gene Silencing. Science 2018, 359, 1259–1263. [Google Scholar] [CrossRef]
- Simantov, K.; Goyal, M.; Dzikowski, R. Emerging Biology of Noncoding RNAs in Malaria Parasites. PLoS Pathog. 2022, 18, e1010600. [Google Scholar] [CrossRef]
- Broadbent, K.M.; Park, D.; Wolf, A.R.; Van Tyne, D.; Sims, J.S.; Ribacke, U.; Volkman, S.; Duraisingh, M.; Wirth, D.; Sabeti, P.C.; et al. A Global Transcriptional Analysis of Plasmodium falciparum Malaria Reveals a Novel Family of Telomere-Associated lncRNAs. Genome Biol. 2011, 12, R56. [Google Scholar] [CrossRef]
- Thompson, T.A.; Chahine, Z.; Roch, K.G.L. The Role of Long Noncoding RNAs in Malaria Parasites. Trends Parasitol. 2023, 39, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Amit-Avraham, I.; Pozner, G.; Eshar, S.; Fastman, Y.; Kolevzon, N.; Yavin, E.; Dzikowski, R. Antisense Long Noncoding RNAs Regulate Var Gene Activation in the Malaria Parasite Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 2015, 112, E982–E991. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Liu, S.-C.; Fan, X.-Y.; Jin, Y.-L.; Li, X.; Du, Y.-T. Plasmodium Manipulates the Expression of Host Long Non-Coding RNA during Red Blood Cell Intracellular Infection. Parasit. Vectors 2022, 15, 182. [Google Scholar] [CrossRef] [PubMed]
- Hewitson, J.P.; West, K.A.; James, K.R.; Rani, G.F.; Dey, N.; Romano, A.; Brown, N.; Teichmann, S.A.; Kaye, P.M.; Lagos, D. Malat1 Suppresses Immunity to Infection through Promoting Expression of Maf and IL-10 in Th Cells. J. Immunol. 2020, 204, 2949–2960. [Google Scholar] [CrossRef] [PubMed]
- McManus, D.P.; Dunne, D.W.; Sacko, M.; Utzinger, J.; Vennervald, B.J.; Zhou, X.-N. Schistosomiasis. Nat. Rev. Dis. Primer 2018, 4, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Silveira, G.O.; Coelho, H.S.; Pereira, A.S.A.; Miyasato, P.A.; Santos, D.W.; Maciel, L.F.; Olberg, G.G.G.; Tahira, A.C.; Nakano, E.; Oliveira, M.L.S.; et al. Long Non-Coding RNAs Are Essential for Schistosoma mansoni Pairing-Dependent Adult Worm Homeostasis and Fertility. PLoS Pathog. 2023, 19, e1011369. [Google Scholar] [CrossRef]
- Amaral, M.S.; Maciel, L.F.; Silveira, G.O.; Olberg, G.G.O.; Leite, J.V.P.; Imamura, L.K.; Pereira, A.S.A.; Miyasato, P.A.; Nakano, E.; Verjovski-Almeida, S. Long Non-Coding RNA Levels Can Be Modulated by 5-Azacytidine in Schistosoma mansoni. Sci. Rep. 2020, 10, 21565. [Google Scholar] [CrossRef]
- Liao, Q.; Zhang, Y.; Zhu, Y.; Chen, J.; Dong, C.; Tao, Y.; He, A.; Liu, J.; Wu, Z. Identification of Long Noncoding RNAs in Schistosoma mansoni and Schistosoma japonicum. Exp. Parasitol. 2018, 191, 82–87. [Google Scholar] [CrossRef]
- Xia, T.; Giri, B.R.; Liu, J.; Du, P.; Li, X.; Li, X.; Li, S.; Cheng, G. RNA Sequencing Analysis of Altered Expression of Long Noncoding RNAs Associated with Schistosoma japonicum Infection in the Murine Liver and Spleen. Parasit. Vectors 2020, 13, 601. [Google Scholar] [CrossRef]
- Zhao, R.; Tang, X.; Lin, H.; Xing, C.; Xu, N.; Dai, B.; Wang, P.; Shao, W.; Liu, M.; Shen, J.; et al. Knocking Down Gm16685 Decreases Liver Granuloma in Murine Schistosomiasis japonica. Microorganisms 2023, 11, 796. [Google Scholar] [CrossRef]
- Ma, R.; Liu, Q.; Liu, Z.; Sun, X.; Jiang, X.; Hou, J.; Zhang, Y.; Wu, Y.; Cheng, M.; Dong, Z. H19/Mir-130b-3p/Cyp4a14 Potentiate the Effect of Praziquantel on Liver in the Treatment of Schistosoma japonicum Infection. Acta Trop. 2023, 247, 107012. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, A.; Dwintasari, S.W.; Connelly, L.; Nichols, R.A.B.; Yunihastuti, E.; Karyadi, T.; Djauzi, S. Cryptosporidium Species from Human Immunodeficiency-Infected Patients with Chronic Diarrhea in Jakarta, Indonesia. Ann. Epidemiol. 2013, 23, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.L.; Li, M.; Gong, A.-Y.; Deng, S.; Jin, K.; Wang, S.; Chen, X.-M. Cryptosporidium parvum Hijacks a Host’s Long Noncoding RNA U90926 to Evade Intestinal Epithelial Cell-Autonomous Antiparasitic Defense. Front. Immunol. 2023, 14, 1205468. [Google Scholar] [CrossRef] [PubMed]
- Mathy, N.W.; Deng, S.; Gong, A.-Y.; Li, M.; Wang, Y.; Burleigh, O.; Kochvar, A.; Whiteford, E.R.; Shibata, A.; Chen, X.-M. The Long Non-Coding RNA Nostrill Regulates Transcription of Irf7 Through Interaction With NF-κB P65 to Enhance Intestinal Epithelial Defense against Cryptosporidium parvum. Front. Immunol. 2022, 13, 863957. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gong, A.-Y.; Zhang, X.-T.; Wang, Y.; Mathy, N.W.; Martins, G.A.; Strauss-Soukup, J.K.; Chen, X.-M. Induction of a Long Noncoding RNA Transcript, NR_045064, Promotes Defense Gene Transcription and Facilitates Intestinal Epithelial Cell Responses against Cryptosporidium Infection. J. Immunol. 2018, 201, 3630–3640. [Google Scholar] [CrossRef] [PubMed]
- Gong, A.-Y.; Wang, Y.; Li, M.; Zhang, X.-T.; Deng, S.; Chen, J.M.; Lu, E.; Mathy, N.W.; Martins, G.A.; Strauss-Soukup, J.K.; et al. LncRNA XR_001779380 Primes Epithelial Cells for IFN-γ-Mediated Gene Transcription and Facilitates Age-Dependent Intestinal Antimicrobial Defense. mBio 2021, 12, e0212721. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jin, K.; Li, M.; Mathy, N.W.; Gong, A.-Y.; Deng, S.; Martins, G.A.; Sun, M.; Strauss-Soukup, J.K.; Chen, X.-M. A Host Cell Long Noncoding RNA NR_033736 Regulates Type I Interferon-Mediated Gene Transcription and Modulates Intestinal Epithelial Anti-Cryptosporidium Defense. PLoS Pathog. 2021, 17, e1009241. [Google Scholar] [CrossRef] [PubMed]
- Ben-Harari, R.R.; Goodwin, E.; Casoy, J. Adverse Event Profile of Pyrimethamine-Based Therapy in Toxoplasmosis: A Systematic Review. Drugs R&D 2017, 17, 523–544. [Google Scholar] [CrossRef]
- Menard, K.L.; Haskins, B.E.; Colombo, A.P.; Denkers, E.Y. Toxoplasma gondii Manipulates Expression of Host Long Noncoding RNA during Intracellular Infection. Sci. Rep. 2018, 8, 15017. [Google Scholar] [CrossRef]
- Wang, Y.; Han, R.; Xu, Z.; Sun, X.; Zhou, C.; Han, B.; He, S.; Cong, H. Upregulation of lncRNA147410.3 in the Brain of Mice with Chronic Toxoplasma Infection Promoted Microglia Apoptosis by Regulating Hoxb3. Front. Cell. Neurosci. 2021, 15, 648047. [Google Scholar] [CrossRef]
- Sun, X.; Wang, T.; Wang, Y.; Ai, K.; Pan, G.; Li, Y.; Zhou, C.; He, S.; Cong, H. Downregulation of lncRNA-11496 in the Brain Contributes to Microglia Apoptosis via Regulation of Mef2c in Chronic T. gondii Infection Mice. Front. Mol. Neurosci. 2020, 13, 77. [Google Scholar] [CrossRef]
- Liu, W.; Huang, L.; Wei, Q.; Zhang, Y.; Zhang, S.; Zhang, W.; Cai, L.; Liang, S. Microarray Analysis of Long Non-Coding RNA Expression Profiles Uncovers a Toxoplasma-Induced Negative Regulation of Host Immune Signaling. Parasit. Vectors 2018, 11, 174. [Google Scholar] [CrossRef] [PubMed]
- Wen, H.; Vuitton, L.; Tuxun, T.; Li, J.; Vuitton, D.A.; Zhang, W.; McManus, D.P. Echinococcosis: Advances in the 21st Century. Clin. Microbiol. Rev. 2019, 32, e00075-18. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Li, H.; Li, Y.; Wang, L.; Chen, G.; Pu, G.; Guo, X.; Cho, W.C.; Fasihi Harandi, M.; Zheng, Y.; et al. Integrative Analysis of RNA Expression and Regulatory Networks in Mice Liver Infected by Echinococcus multilocularis. Front. Cell Dev. Biol. 2022, 10, 798551. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Wang, Y.; Yin, J.; Zhang, J.; Cao, S.; Cao, J.; Shen, Y. Microarray Analysis of Long Non-Coding RNA Expression Profiles in Monocytic Myeloid-Derived Suppressor Cells in Echinococcus granulosus-Infected Mice. Parasit. Vectors 2018, 11, 327. [Google Scholar] [CrossRef]
- Yang, R.; Qu, X.; Zhi, S.; Wang, J.; Fu, J.; Tan, C.; Chen, H.; Wang, X. Exosomes Derived from Meningitic Escherichia Coli-Infected Brain Microvascular Endothelial Cells Facilitate Astrocyte Activation. Mol. Neurobiol. 2024. [Google Scholar] [CrossRef]
- Wang, C.; Yang, S.-H.; Niu, N.; Tao, J.; Du, X.-C.; Yang, J.-H.; Zhu, M.-X.; Wang, Y.-N.; Zhao, W. lncRNA028466 Regulates Th1/Th2 Cytokine Expression and Associates with Echinococcus granulosus Antigen P29 Immunity. Parasit. Vectors 2021, 14, 295. [Google Scholar] [CrossRef]
- Yang, R.; Wang, J.; Wang, F.; Zhang, H.; Tan, C.; Chen, H.; Wang, X. Blood-Brain Barrier Integrity Damage in Bacterial Meningitis: The Underlying Link, Mechanisms, and Therapeutic Targets. Int. J. Mol. Sci. 2023, 24, 2852. [Google Scholar] [CrossRef]
- Letko, M.; Seifert, S.N.; Olival, K.J.; Plowright, R.K.; Munster, V.J. Bat-Borne Virus Diversity, Spillover and Emergence. Nat. Rev. Microbiol. 2020, 18, 461–471. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, B.; He, Y.; Yang, R.; Li, J.; Wang, X. Unveiling the Hidden Regulators: The Impact of lncRNAs on Zoonoses. Int. J. Mol. Sci. 2024, 25, 3539. https://doi.org/10.3390/ijms25063539
Xu B, He Y, Yang R, Li J, Wang X. Unveiling the Hidden Regulators: The Impact of lncRNAs on Zoonoses. International Journal of Molecular Sciences. 2024; 25(6):3539. https://doi.org/10.3390/ijms25063539
Chicago/Turabian StyleXu, Bojie, Yujuan He, Ruicheng Yang, Junmin Li, and Xiangru Wang. 2024. "Unveiling the Hidden Regulators: The Impact of lncRNAs on Zoonoses" International Journal of Molecular Sciences 25, no. 6: 3539. https://doi.org/10.3390/ijms25063539
APA StyleXu, B., He, Y., Yang, R., Li, J., & Wang, X. (2024). Unveiling the Hidden Regulators: The Impact of lncRNAs on Zoonoses. International Journal of Molecular Sciences, 25(6), 3539. https://doi.org/10.3390/ijms25063539