Recent Analytical Methodologies in Lipid Analysis
Abstract
1. Introduction
2. Sample Pretreatment
2.1. Extraction of Lipids
2.2. Derivatization
3. Instrumental Analysis of Lipids
3.1. Direct Infusion MS
3.2. Mass Spectrometry Imaging
3.3. Ion Mobility Spectrometry (IMS-MS)
3.4. LC-MS
3.5. Supercritical Fluid Chromatography—Mass Spectrometry (SFC-MS)
3.6. Gas Chromatography—Mass Spectrometry (GC-MS)
Sample | Analytes | Extraction Type | Extraction Solvent | Method | Approach | Results | Ref. |
---|---|---|---|---|---|---|---|
Biological samples | |||||||
rat serum, brain tissue | SP | LLE | CHCl3:MeOH (9:1) | RPLC-MS/MS | targeted | method for quantification of SP in biological samples | [138] |
human plasma, mouse serum | lipidomic profiling | BUME | BuOH:MeOH (1:1) | LC-MS/MS | untargeted | 88 lipid species were identified as significantly different between wild type CerS2 null mice | [139] |
human serum | lipid profiling | LLE | CHCl3:MeOH (3:1) | UHPLC-HRMS | untargeted | potentially 12 lipids can serve as diagnostic markers of colorectal adenoma | [140] |
serum | HDL | LLE (Folch method) | CHCl3:MeOH | LC-MS/MS | targeted | association of MetS with impairment of phospholipid metabolism in HDL, with obesity and insulin resistance | [141] |
plasma | SP | OPE | MeOH | LC-MS/MS | targeted | 33 identified SP | [142] |
mouse tissue | lipid profiling | OPE | MeOH:H2O (80:20) | LC-MS/MS | - | identification of major cardiolipin molecular species by BRI-DIA and hybrid methods | [143] |
rat serum | lipid markers of CHD | LLE | MTBE | UPLC-HDMS | - | GP and SP metabolism as targets for the treatment of CHD | [144] |
porcine brain extract | lipidomic profile | LLE | MTBE | RP-LC-MS | - | development of microgradient fractionation of total lipid extract for lipidomic analysis. | [145] |
renal biopsies | lipid biomarkers of Fabry disease | LLE (Folch method) | CHCl3:MeOH | UHPLC-HRMS | untargeted | identification of biomarkers of Fabry disease | [146] |
pancreatic cancer cells, extracellular vesicles | lipids and metabolites | LLE | CHCl3:MeOH | SFC-MS | - | identification of 494 lipids | [135] |
human serum | PCs | SPE | eluted with IPA | LC-MS/MS | - | elevation of oxidized PCs in the acute phase of KD | [147] |
human cancer cells and EVs | lipidomic profile | LLE (Bligh and Dyer method) | CHCl3:MeOH | SFC-MS | - | breast cancer EVs selectively loaded with lipids supporting tumor progression | [148] |
human plasma | polar lipids | OPE | MeOH | LC-MS/MS | method development for monitoring of 398 polar lipids | [149] | |
plasma, urine | oxidation products of PUFA | LLE (Folch method) | CHCl3:MeOH | LC-QTOF-MS/MS | targeted | method development for measuring of oxidation products of PUFA | [150] |
human CSF | VLCFA | SPE, LLE + derivatization | octane:EtOH (88:12) + DAABD-AE | UPLC-MS/MS | targeted | assay development for measuring of VLCFA biomarkers | [151] |
human plasma | lipidome | LLE, UAE | CHCl3:MeOH (3:1) | UHPLC-MS | targeted, untargeted | PC (18:1/P-16:0), PC (o-22:3/22:3), PC(P-18:1/16:1) as biomarkers of metabolic syndrome | [152] |
human plasma | lipidomic biomarkers | OPE | IPA | LC-MS | targeted | reference for bladder cancer and renal cell carcinoma biomarker discovery | [153] |
human fibroblasts | unsaturated FA | LLE | MTBE | LC-MS | targeted | complete characterization of FA species | [154] |
mouse plasma | CE, FA, PC, NAE, SM | LLE (Folch method) | CHCl3:MeOH | UHPLC-HR-MS | untargeted | identification of plasma lipid species associated with pain and/or pathology in a DMM model of OA | [155] |
human plasma | LPCs | OPE, UAE | MeOH:ACN | LC-ESI-MS/MS | targeted | identification of 60 LPCs | [156] |
human plasma | lipidomic screening | LLE (Bligh and Dyer method) | CH3OH–CH2Cl2 | UPLC-MS | untargeted | increasing of TAGs levels of advanced-stage CRC patients compared with early-stage CRC patients | [157] |
human serum | LPC, PC, LPE, PE, LPS, PS, LPG, PG, LPI, PI, LPA, PA, SM, MAG, DAG, TAG, CL, Cer, CE | LLE (Folch method) | CHCl3:MeOH (2:1, v/v) | RPLC-MS/MS | untargeted | identification of 753 lipids | [158] |
mouse tissues and fluids | acylcarnitines | OPE + derivatization | MeOH:H2O + 3-NPH | LC-MS | targeted | identification of 123 acylcarnitines | [159] |
plasma, fecal | SCFAs | OPE + derivatization | H2O + 2- bromoacetophenone | LC-MS/MS | targeted | identification of 7 SCFAs | [160] |
plasma, tissue | lipid mediators | SPE | eluted with methyl formate | LC-MS/MS | untargeted | novel tool for studying complete profile of lipid mediators in biological samples | [161] |
human serum | lysosphingomyelin-509 | OPE | EtOH:H2O (3:1, v/v) | LC-MS | targeted | identification of lysosphingomyelin-509 | [162] |
mouse liver | lipid profile | LLE | MeOH:DCM (1:3) | UPLC-MS | - | significant differences in lipid profiles of SCID and chimeric PXB liver-humanized mice | [163] |
Food | |||||||
green, red lettuce | sulfolipids, galactolipids | LLE (Folch method) | CHCl3:MeOH (3:2) | LC-ESI-MS/MS | targeted | oxidized SQDG as potential markers for abiotic stress factors | [164] |
geopropolis | lipid profiles | LLE | MeOH, CHCl3 | LC-HRMS | - | identification of 61 lipids | [165] |
oil palm | lipid profiles | LLE | MTBE | LC-MS | targeted | lipidomic tools for analysis of lipid composition variability in oil from palm | [166] |
fish oil, mushroom extract | FuFA-containing TAGs | LLE, UAE | cyclohexane:EtOAc (46:54)IPA:n-hexane (1:4) | LC-HRMS | - | identification of 39 different FuFA-containing TAGs | [167] |
olive fruit seeds | polar lipids | LLE (Folch method) | CHCl3:MeOH (2:1) | HILIC-HR-MS/MS | untargeted | identification of 94 lipids | [168] |
coffee | specific lipids of interest for each coffee origin | LLE | MTBE | LC-MS/MS | targeted | determination of coffee origin based on its lipid profile | [169] |
donkey meat | lipid profiles | LLE (Folch method) | CHCl3:MeOH (2:1) | LC-MS | untargeted | identification of 1143 lipids | [170] |
milk | HFAs | OPE | MeOH | LC-HRMS | - | quantification of 19 free HFAs | [171] |
extra virgin olive oil | FFAs, FFA methyl- and ethylesters, MAGs, triterpenoids, TAGs | OPE | IPA | LC-MS/MS | - | potent tool for studying variability of lipid species in olive oil | [172] |
potatoes | polar lipids | LLE (Bligh and Dyer, Folch, ”Green” Folch, Matyash, extraction with n-hexane) | CHCl3:MeOH EtOAc:MeOH MTBE n-hexane | UPLC-MS | targeted, untargeted | “Green” Folch method (with EtOAc)—the most suitable extraction method | [173] |
Pharmaceuticals | |||||||
dietary supplements | lipid profiling | - | - | LC-MS | - | production of different lipid classes by different based ingredients products | [174] |
Bacteria | |||||||
Pseudomonas aeruginosa | phospholipids | LLE (Bligh and Dyer) | CHCl3:MeOH | LC-MS/MS | - | the growth medium can influence membrane lipid composition | [175] |
C. eiseniae, Olivibacter sp. | glycerophosholipids | LLE | MTBE MeOH | UHPLC-HR-MS | - | identification of 2 novel glycerophospholipids, 2 novel LAAs | [176] |
Escherichia coli | GPs | LLE | MTBE | UPLC-MS/MS | targeted | transferability of method to any UPLC-MS/MS system with no hardware modification need | [177] |
Fungi | |||||||
marine fungi | ergosterol | LLE (Bligh and Dyer) | CHCl3:MeOH | LC-MS/MS | targeted | highly sensitive method for measuring fungal biomass | [178] |
Plants | |||||||
plant tissue | polar and non-polar lipids | LLE | different solvents optimization of extraction | UHPLC-MS/MS | - | method development for evaluating of polar and non-polar lipids | [125] |
tobacco hairy roots | GPL | LLE (Bligh and Dyer) | CHF3:MeOH | HILIC-MS/MS | targeted | method development for simultaneous determination of different phospholipids | [179] |
Arabidopsis thaliana | lipid profiling | LLE | CHCl3:MeOH:H2O (1:2.5:1) MeOH:MTBE (1:3) IPA + CHCl3:MeOH:H2O (30:41.5:3.5) IPA + CHCl3:H2O (5:2) + CHCl3:MeOH (2:1) | LC-MS | targeted, untargeted | single-step extraction method for untargeted lipidomic analysis | [34] |
4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Züllig, T.; Trötzmüller, M.; Köfeler, H.C. Lipidomics from Sample Preparation to Data Analysis: A Primer. Anal. Bioanal. Chem. 2020, 412, 2191–2209. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Hu, C.; Xuan, Q.; Xu, G. Recent Advances in Analytical Strategies for Mass Spectrometry-Based Lipidomics. Anal. Chim. Acta 2020, 1137, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Natesan, V.; Kim, S.J. Lipid Metabolism, Disorders and Therapeutic Drugs—Review. Biomol. Ther. 2021, 29, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Bu, F.; Li, X.; Zhang, S.; Min, L. Mass Spectrometry-Based Extracellular Vesicle Micromolecule Detection in Cancer Biomarker Discovery: An Overview of Metabolomics and Lipidomics. View 2023, 4, 20220086. [Google Scholar] [CrossRef]
- Han, X. Lipidomics for Studying Metabolism. Nat. Rev. Endocrinol. 2016, 12, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Rod-In, W.; Monmai, C.; Shin, I.; You, S.G.; Park, W.J. Neutral Lipids, Glycolipids, and Phospholipids, Isolated from Sandfish (Arctoscopus japonicus) Eggs, Exhibit Anti-Inflammatory Activity in LPS-Stimulated RAW264.7 Cells through NF-κB and MAPKs Pathways. Mar. Drugs 2020, 18, 480. [Google Scholar] [CrossRef]
- Song, Y.; Cai, C.; Song, Y.; Sun, X.; Liu, B.; Xue, P.; Zhu, M.; Chai, W.; Wang, Y.; Wang, C.; et al. A Comprehensive Review of Lipidomics and Its Application to Assess Food Obtained from Farm Animals. Food Sci. Anim. Resour. 2022, 42, 1–17. [Google Scholar] [CrossRef]
- Lee, H.C.; Yokomizo, T. Applications of Mass Spectrometry-Based Targeted and Non-Targeted Lipidomics. Biochem. Biophys. Res. Commun. 2018, 504, 576–581. [Google Scholar] [CrossRef]
- Kao, Y.C.; Ho, P.C.; Tu, Y.K.; Jou, I.M.; Tsai, K.J. Lipids and Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 1505. [Google Scholar] [CrossRef]
- Shamim, A.; Mahmood, T.; Ahsan, F.; Kumar, A.; Bagga, P. Lipids: An Insight into the Neurodegenerative Disorders. Clin. Nutr. Exp. 2018, 20, 1–19. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Shang, X.; Keum, Y.S. Advances in Lipid Extraction Methods—A Review. Int. J. Mol. Sci. 2021, 22, 13643. [Google Scholar] [CrossRef] [PubMed]
- Ulmer, C.Z.; Koelmel, J.P.; Jones, C.M.; Garrett, T.J.; Aristizabal-Henao, J.J.; Vesper, H.W.; Bowden, J.A. A Review of Efforts to Improve Lipid Stability during Sample Preparation and Standardization Efforts to Ensure Accuracy in the Reporting of Lipid Measurements. Lipids 2021, 56, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.E.; Zhu, S.; Liu, H. Recent Progresses of Derivatization Approaches in the Targeted Lipidomics Analysis by Mass Spectrometry. J. Sep. Sci. 2020, 43, 1838–1846. [Google Scholar] [CrossRef]
- Lange, M.; Ni, Z.; Criscuolo, A.; Fedorova, M. Liquid Chromatography Techniques in Lipidomics Research. Chromatographia 2019, 82, 77–100. [Google Scholar] [CrossRef]
- Li, L.; Han, J.; Wang, Z.; Liu, J.; Wei, J.; Xiong, S.; Zhao, Z. Mass Spectrometry Methodology in Lipid Analysis. Int. J. Mol. Sci. 2014, 15, 10492–10507. [Google Scholar] [CrossRef] [PubMed]
- Belhaj, M.R.; Lawler, N.G.; Hoffman, N.J. Metabolomics and Lipidomics: Expanding the Molecular Landscape of Exercise Biology. Metabolites 2021, 11, 151. [Google Scholar] [CrossRef]
- O’Donnell, V.B.; Ekroos, K.; Liebisch, G.; Wakelam, M. Lipidomics: Current State of the Art in a Fast Moving Field. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1466. [Google Scholar] [CrossRef]
- Long, N.P.; Park, S.; Anh, N.H.; Kim, S.J.; Kim, H.M.; Yoon, S.J.; Lim, J.; Kwon, S.W. Advances in Liquid Chromatography–Mass Spectrometry-Based Lipidomics: A Look Ahead. J. Anal. Test. 2020, 4, 183–197. [Google Scholar] [CrossRef]
- Köfeler, H.C.; Ahrends, R.; Baker, E.S.; Ekroos, K.; Han, X.; Hoffmann, N.; Holcapek, M.; Wenk, M.R.; Liebisch, G. Recommendations for Good Practice in MS-Based Lipidomics. J. Lipid Res. 2021, 62, 100138. [Google Scholar] [CrossRef]
- Howlader, M.S.; French, W.T. Pretreatment and Lipid Extraction from Wet Microalgae: Challenges, Potential, and Application for Industrial-Scale Application. In Microalgae Biotechnology for Food, Health and High Value Products, 1st ed.; Alam, M.A., Xu, J.L., Wang, Z., Eds.; Springer Nature: Singapore, 2020; pp. 469–483. [Google Scholar]
- Teo, C.C.; Chong, W.P.K.; Tan, E.; Basri, N.B.; Low, Z.J.; Ho, Y.S. Advances in Sample Preparation and Analytical Techniques for Lipidomics Study of Clinical Samples. TrAC Trends Anal. Chem. 2015, 66, 1–18. [Google Scholar] [CrossRef]
- Patel, A.; Mikes, F.; Matsakas, L. An Overview of Current Pretreatment Methods Used to Improve Lipid Extraction from Oleaginous Microorganisms. Molecules 2018, 23, 1562. [Google Scholar] [CrossRef] [PubMed]
- Elst, K.; Maesen, M.; Jacobs, G.; Bastiaens, L.; Voorspoels, S.; Servaes, K. Supercritical CO2 Extraction of Nannochloropsis Sp.: A Lipidomic Study on the Influence of Pretreatment on Yield and Composition. Molecules 2018, 23, 1854. [Google Scholar] [CrossRef]
- Lee, S.Y.; Cho, J.M.; Chang, Y.K.; Oh, Y.K. Cell Disruption and Lipid Extraction for Microalgal Biorefineries: A Review. Bioresour. Technol. 2017, 244, 1317–1328. [Google Scholar] [CrossRef] [PubMed]
- Pati, S.; Nie, B.; Arnold, R.D.; Cummings, B.S. Extraction, Chromatographic and Mass Spectrometric Methods for Lipid Analysis. Biomed. Chromatogr. 2016, 30, 695–709. [Google Scholar] [CrossRef]
- Jurowski, K.; Kochan, K.; Walczak, J.; Barańska, M.; Piekoszewski, W.; Buszewski, B. Comprehensive Review of Trends and Analytical Strategies Applied for Biological Samples Preparation and Storage in Modern Medical Lipidomics: State of the Art. TrAC Trends Anal. Chem. 2017, 86, 276–289. [Google Scholar] [CrossRef]
- Liakh, I.; Sledzinski, T.; Kaska, L.; Mozolewska, P.; Mika, A. Sample Preparation Methods for Lipidomics Approaches Used in Studies of Obesity. Molecules 2020, 25, 5307. [Google Scholar] [CrossRef] [PubMed]
- Löfgren, L.; Forsberg, G.B.; Ståhlman, M. The BUME Method: A New Rapid and Simple Chloroform-Free Method for Total Lipid Extraction of Animal Tissue. Sci. Rep. 2016, 6, 27688. [Google Scholar] [CrossRef]
- Alshehry, Z.H.; Barlow, C.K.; Weir, J.M.; Zhou, Y.; McConville, M.J.; Meikle, P.J. An Efficient Single Phase Method for the Extraction of Plasma Lipids. Metabolites 2015, 5, 389–403. [Google Scholar] [CrossRef]
- Liebisch, G.; Höring, M.; Stieglmeier, C.; Schnabel, K.; Hallmark, T.; Ekroos, K.; Burkhardt, R. Benchmarking One-Phase Lipid Extractions for Plasma Lipidomics. Anal. Chem. 2022, 94, 12292–12296. [Google Scholar] [CrossRef]
- Bögl, T.; Mlynek, F.; Himmelsbach, M.; Buchberger, W. Comparison of One-Phase and Two-Phase Extraction Methods for Porcine Tissue Lipidomics Applying a Fast and Reliable Tentative Annotation Workflow. Talanta 2022, 236, 122849. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. The National Research Council of Canada a Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Kehelpannala, C.; Rupasinghe, T.W.T.; Hennessy, T.; Bradley, D.; Ebert, B.; Roessner, U. A Comprehensive Comparison of Four Methods for Extracting Lipids from Arabidopsis Tissues. Plant Methods 2020, 16, 155. [Google Scholar] [CrossRef]
- Breil, C.; Abert Vian, M.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents. Int. J. Mol. Sci. 2017, 18, 708. [Google Scholar] [CrossRef]
- Omar, A.M.; Zhang, Q. Evaluation of Lipid Extraction Protocols for Untargeted Analysis of Mouse Tissue Lipidome. Metabolites 2023, 13, 1002. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.H.; Liu, L.Y.; Yang, M.H.; Lee, M.H. Ethyl Acetate/Ethyl Alcohol Mixtures as an Alternative to Folch. J. Agric. Food Chem. 2004, 52, 4984–4986. [Google Scholar] [CrossRef] [PubMed]
- Matyash, V.; Liebisch, G.; Kurzchalia, T.V.; Shevchenko, A.; Schwudke, D. Lipid Extraction by Methyl-Tert-Butyl Ether for High-Throughput Lipidomics. J. Lipid Res. 2008, 49, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Aldana, J.; Romero-otero, A.; Cala, M.P. Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites 2020, 10, 231. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.W.K.; Braidy, N.; Pickford, R.; Sachdev, P.S.; Poljak, A. Comparison of Single Phase and Biphasic Extraction Protocols for Lipidomic Studies Using Human Plasma. Front. Neurol. 2019, 10, 879. [Google Scholar] [CrossRef]
- Vale, G.; Martin, S.A.; Mitsche, M.A.; Thompson, B.M.; Eckert, K.M.; McDonald, J.G. Three-Phase Liquid Extraction: A Simple and Fast Method for Lipidomic Workflows. J. Lipid Res. 2019, 60, 694–706. [Google Scholar] [CrossRef]
- de Jesus, S.S.; Filho, R.M. Recent Advances in Lipid Extraction Using Green Solvents. Renew. Sust. Energ. Rev. 2020, 133, 110289. [Google Scholar] [CrossRef]
- Probst, K.V.; Wales, M.D.; Rezac, M.E.; Vadlani, P.V. Evaluation of green solvents: Oil extraction from oleaginous yeast Lipomyces starkeyi using cyclopentyl methyl ether (CPME). Biotechnol. Prog. 2017, 33, 1096–1103. [Google Scholar] [CrossRef]
- de Jesus, S.S.; Ferreira, G.F.; Moreira, L.S.; Wolf Maciel, M.R.; Maciel Filho, R. Comparison of Several Methods for Effective Lipid Extraction from Wet Microalgae Using Green Solvents. Renew. Energy 2019, 143, 130–141. [Google Scholar] [CrossRef]
- Bang, G.; Kim, Y.H.; Yoon, J.; Yu, Y.J.; Chung, S.; Kim, J.A. On-chip lipid extraction using superabsorbent polymers for mass spectrometry. Anal. Chem. 2017, 89, 13365–13373. [Google Scholar] [CrossRef]
- Choi, J.H.; Bang, G.; Kim, J.A.; Kim, Y.H. A Simple and Rapid Extraction of Lipids in Plasma Using Spin Column with Superabsorbent Polymer Beads for Mass Spectrometry. J. Anal. Sci. Technol. 2023, 14, 22. [Google Scholar] [CrossRef]
- Silva Dos Reis, A.; Santos, A.S.; Francisco De Carvalho Gonçalves, J. Ultrasound-Assisted Lipid Extractions, Enriched with Sterols and Tetranortriterpenoids, from: Carapa Guianensis Seeds and the Application of Lipidomics Using GC/MS. RSC Adv. 2021, 11, 33160–33168. [Google Scholar] [CrossRef]
- Xie, Y.; Wu, B.; Wu, Z.; Tu, X.; Xu, S.; Lv, X.; Yin, H.; Xiang, J.; Chen, H.; Wei, F. Ultrasound-Assisted One-Phase Solvent Extraction Coupled with Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry for Efficient Profiling of Egg Yolk Lipids. Food Chem. 2020, 319, 126547. [Google Scholar] [CrossRef]
- Wang, Q.; Oshita, K.; Takaoka, M.; Shiota, K. Influence of Water Content and Cell Disruption on Lipid Extraction Using Subcritical Dimethyl Ether in Wet Microalgae. Bioresour. Technol. 2021, 329, 124892. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, M.; Saraiva, J.A.; Martins, A.P.; Pinto, C.A.; Prieto, M.A.; Simal-Gandara, J.; Cao, H.; Xiao, J.; Barba, F.J. Extraction of Lipids from Microalgae Using Classical and Innovative Approaches. Food Chem. 2022, 384, 132236. [Google Scholar] [CrossRef]
- Kanda, H.; Fukuta, Y.; Wahyudiono; Goto, M. Enhancement of Lipid Extraction from Soya Bean by Addition of Dimethyl Ether as Entrainer into Supercritical Carbon Dioxide. Foods 2021, 10, 1223. [Google Scholar] [CrossRef]
- Fernández-Acosta, K.; Salmeron, I.; Chavez-Flores, D.; Perez-Reyes, I.; Ramos, V.; Ngadi, M.; Kwofie, E.M.; Perez-Vega, S. Evaluation of Different Variables on the Supercritical CO2 Extraction of Oat (Avena sativa L.) Oil; Main Fatty Acids, Polyphenols, and Antioxidant Content. J. Cereal Sci. 2019, 88, 118–124. [Google Scholar] [CrossRef]
- Belayneh, H.D.; Wehling, R.L.; Reddy, A.K.; Cahoon, E.B.; Ciftci, O.N. Ethanol-Modified Supercritical Carbon Dioxide Extraction of the Bioactive Lipid Components of Camelina Sativa Seed. J. Am. Oil Chem. Soc. 2017, 94, 855–865. [Google Scholar] [CrossRef]
- Apffel, A.; Zhao, L.; Sartain, M.J. A Novel Solid Phase Extraction Sample Preparation Method for Lipidomic Analysis of Human Plasma Using Liquid Chromatography/Mass Spectrometry. Metabolites 2021, 11, 294. [Google Scholar] [CrossRef]
- Reyes-Garcés, N.; Gionfriddo, E. Recent Developments and Applications of Solid Phase Microextraction as a Sample Preparation Approach for Mass-Spectrometry-Based Metabolomics and Lipidomics. TrAC Trends Anal. Chem. 2019, 113, 172–181. [Google Scholar] [CrossRef]
- Ramani Venkata, A.; Ramesh, M. A Concise Review on Lipidomics Analysis in Biological Samples. ADMET DMPK 2021, 9, 1–22. [Google Scholar] [CrossRef]
- Giera, M. Bioanalytical Derivatization: Is There Still Room for Development? Bioanalysis 2015, 7, 2439–2441. [Google Scholar] [CrossRef]
- El-Maghrabey, M.H.; Kishikawa, N.; Kuroda, N. Current Trends in Isotope-Coded Derivatization Liquid Chromatographic-Mass Spectrometric Analyses with Special Emphasis on Their Biomedical Application. Biomed. Chromatogr. 2020, 34, e4756. [Google Scholar] [CrossRef]
- Li, M.; Yang, L.; Bai, Y.; Liu, H. Analytical Methods in Lipidomics and Their Applications. Anal. Chem. 2014, 86, 161–175. [Google Scholar] [CrossRef]
- Gowda, D.; Li, Y.; Gowda, S.G.B.; Ohno, M.; Chiba, H.; Hui, S.P. Determination of Short-Chain Fatty Acids by N,N-Dimethylethylenediamine Derivatization Combined with Liquid Chromatography/Mass Spectrometry and Their Implication in Influenza Virus Infection. Anal. Bioanal. Chem. 2022, 414, 6419–6430. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, Q.; Huang, X.; Ma, Z.; Zheng, X.; Li, S.; Duan, H.; Sun, X.; Lin, F.; Zhao, L.; et al. A Rapid and Convenient Derivatization Method for Quantitation of Short-Chain Fatty Acids in Human Feces by Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e8730. [Google Scholar] [CrossRef]
- Wang, F.H.; Guo, X.F.; Fan, Y.C.; Tang, H.B.; Liang, W.; Wang, H. Determination of Trans-Fatty Acids in Food Samples Based on the Precolumn Fluorescence Derivatization by High Performance Liquid Chromatography. J. Sep. Sci. 2022, 45, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Kvasnička, A.; Najdekr, L.; Dobešová, D.; Piskláková, B.; Ivanovová, E.; Friedecký, D. Clinical Lipidomics in the Era of the Big Data. Clin. Chem. Lab. Med. 2023, 61, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Lia, J.; Vosegaard, T.; Guo, Z. Applications of nuclear magnetic resonance in lipid analyses: An emerging powerful tool for lipidomics studies. Prog. Lipid Res. 2017, 68, 37–56. [Google Scholar] [CrossRef]
- Swinnen, J.V.; Dehairs, J. A Beginner’s Guide to Lipidomics. Biochem 2022, 44, 20–24. [Google Scholar] [CrossRef]
- Holčapek, M.; Liebisch, G.; Ekroos, K. Lipidomic Analysis. Anal. Bioanal. Chem. 2020, 412, 2187–2189. [Google Scholar] [CrossRef]
- Hyötyläinen, T.; Orešič, M. Bioanalytical Techniques in Nontargeted Clinical Lipidomics. Bioanalysis 2016, 8, 351–364. [Google Scholar] [CrossRef]
- Höring, M.; Ejsing, C.S.; Hermansson, M.; Liebisch, G. Quantification of Cholesterol and Cholesteryl Ester by Direct Flow Injection High-Resolution Fourier Transform Mass Spectrometry Utilizing Species-Specific Response Factors. Anal. Chem. 2019, 91, 3459–3466. [Google Scholar] [CrossRef]
- Nielsen, I.Ø.; Vidas Olsen, A.; Dicroce-Giacobini, J.; Papaleo, E.; Andersen, K.K.; Jäättelä, M.; Maeda, K.; Bilgin, M. Comprehensive Evaluation of a Quantitative Shotgun Lipidomics Platform for Mammalian Sample Analysis on a High-Resolution Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2020, 31, 894–907. [Google Scholar] [CrossRef]
- Hu, C.; Duan, Q.; Han, X. Strategies to Improve/Eliminate the Limitations in Shotgun Lipidomics. Proteomics 2020, 20, e1900070. [Google Scholar] [CrossRef]
- Su, B.; Bettcher, L.F.; Hsieh, W.Y.; Hornburg, D.; Pearson, M.J.; Blomberg, N.; Giera, M.; Snyder, M.P.; Raftery, D.; Bensinger, S.J.; et al. A DMS Shotgun Lipidomics Workflow Application to Facilitate High-Throughput, Comprehensive Lipidomics. J. Am. Soc. Mass Spectrom. 2021, 32, 2655–2663. [Google Scholar] [CrossRef]
- Marques, C.; Liu, L.; Duncan, K.D.; Lanekoff, I. A Direct Infusion Probe for Rapid Metabolomics of Low-Volume Samples. Anal. Chem. 2022, 94, 12875–12883. [Google Scholar] [CrossRef]
- Xu, T.; Li, H.; Feng, D.; Dou, P.; Shi, X.; Hu, C.; Xu, G. Lipid Profiling of 20 Mammalian Cells by Capillary Microsampling Combined with High-Resolution Spectral Stitching Nanoelectrospray Ionization Direct-Infusion Mass Spectrometry. Anal. Chem. 2021, 93, 10031–10038. [Google Scholar] [CrossRef]
- Chung, H.J.; Lee, H.; Na, G.; Jung, H.; Kim, D.G.; Shin, S.I.; Jung, S.E.; Choi, I.D.; Lee, J.H.; Sim, J.H.; et al. Metabolic and Lipidomic Profiling of Vegetable Juices Fermented with Various Probiotics. Biomolecules 2020, 10, 725. [Google Scholar] [CrossRef]
- Bukowski, M.R.; Picklo, M.J. Simple, Rapid Lipidomic Analysis of Triacylglycerols in Bovine Milk by Infusion-Electrospray Mass Spectrometry. Lipids 2021, 56, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Ledoux, L.; Zirem, Y.; Renaud, F.; Duponchel, L.; Salzet, M.; Ogrinc, N.; Fournier, I. Comparing MS Imaging of Lipids by WALDI and MALDI: Two Technologies for Evaluating a Common Ground Truth in MS Imaging. Analyst 2023, 148, 4982–4986. [Google Scholar] [CrossRef] [PubMed]
- Sommella, E.; Salviati, E.; Caponigro, V.; Grimaldi, M.; Musella, S.; Bertamino, A.; Cacace, L.; Palladino, R.; Di Mauro, G.; Marini, F.; et al. MALDI Mass Spectrometry Imaging Highlights Specific Metabolome and Lipidome Profiles in Salivary Gland Tumor Tissues. Metabolites 2022, 12, 530. [Google Scholar] [CrossRef]
- Li, D.; Ouyang, Z.; Ma, X. Mass Spectrometry Imaging for Single-Cell or Subcellular Lipidomics: A Review of Recent Advancements and Future Development. Molecules 2023, 28, 2712. [Google Scholar] [CrossRef]
- Khan, S.; Andrew, R. Mass Spectrometry Imaging of Lipids. In Lipidomics: Current and Emerging Techniques, 1st ed.; Griffiths, W., Wang, Y., Eds.; The Royal Society of Chemistry: London, UK, 2020; pp. 88–121. [Google Scholar]
- Qin, S.; Miao, D.; Zhang, X.; Zhang, Y.; Bai, Y. Methods Developments of Mass Spectrometry Based Single Cell Metabolomics. TrAC Trends Anal. Chem. 2023, 164, 117086. [Google Scholar] [CrossRef]
- Hu, R.; Li, Y.; Yang, Y.; Liu, M. Mass Spectrometry-Based Strategies for Single-Cell Metabolomics. Mass Spectrom. Rev. 2023, 42, 67–94. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Zhao, X.; Zhao, Y. Advancements in ToF-SIMS Imaging for Life Sciences. Front. Chem. 2023, 11, 1237408. [Google Scholar] [CrossRef]
- Ren, J.; Li, H.-W.; Chen, L.; Zhang, M.; Liu, Y.-X.; Zhang, B.-W.; Xu, R.; Miao, Y.-Y.; Xu, X.-M.; Hua, X.; et al. Mass Spectrometry Imaging-Based Single-Cell Lipidomics Profiles Metabolic Signatures of Heart Failure. Research 2023, 6, 0019. [Google Scholar] [CrossRef]
- Nabi, M.M.; Mamun, M.A.; Islam, A.; Hasan, M.M.; Waliullah, A.S.M.; Tamannaa, Z.; Sato, T.; Kahyo, T.; Setou, M. Mass Spectrometry in the Lipid Study of Cancer. Expert Rev. Proteom. 2021, 18, 201–219. [Google Scholar] [CrossRef]
- dos Santos, A.C.A.; Vuckovic, D. Current Status and Advances in Untargeted LC-MS Tissue Lipidomics Studies in Cardiovascular Health. TrAC Trends Anal. Chem. 2024, 170, 117419. [Google Scholar] [CrossRef]
- Martín-Saiz, L.; Abad-García, B.; Solano-Iturri, J.D.; Mosteiro, L.; Martín-Allende, J.; Rueda, Y.; Pérez-Fernández, A.; Unda, M.; Coterón-Ochoa, P.; Goya, A.; et al. Using the Synergy between HPLC-MS and MALDI-MS Imaging to Explore the Lipidomics of Clear Cell Renal Cell Carcinoma. Anal. Chem. 2023, 95, 2285–2293. [Google Scholar] [CrossRef]
- Mamun, A.; Islam, A.; Eto, F.; Sato, T.; Kahyo, T.; Setou, M. Mass Spectrometry-Based Phospholipid Imaging: Methods and Findings. Expert. Rev. Proteom. 2020, 17, 843–854. [Google Scholar] [CrossRef]
- Bowman, A.P.; Heeren, R.M.A.; Ellis, S.R. Advances in Mass Spectrometry Imaging Enabling Observation of Localised Lipid Biochemistry within Tissues. TrAC Trends Anal. Chem. 2019, 120, 115197. [Google Scholar] [CrossRef]
- Qi, K.; Wu, L.; Liu, C.; Pan, Y. Recent Advances of Ambient Mass Spectrometry Imaging and Its Applications in Lipid and Metabolite Analysis. Metabolites 2021, 11, 780. [Google Scholar] [CrossRef]
- He, M.J.; Pu, W.; Wang, X.; Zhang, W.; Tang, D.; Dai, Y. Comparing DESI-MSI and MALDI-MSI Mediated Spatial Metabolomics and Their Applications in Cancer Studies. Front. Oncol. 2022, 12, 891018. [Google Scholar] [CrossRef]
- Nguyen, S.N.; Kyle, J.E.; Dautel, S.E.; Sontag, R.; Luders, T.; Corley, R.; Ansong, C.; Carson, J.; Laskin, J. Lipid Coverage in Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging of Mouse Lung Tissues. Anal. Chem. 2019, 91, 11629–11635. [Google Scholar] [CrossRef]
- Khamehgir-Silz, P.; Gerbig, S.; Volk, N.; Schulz, S.; Spengler, B.; Hecker, M.; Wagner, A.H. Comparative Lipid Profiling of Murine and Human Atherosclerotic Plaques Using High-Resolution MALDI MSI. Pflugers Arch. 2022, 474, 231–242. [Google Scholar] [CrossRef]
- Moerman, A.M.; Visscher, M.; Slijkhuis, N.; Van Gaalen, K.; Heijs, B.; Klein, T.; Burgers, P.C.; De Rijke, Y.B.; Van Beusekom, H.M.M.; Luider, T.M.; et al. Lipid Signature of Advanced Human Carotid Atherosclerosis Assessed by Mass Spectrometry Imaging. J. Lipid Res. 2021, 62, 100020. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.; Cillero-Pastor, B.; Ruiz-Romero, C.; Paine, M.R.L.; Cañete, J.D.; Heeren, R.M.A.; Blanco, F.J. Identification of a Distinct Lipidomic Profile in the Osteoarthritic Synovial Membrane by Mass Spectrometry Imaging. Osteoarthr. Cartil 2021, 29, 750–761. [Google Scholar] [CrossRef] [PubMed]
- Denti, V.; Mahajneh, A.; Capitoli, G.; Clerici, F.; Piga, I.; Pagani, L.; Chinello, C.; Bolognesi, M.M.; Paglia, G.; Galimberti, S.; et al. Lipidomic Typing of Colorectal Cancer Tissue Containing Tumour-Infiltrating Lymphocytes by MALDI Mass Spectrometry Imaging. Metabolites 2021, 11, 599. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, T.; Xie, P.; Song, Y.; Wang, J.; Cai, Z. Mass Spectrometry Imaging Revealed Alterations of Lipid Metabolites in Multicellular Tumor Spheroids in Response to Hydroxychloroquine. Anal. Chim. Acta 2021, 1184, 339011. [Google Scholar] [CrossRef]
- Visscher, M.; Moerman, A.M.; Burgers, P.C.; Van Beusekom, H.M.M.; Luider, T.M.; Verhagen, H.J.M.; Van der Steen, A.F.W.; Van der Heiden, K.; Van Soest, G. Data Processing Pipeline for Lipid Profiling of Carotid Atherosclerotic Plaque with Mass Spectrometry Imaging. J. Am. Soc. Mass Spectrom. 2019, 30, 1790–1800. [Google Scholar] [CrossRef]
- Lukowski, J.; Pamreddy, A.; Velickovic, D.; Zhang, G.; Pasa-Tolic, L.; Alexandrov, T.; Sharma, K.; Anderton, C.R. Storage conditions of human kidney tissue sections affect spatial lipidomics analysis reproducibility. J. Am. Soc. Mass Spectrom. 2020, 31, 2538–2546. [Google Scholar] [CrossRef] [PubMed]
- Dimovska Nilsson, K.; Karagianni, A.; Kaya, I.; Henricsson, M.; Fletcher, J.S. (CO2)n+, (H2O)n+, and (H2O)n+ (CO2) Gas Cluster Ion Beam Secondary Ion Mass Spectrometry: Analysis of Lipid Extracts, Cells, and Alzheimer’s Model Mouse Brain Tissue. Anal. Bioanal. Chem. 2021, 413, 4181–4194. [Google Scholar] [CrossRef]
- Fu, T.; Knittelfelder, O.; Geffard, O.; Clément, Y.; Testet, E.; Elie, N.; Touboul, D.; Abbaci, K.; Shevchenko, A.; Lemoine, J.; et al. Shotgun Lipidomics and Mass Spectrometry Imaging Unveil Diversity and Dynamics in Gammarus Fossarum Lipid Composition. iScience 2021, 24, 102115. [Google Scholar] [CrossRef]
- Sämfors, S.; Ståhlman, M.; Klevstig, M.; Borén, J.; Fletcher, J.S. Localised Lipid Accumulation Detected in Infarcted Mouse Heart Tissue Using ToF-SIMS. Int. J. Mass Spectrom. 2019, 437, 77–86. [Google Scholar] [CrossRef]
- Seubnooch, P.; Montani, M.; Tsouka, S.; Claude, E.; Rafiqi, U.; Perren, A.; Dufour, J.F.; Masoodi, M. Characterisation of Hepatic Lipid Signature Distributed across the Liver Zonation Using Mass Spectrometry Imaging. JHEP Rep. 2023, 5, 100725. [Google Scholar] [CrossRef]
- Slijkhuis, N.; Towers, M.; Mirzaian, M.; Korteland, S.A.; Heijs, B.; van Gaalen, K.; Nieuwenhuizen, I.; Nigg, A.; van der Heiden, K.; de Rijke, Y.B.; et al. Identifying Lipid Traces of Atherogenic Mechanisms in Human Carotid Plaque. Atherosclerosis 2023, 385, 117340. [Google Scholar] [CrossRef]
- Sun, B.; Jiang, S.; Li, M.; Zhang, Y.; Zhou, Y.; Wei, X.; Wang, H.; Si, N.; Bian, B.; Zhao, H. Lipidomics Combined with Transcriptomic and Mass Spectrometry Imaging Analysis of the Asiatic Toad (Bufo Gargarizans) during Metamorphosis and Bufadienolide Accumulation. Chin. Med. 2022, 17, 123. [Google Scholar] [CrossRef] [PubMed]
- Henderson, F.; Jones, E.; Denbigh, J.; Christie, L.; Chapman, R.; Hoyes, E.; Claude, E.; Williams, K.J.; Roncaroli, F.; McMahon, A. 3D DESI-MS Lipid Imaging in a Xenograft Model of Glioblastoma: A Proof of Principle. Sci. Rep. 2020, 10, 16512. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, F.B.; Jarmusch, A.K.; León, M.; Ferreira, C.R.; Pirro, V.; Eberlin, L.S.; Hallett, J.; Miglino, M.A.; Cooks, R.G. Mammalian Ovarian Lipid Distributions by Desorption Electrospray Ionization–Mass Spectrometry (DESI-MS) Imaging. Anal. Bioanal. Chem. 2020, 412, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- León, M.; Ferreira, C.R.; Eberlin, L.S.; Jarmusch, A.K.; Pirro, V.; Rodrigues, A.C.B.; Favaron, P.O.; Miglino, M.A.; Cooks, R.G. Metabolites and Lipids Associated with Fetal Swine Anatomy via Desorption Electrospray Ionization—Mass Spectrometry Imaging. Sci. Rep. 2019, 9, 7247. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.D.; Shields, S.W.; Escobar, E.E.; Lanzillotti, M.B.; Butalewicz, J.P.; James, V.K.; Blevins, M.S.; Sipe, S.N.; Brodbelt, J.S. Enhanced Ion Mobility Separation and Characterization of Isomeric Phosphatidylcholines Using Absorption Mode Fourier Transform Multiplexing and Ultraviolet Photodissociation Mass Spectrometry. Anal. Chem. 2022, 94, 4252–4259. [Google Scholar] [CrossRef] [PubMed]
- Kaszycki, J.L.; La Rotta, A.; Colsch, B.; Fenaille, F.; Dauly, C.; Kamleh, A.; Wu, C. Separation of Biologically Relevant Isomers on an Orbitrap Mass Spectrometer Using High-Resolution Drift Tube Ion Mobility and Varied Drift Gas Mixtures. Rapid Commun. Mass Spectrom. 2019, 33, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Lacalle-Bergeron, L.; Goterris-Cerisuelo, R.; Beltran, J.; Sancho, J.V.; Navarro-Moreno, C.; Martinez-Garcia, F.; Portolés, T. Untargeted Metabolomics Approach Using UHPLC-IMS-QTOF MS for Surface Body Samples to Identify Low-Volatility Chemosignals Related to Maternal Care in Mice. Talanta 2023, 258, 124389. [Google Scholar] [CrossRef]
- Rose, B.S.; Leaptrot, K.L.; Harris, R.A.; Sherrod, S.D.; May, J.C.; McLean, J.A. High Confidence Shotgun Lipidomics Using Structurally Selective Ion Mobility-Mass Spectrometry. Methods Mol. Biol. 2021, 2306, 11–37. [Google Scholar] [CrossRef]
- Hoffmann, N.; Mayer, G.; Has, C.; Kopczynski, D.; Machot, F.A.; Schwudke, D.; Ahrends, R.; Marcus, K.; Eisenacher, M.; Turewicz, M. A Current Encyclopedia of Bioinformatics Tools, Data Formats and Resources for Mass Spectrometry Lipidomics. Metabolites 2022, 12, 584. [Google Scholar] [CrossRef]
- Paglia, G.; Smith, A.J.; Astarita, G. Ion Mobility Mass Spectrometry in the Omics Era: Challenges and Opportunities for Metabolomics and Lipidomics. Mass Spectrom. Rev. 2022, 41, 722–765. [Google Scholar] [CrossRef]
- Zandkarimi, F.; Brown, L.M. Application of Ion Mobility Mass Spectrometry in Lipidomics. Adv. Exp. Med. Biol. 2019, 1140, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Chouinard, C.D.; Nagy, G.; Smith, R.D.; Baker, E.S. Ion Mobility-Mass Spectrometry in Metabolomic, Lipidomic, and Proteomic Analyses; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 123–159. [Google Scholar]
- Tu, J.; Zhou, Z.; Li, T.; Zhu, Z.J. The Emerging Role of Ion Mobility-Mass Spectrometry in Lipidomics to Facilitate Lipid Separation and Identification. TrAC Trends Anal. Chem. 2019, 116, 332–339. [Google Scholar] [CrossRef]
- D’Atri, V.; Causon, T.; Hernandez-Alba, O.; Mutabazi, A.; Veuthey, J.L.; Cianferani, S.; Guillarme, D. Adding a New Separation Dimension to MS and LC–MS: What Is the Utility of Ion Mobility Spectrometry? J. Sep. Sci. 2018, 41, 20–67. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Shen, X.; Chen, X.; Tu, J.; Xiong, X.; Zhu, Z.J. LipidIMMS Analyzer: Integrating Multi-Dimensional Information to Support Lipid Identification in Ion Mobility—Mass Spectrometry Based Lipidomics. Bioinformatics 2019, 35, 698–700. [Google Scholar] [CrossRef]
- Wu, B.; Wei, F.; Xu, S.; Xie, Y.; Lv, X.; Chen, H.; Huang, F. Mass Spectrometry-Based Lipidomics as a Powerful Platform in Foodomics Research. Trends Food Sci. Technol. 2021, 107, 358–376. [Google Scholar] [CrossRef]
- Zhu, P.; Bu, G.; Hu, R.; Ruan, X.; Fu, R.; Zhang, Z.; Wan, Q.; Liu, X.; Miao, Y.; Chen, S. Lipidomic Characterization of Oocytes at Single-Cell Level Using Nanoflow Chromatography-Trapped Ion Mobility Spectrometry-Mass Spectrometry. Molecules 2023, 28, 4202. [Google Scholar] [CrossRef]
- Lerner, R.; Baker, D.; Schwitter, C.; Neuhaus, S.; Hauptmann, T.; Post, J.M.; Kramer, S.; Bindila, L. Four-Dimensional Trapped Ion Mobility Spectrometry Lipidomics for High Throughput Clinical Profiling of Human Blood Samples. Nat. Commun. 2023, 14, 937. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.X.; Hernly, E.; Hu, H.; Hilger, R.T.; Neuweger, H.; Yang, M.; Laskin, J. Nanospray Desorption Electrospray Ionization (Nano-DESI) Mass Spectrometry Imaging with High Ion Mobility Resolution. J. Am. Soc. Mass. Spectrom. 2023, 34, 1798–1804. [Google Scholar] [CrossRef]
- Merciai, F.; Musella, S.; Sommella, E.; Bertamino, A.; D’Ursi, A.M.; Campiglia, P. Development and Application of a Fast Ultra-High Performance Liquid Chromatography-Trapped Ion Mobility Mass Spectrometry Method for Untargeted Lipidomics. J. Chromatogr. A 2022, 1673, 463124. [Google Scholar] [CrossRef]
- Vasilopoulou, C.G.; Sulek, K.; Brunner, A.D.; Meitei, N.S.; Schweiger-Hufnagel, U.; Meyer, S.W.; Barsch, A.; Mann, M.; Meier, F. Trapped Ion Mobility Spectrometry and PASEF Enable In-Depth Lipidomics from Minimal Sample Amounts. Nat. Commun. 2020, 11, 331. [Google Scholar] [CrossRef]
- Romsdahl, T.B.; Cocuron, J.C.; Pearson, M.J.; Alonso, A.P.; Chapman, K.D. A Lipidomics Platform to Analyze the Fatty Acid Compositions of Non-Polar and Polar Lipid Molecular Species from Plant Tissues: Examples from Developing Seeds and Seedlings of Pennycress (Thlaspi arvense). Front. Plant Sci. 2022, 13, 1038161. [Google Scholar] [CrossRef]
- Lísa, M.; Cífková, E.; Khalikova, M.; Ovčačíková, M.; Holčapek, M. Lipidomic Analysis of Biological Samples: Comparison of Liquid Chromatography, Supercritical Fluid Chromatography and Direct Infusion Mass Spectrometry Methods. J. Chromatogr. A 2017, 1525, 96–108. [Google Scholar] [CrossRef]
- Avela, H.F.; Sirén, H. Advances in Analytical Tools and Current Statistical Methods Used in Ultra-High-Performance Liquid Chromatography-Mass Spectrometry of Glycero-, Glycerophospho- and Sphingolipids. Int. J. Mass Spectrom. 2020, 457, 116408. [Google Scholar] [CrossRef]
- Rustam, Y.H.; Reid, G.E. Analytical Challenges and Recent Advances in Mass Spectrometry Based Lipidomics. Anal. Chem. 2018, 90, 374–397. [Google Scholar] [CrossRef] [PubMed]
- Avela, H.F.; Sirén, H. Advances in Lipidomics. Clin. Chim. Acta 2020, 510, 123–141. [Google Scholar] [CrossRef]
- Züllig, T.; Köfeler, H.C. High Resolution Mass Spectrometry in Lipidomics. Mass Spectrom. Rev. 2021, 40, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Ovčačíková, M.; Lísa, M.; Cífková, E.; Holčapek, M. Retention Behavior of Lipids in Reversed-Phase Ultrahigh-Performance Liquid Chromatography-Electrospray Ionization Mass Spectrometry. J. Chromatogr. A 2016, 1450, 76–85. [Google Scholar] [CrossRef]
- Chen, L.; Dean, B.; Liang, X. A Technical Overview of Supercritical Fluid Chromatography-Mass Spectrometry (SFC-MS) and Its Recent Applications in Pharmaceutical Research and Development. Drug Discov. Today Technol. 2021, 40, 69–75. [Google Scholar] [CrossRef]
- Soga, T. Advances in Capillary Electrophoresis Mass Spectrometry for Metabolomics. TrAC Trends Anal. Chem. 2023, 158, 116883. [Google Scholar] [CrossRef]
- Wolrab, D.; Peterka, O.; Chocholoušková, M.; Holčapek, M. Ultrahigh-Performance Supercritical Fluid Chromatography / Mass Spectrometry in the Lipidomic Analysis. TrAC Trends Anal. Chem. 2022, 149, 116546. [Google Scholar] [CrossRef]
- Hayasaka, R.; Tabata, S.; Hasebe, M.; Ikeda, S.; Ohnuma, S.; Mori, M.; Soga, T.; Tomita, M.; Hirayama, A. Metabolomic Analysis of Small Extracellular Vesicles Derived from Pancreatic Cancer Cells Cultured under Normoxia and Hypoxia. Metabolites 2021, 11, 215. [Google Scholar] [CrossRef]
- Wu, Z.; Bagarolo, G.I.; Thoröe-Boveleth, S.; Jankowski, J. “Lipidomics”: Mass Spectrometric and Chemometric Analyses of Lipids. Adv. Drug Deliv. Rev. 2020, 159, 294–307. [Google Scholar] [CrossRef]
- Wu, Z.; Shon, J.C.; Liu, K.-H. Mass Spectrometry-Based Lipidomics and Its Application ToBiomedical Research. J. Lifestyle Med. 2014, 4, 17–33. [Google Scholar] [CrossRef]
- Zeng, K.; Zhou, X.; Liu, W.; Nie, C.; Zhang, Y. Determination of Endogenous Sphingolipid Content in Stroke Rats and HT22 Cells Subjected to Oxygen-Glucose Deprivation by LC—MS/MS. Lipids Health Dis. 2023, 22, 13. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.K.; Teo, G.; Pewzner-Jung, Y.; Cuthbertson, D.J.; Futerman, A.H.; Wenk, M.R.; Choi, H.; Torta, F. Q-RAI Data-Independent Acquisition for Lipidomic Quantitative Profiling. Sci. Rep. 2023, 13, 19281. [Google Scholar] [CrossRef]
- Zhou, H.; Nong, Y.; Zhu, Y.; Liang, Y.; Zhang, J.; Chen, H.; Zhu, P.; Zhang, Q. Serum Untargeted Lipidomics by UHPLC-ESI-HRMS Aids the Biomarker Discovery of Colorectal Adenoma. BMC Cancer 2022, 22, 314. [Google Scholar] [CrossRef]
- Mocciaro, G.; D’amore, S.; Jenkins, B.; Kay, R.; Murgia, A.; Herrera-marcos, L.V.; Neun, S.; Sowton, A.P.; Hall, Z.; Palma-Duran, S.A.; et al. Lipidomic Approaches to Study HDL Metabolism in Patients with Central Obesity Diagnosed with Metabolic Syndrome. Int. J. Mol. Sci. 2022, 23, 6786. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, H.; Han, Y.; Wang, T.; Wang, Y.; Gong, J.; Gao, K.; Chen, W.; Li, W.; Zhang, H.; et al. A Simple and Rapid Method for Extraction and Measurement of Circulating Sphingolipids Using LC–MS/MS: A Targeted Lipidomic Analysis. Anal. Bioanal. Chem. 2022, 414, 2041–2054. [Google Scholar] [CrossRef]
- Duan, L.; Scheidemantle, G.; Lodge, M.; Cummings, M.J.; Pham, E.; Wang, X.; Kennedy, A.; Liu, X. Prioritize Biologically Relevant Ions for Data-Independent Acquisition (BRI-DIA) in LC–MS/MS-Based Lipidomics Analysis. Metabolomics 2022, 18, 55. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Hu, X.H.; Zhang, Q.; Wang, X.J.; Wen, X.H.; Wang, Y.; Zhang, Y.X.; Sun, W.J. Exploring Lipid Biomarkers of Coronary Heart Disease for Elucidating the Biological Effects of Gelanxinning Capsule by Lipidomics Method Based on LC–MS. Biomed. Chromatogr. 2021, 35, e5091. [Google Scholar] [CrossRef] [PubMed]
- Lísa, M.; Řehulková, H.; Hančová, E.; Řehulka, P. Lipidomic Analysis Using Hydrophilic Interaction Liquid Chromatography Microgradient Fractionation of Total Lipid Extracts. J. Chromatogr. A 2021, 1653, 462380. [Google Scholar] [CrossRef] [PubMed]
- Yazd, H.S.; Bazargani, S.F.; Vanbeek, C.A.; King-Morris, K.; Heldermon, C.; Segal, M.S.; Clapp, W.L.; Garrett, T.J. LC-MS Lipidomics of Renal Biopsies for the Diagnosis of Fabry Disease. J. Mass Spectrom. Adv. Clin. Lab. 2021, 22, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, Y.; Sakai, Y.; Mizuno, Y.; Furuno, K.; Hirono, K.; Takatsuki, S.; Suzuki, H.; Onouchi, Y.; Kobayashi, T.; Tanabe, K.; et al. Lipidomics Links Oxidized Phosphatidylcholines and Coronary Arteritis in Kawasaki Disease. Cardiovasc. Res. 2021, 117, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Nishida-Aoki, N.; Izumi, Y.; Takeda, H.; Takahashi, M.; Ochiya, T.; Bamba, T. Lipidomic Analysis of Cells and Extracellular Vesicles from High-and Low-Metastatic Triple-Negative Breast Cancer. Metabolites 2020, 10, 67. [Google Scholar] [CrossRef]
- López-Bascón, M.A.; Calderón-Santiago, M.; Díaz-Lozano, A.; Camargo, A.; López-Miranda, J.; Priego-Capote, F. Development of a Qualitative/Quantitative Strategy for Comprehensive Determination of Polar Lipids by LC–MS/MS in Human Plasma. Anal. Bioanal. Chem. 2020, 412, 489–498. [Google Scholar] [CrossRef]
- Leung, H.H.; Leung, K.S.; Durand, T.; Galano, J.M.; Lee, J.C.Y. Measurement of Enzymatic and Nonenzymatic Polyunsaturated Fatty Acid Oxidation Products in Plasma and Urine of Macular Degeneration Using LC-QTOF-MS/MS. Lipids 2020, 55, 693–706. [Google Scholar] [CrossRef]
- Williams, J.; Zhu, K.; Crampon, E.; Iffland, A. Fit-for-Purpose Biomarker LC-MS/MS Qualification for the Quantitation of Very Long Chain Fatty Acids in Human Cerebrospinal Fluid. Bioanalysis 2020, 12, 143–158. [Google Scholar] [CrossRef]
- Gong, L.L.; Yang, S.; Zhang, W.; Han, F.F.; Lv, Y.L.; Xuan, L.L.; Liu, H.; Liu, L. hong Discovery of Metabolite Profiles of Metabolic Syndrome Using Untargeted and Targeted LC–MS Based Lipidomics Approach. J. Pharm. Biomed. Anal. 2020, 177, 112848. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Cheng, X.; Liu, X.; Sun, H.; Guo, Z.; Li, J.; Tang, X.; Wang, Z.; Sun, W.; et al. LC-MS-Based Plasma Metabolomics and Lipidomics Analyses for Differential Diagnosis of Bladder Cancer and Renal Cell Carcinoma. Front. Oncol. 2020, 10, 717. [Google Scholar] [CrossRef]
- Takashima, S.; Toyoshi, K.; Yamamoto, T.; Shimozawa, N. Positional Determination of the Carbon–Carbon Double Bonds in Unsaturated Fatty Acids Mediated by Solvent Plasmatization Using LC–MS. Sci. Rep. 2020, 10, 12988. [Google Scholar] [CrossRef]
- Pousinis, P.; Gowler, P.R.W.; Burston, J.J.; Ortori, C.A.; Chapman, V.; Barrett, D.A. Lipidomic Identification of Plasma Lipids Associated with Pain Behaviour and Pathology in a Mouse Model of Osteoarthritis. Metabolomics 2020, 16, 32. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, H.; Liu, R.; Gao, P.; Yang, X.; Jin, W.; Zhang, Y.; Bi, K.; Li, Q. A Novel Strategy for Targeted Lipidomics Based on LC-Tandem-MS Parameters Prediction, Quantification, and Multiple Statistical Data Mining: Evaluation of Lysophosphatidylcholines as Potential Cancer Biomarkers. Anal. Chem. 2019, 91, 3389–3396. [Google Scholar] [CrossRef]
- Liu, T.; Peng, F.; Yu, J.; Tan, Z.; Rao, T.; Chen, Y.; Wang, Y.; Liu, Z.; Zhou, H.; Peng, J. LC-MS-Based Lipid Profile in Colorectal Cancer Patients: TAGs Are the Main Disturbed Lipid Markers of Colorectal Cancer Progression. Anal. Bioanal. Chem. 2019, 411, 5079–5088. [Google Scholar] [CrossRef] [PubMed]
- Vu, N.; Narvaez-Rivas, M.; Chen, G.Y.; Rewers, M.J.; Zhang, Q. Accurate Mass and Retention Time Library of Serum Lipids for Type 1 Diabetes Research. Anal. Bioanal. Chem. 2019, 411, 5937–5949. [Google Scholar] [CrossRef] [PubMed]
- Meierhofer, D. Acylcarnitine Profiling by Low-Resolution LC-MS. PLoS ONE 2019, 14, e0221342. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.R.; Tong, Q.; Zhao, Z.X.; Cong, L.; Yu, J.B.; Fu, J.; Han, P.; Pan, L.B.; Gu, R.; Peng, R.; et al. Determination of Berberine-Upregulated Endogenous Short-Chain Fatty Acids through Derivatization by 2-Bromoacetophenone. Anal. Bioanal. Chem. 2019, 411, 3191–3207. [Google Scholar] [CrossRef]
- Dasilva, G.; Muñoz, S.; Lois, S.; Medina, I. Non-Targeted LC-MS/MS Assay for Screening over 100 Lipid Mediators from ARA, EPA, and DHA in Biological Samples Based on Mass Spectral Fragmentations. Molecules 2019, 24, 2276. [Google Scholar] [CrossRef]
- Maekawa, M.; Jinnoh, I.; Matsumoto, Y.; Narita, A.; Mashima, R.; Takahashi, H.; Iwahori, A.; Saigusa, D.; Fujii, K.; Abe, A.; et al. Structural Determination of Lysosphingomyelin-509 and Discovery of Novel Class Lipids from Patients with Niemann–Pick Disease Type C. Int. J. Mol. Sci. 2019, 20, 5018. [Google Scholar] [CrossRef]
- King, A.; Baginski, M.; Morikawa, Y.; Rainville, P.D.; Gethings, L.A.; Wilson, I.D.; Plumb, R.S. Application of a Novel Mass Spectral Data Acquisition Approach to Lipidomic Analysis of Liver Extracts from Sitaxentan-Treated Liver-Humanized PXB Mice. J. Proteome Res. 2019, 18, 4055–4064. [Google Scholar] [CrossRef]
- Körber, T.T.; Sitz, T.; Abdalla, M.A.; Mühling, K.H.; Rohn, S. LC-ESI-MS/MS Analysis of Sulfolipids and Galactolipids in Green and Red Lettuce (Lactuca sativa L.) as Influenced by Sulfur Nutrition. Int. J. Mol. Sci. 2023, 24, 3728. [Google Scholar] [CrossRef] [PubMed]
- Fabio Turco, J.; Benhur Mokochinski, J.; Reyes Torres, Y. Lipidomic Analysis of Geopropolis of Brazilian Stingless Bees by LC-HRMS. Food Res. Int. 2023, 16, 112640. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.J.J.; Wu, Q.; Feng, M.; Li, R.; Zhou, L.; Zhang, S.; Yang, C.; Cao, H. Lipidomic Profiles of Lipid Biosynthesis in Oil Palm during Fruit Development. Metabolites 2023, 13, 727. [Google Scholar] [CrossRef]
- Wiedmaier-Czerny, N.; Vetter, W. LC-Orbitrap-HRMS Method for Analysis of Traces of Triacylglycerols Featuring Furan Fatty Acids. Anal. Bioanal. Chem. 2023, 415, 875–885. [Google Scholar] [CrossRef]
- Alves, E.; Rey, F.; Melo, T.; Barros, M.P.; Domingues, P.; Domingues, R. Bioprospecting Bioactive Polar Lipids from Olive (Olea europaea cv. Galega vulgar) Fruit Seeds: LC-HR-MS/MS Fingerprinting and Sub-Geographic Comparison. Foods 2022, 11, 951. [Google Scholar] [CrossRef]
- Aurum, F.S.; Imaizumi, T.; Thammawong, M.; Suhandy, D.; Praseptiangga, D.; Tsuta, M.; Nagata, M.; Nakano, K. Lipidomic Profiling of Indonesian Coffee to Determine Its Geographical Origin by LC–MS/MS. Eur. Food Res. Technol. 2022, 248, 2887–2899. [Google Scholar] [CrossRef]
- Li, M.; Zhu, M.; Chai, W.; Wang, Y.; Fan, D.; Lv, M.; Jiang, X.; Liu, Y.; Wei, Q.; Wang, C. Determination of Lipid Profiles of Dezhou Donkey Meat Using an LC-MS-Based Lipidomics Method. J. Food Sci. 2021, 86, 4511–4521. [Google Scholar] [CrossRef]
- Kokotou, M.G.; Mantzourani, C.; Bourboula, A.; Mountanea, O.G.; Kokotos, G. A Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) Method for the Determination of Free Hydroxy Fatty Acids in Cow and Goat Milk. Molecules 2020, 25, 3947. [Google Scholar] [CrossRef] [PubMed]
- Lukić, I.; Ros, A.D.; Guella, G.; Camin, F.; Masuero, D.; Mulinacci, N.; Vrhovsek, U.; Mattivi, F. Lipid Profiling and Stable Isotopic Data Analysis for Differentiation of Extra Virgin Olive Oils Based on Their Origin. Molecules 2020, 25, 4. [Google Scholar] [CrossRef]
- Claassen, C.; Kuballa, J.; Rohn, S. Polar Lipids in Starch-Rich Commodities to Be Analyzed with LC-MS-Based Metabolomics—Optimization of Ionization Parameters and High-Throughput Extraction Protocols. Metabolites 2019, 9, 167. [Google Scholar] [CrossRef]
- Zartmann, A.; Völcker, L.; Hammann, S. Quantitative Analysis of Fatty Acids and Vitamin E and Total Lipid Profiling of Dietary Supplements from the German Market. Eur. Food Res. Technol. 2023, 249, 1035–1048. [Google Scholar] [CrossRef]
- Deschamps, E.; Schaumann, A.; Schmitz-Afonso, I.; Afonso, C.; Dé, E.; Loutelier-Bourhis, C.; Alexandre, S. Membrane Phospholipid Composition of Pseudomonas Aeruginosa Grown in a Cystic Fibrosis Mucus-Mimicking Medium. Biochim. Biophys. Acta Biomembr. 2021, 1863, 183482. [Google Scholar] [CrossRef] [PubMed]
- Bill, M.K.; Brinkmann, S.; Oberpaul, M.; Patras, M.A.; Leis, B.; Marner, M.; Maitre, M.P.; Hammann, P.E.; Vilcinskas, A.; Schuler, S.M.M.; et al. Novel Glycerophospholipid, Lipo-and N-Acyl Amino Acids from Bacteroidetes: Isolation, Structure Elucidation and Bioactivity. Molecules 2021, 26, 5195. [Google Scholar] [CrossRef] [PubMed]
- Wozny, K.; Lehmann, W.D.; Wozny, M.; Akbulut, B.S.; Brügger, B. A Method for the Quantitative Determination of Glycerophospholipid Regioisomers by UPLC-ESI-MS/MS. Anal. Bioanal. Chem. 2019, 411, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Alekseyeva, K.S.; Mähnert, B.; Berthiller, F.; Breyer, E.; Herndl, G.J.; Baltar, F. Adapting an Ergosterol Extraction Method with Marine Yeasts for the Quantification of Oceanic Fungal Biomass. J. Fungi 2021, 7, 690. [Google Scholar] [CrossRef] [PubMed]
- Flor, S.; Sosa Alderete, L.; Dobrecky, C.; Tripodi, V.; Agostini, E.; Lucangioli, S. LC-ESI-MS/MS Method for the Profiling of Glycerophospholipids and Its Application to the Analysis of Tobacco Hairy Roots as Early Indicators of Phenol Pollution. Chromatographia 2021, 84, 597–608. [Google Scholar] [CrossRef]
- Jankevics, A.; Jenkins, A.; Dunn, W.B.; Najdekr, L. An Improved Strategy for Analysis of Lipid Molecules Utilising a Reversed Phase C30 UHPLC Column and Scheduled MS/MS Acquisition. Talanta 2021, 229, 122262. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.G.; Ejsing, C.S.; Kopczynski, D.; Holčapek, M.; Aoki, J.; Arita, M.; Arita, M.; Baker, E.S.; Ber-trand-Michel, J.; Bowden, J.A.; et al. Introducing the Lipidomics Minimal Reporting Checklist. Nat. Metab. 2022, 4, 1086–1088. [Google Scholar] [CrossRef]
- Guo, J.; Huan, T. Comparison of Full-Scan, Data-Dependent, and Data-Independent Acquisition Modes in Liquid Chromatography-Mass Spectrometry Based Untargeted Metabolomics. Anal. Chem. 2020, 92, 8072–8080. [Google Scholar] [CrossRef]
- Defossez, E.; Bourquin, J.; von Reuss, S.; Rasmann, S.; Glauser, G. Eight Key Rules for Successful Data-Dependent Acquisition in Mass Spectrometry-Based Metabolomics. Mass Spectrom. Rev. 2023, 42, 131–143. [Google Scholar] [CrossRef]
- Davies, V.; Wandy, J.; Weidt, S.; Van Der Hooft, J.J.J.; Miller, A.; Daly, R.; Rogers, S. Rapid Development of Improved Data-Dependent Acquisition Strategies. Anal. Chem. 2021, 93, 5676–5683. [Google Scholar] [CrossRef] [PubMed]
- Kirkwood, K.I.; Pratt, B.S.; Shulman, N.; Tamura, K.; MacCoss, M.J.; MacLean, B.X.; Baker, E.S. Utilizing Skyline to Analyze Lipidomics Data Containing Liquid Chromatography, Ion Mobility Spectrometry and Mass Spectrometry Dimensions. Nat. Protoc. 2022, 17, 2415–2430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, Y.; Fields, L.; Shi, X.; Huang, P.; Lu, H.; Schneider, A.J.; Tang, X.; Puglielli, L.; Welham, N.V.; et al. Single-Cell Lipidomics Enabled by Dual-Polarity Ionization and Ion Mobility-Mass Spectrometry Imaging. Nat. Commun. 2023, 14, 5185. [Google Scholar] [CrossRef]
- Calderón, C.; Rubarth, L.; Cebo, M.; Merfort, I.; Lämmerhofer, M. Lipid Atlas of Keratinocytes and Betulin Effects on Its Lipidome Profiled by Comprehensive UHPLC–MS/MS with Data Independent Acquisition Using Targeted Data Processing. Proteomics 2020, 20, e1900113. [Google Scholar] [CrossRef]
- Rombouts, C.; De Spiegeleer, M.; Van Meulebroek, L.; De Vos, W.H.; Vanhaecke, L. Validated Comprehensive Metabolomics and Lipidomics Analysis of Colon Tissue and Cell Lines. Anal. Chim. Acta 2019, 1066, 79–92. [Google Scholar] [CrossRef] [PubMed]
Lipid Class | Example |
---|---|
Fatty acyls | HFAs, FAs |
Glycerolipids | MAG, DAG, TAG |
Glycerophospholipids | PA, PC, PE, PS |
Sphingolipids | Cer, PSL, SM |
Sterol lipids | CE, Chol, CS |
Prenol lipids | quinine, polyprenol, isoprenoid |
Saccharolipids | lipid A |
Polyketides | lovastatin |
Extraction Method | Advantages | Disadvantages | Ref. |
---|---|---|---|
OPE | easy to perform possibility of automation low cost precipitation of proteins and insoluble organic species | may not remove interferences efficiently long centrifugation needed | [26,54] |
LLE | well-established protocols many combinations of solvents could be used (in different ratios) low cost | time-consuming difficult to automate repeated extractions needed challenging organic phase layer transfer | [54] |
SPE | reduction of matrix effect purification of samples wide range of commercially available SPE sorbents | particularly suitable for targeted analysis long optimization of washing and elution solvents | [27] |
SPME | requires very small amount of sample reduction of matrix effect small amounts of solvents needed fast extraction | suitable mainly for GC lower extraction ability | [7,27,55] |
UAE | highly-reproducible time-efficient improve the extraction efficiency in combination with LLE | use of toxic solvents longer extraction times increasing the temperature (because of fictions) which leads to degradation possibly damage hearing | [21] |
MAE | improvement of extraction efficiency reduction of time and organic solvents consumption | potential degradation of thermally instable lipids long optimization of extraction parameters | [21] |
SE | provides a high yield of lipids possibility of use with green solvents | continuous heating at the boiling temperature could lead to lipid oxidation and degradation of heat liable, time consuming | [11] |
SFE(SCO2) | shorter extraction times suitable for neutral, low-polarity lipids supercritical CO2 is green solvent | extraction of polar lipids requires use of organic modifier high initial costs of equipment | [11,26,42] |
Sample | Analytes | Extraction Type | Extraction Solvent | Results | Ref. |
---|---|---|---|---|---|
rat brain tissue | lipid profile | OPE | MeOH | direct infusion probe development for metabolomics | [72] |
20 mammalian cells | 19 lipid subclasses | LLE | CHCl3:MeOH:IPA, (1:2:4) | determination of different lipid species with potential for clinical applications | [73] |
fermented vegetable juices | lipid profiling | LLE | MTBE | fermented juices contain more beneficial metabolites and carotenoids than commercial non-fermented juices | [74] |
mammalian samples | lipidome | LLE (Bligh and Dyer) | CHCl3:MeOH | guideline for setting up and using platform for exploring mammalian lipidome | [69] |
bovine milk | TAG | LLE | CHCl3 | identification of more than 100 TAGs | [75] |
MALDI-MSI | ||||
---|---|---|---|---|
Sample | Analytes | Matrix | Results | Ref. |
human kidney tissues | lipidome | DAN | comparing of LIMS and HPLC-MS—identification of larger number of species with using HPLC-MS | [86] |
rat brain tissue | lipidomic profiles | norharmane | lipidomic spectra showed high consistency between MALDI and WALDI | [76] |
human and murine tissue | lipid profiling | DHB | identification of several atherosclerosis- specific lipid biomarkers | [92] |
salivary gland tumor tissue | lipidomic profile | DHB | MALDI-MSI complementary diagnostic tool | [77] |
human tissue | lipid profiling | DHB | plaque features and specific lipid classes clear colocalization | [93] |
osteoarthritic synovial membrane | lipidomic profile | norharmane | novel insight into lipid profiling of synovial membrane | [94] |
colorectal cancer tissue | lipidomic profile | 9-AA | tool for subtyping the diverse immune environments in CRC | [95] |
tumor spheroids | lipid metabolites | DHB | method for detailed information about spheroids and drug relationship | [96] |
human tissue | lipid profiling | DHB | diacylglycerols are more abundant in thrombotic area in comparison with other plaque areas | [97] |
human kidney tissue | Lipid storage | DHB | sections stored at RT (one week of storage)—largest amount of lipid degradation in comparison with sections stored under N2 at −80 °C | [98] |
SIMS-MSI | ||||
Sample | Analytes | Primary Ion Beam | Results | Ref. |
mammalian CMs | lipid profiling | Ar2000+ Bi3+ | identifying of heart failure associated lipids | [83] |
lipid extracts, cells, mouse brain tissue | lipid profiling | (CO2)n+ (H2O)n+, (H2O)n +(CO2) | imaging of LPC for the first time using TOF-SIMS | [99] |
Gammarus fossarum | lipidome characterization | Bi3+ cluster ions | compositional and spatial information of lipids | [100] |
infarcted mouse heart tissue | spatial distribution of lipids | gas cluster ion beam (Ar4000+) | different spatial lipids distributions; insights changes in lipid metabolism following infarction | [101] |
DESI-MSI | ||||
Sample | Analytes | Solvent System, Technique | Results | Ref. |
mice liver tissue | lipid distribution | MeOH:H2O (98:2) DESI | zone-specific hepatic lipid distribution of three zones | [102] |
human carotid plaque | lipid signatures | MeOH:H2O (98:2) DESI | identified lipid species present in plaque (compared with plasma) | [103] |
asiatic toad | lipid composition | MeOH:H2O (95:5) DESI | significant lipid metabolism changes due to body remodeling during metamorphosis | [104] |
xenograft glioblastoma tumour | lipid profiling | MeOH:H2O (95:5) 3D DESI | heterogeneous lipid expression is important to aid β-oxidation in hypoxic areas glioblastoma | [105] |
cow, sow, mouse ovaries | lipid distribution | DMF:ACN (1:1) DESI | similar lipid signatures of corpora lutea, follicular wall, ovarian stroma independent of the species | [106] |
swine fetuses | lipid distribution | DMF:ACN (1:1) DESI | organ-dependent localization of lipids, indication of key lipids related to physiological organogenesis | [107] |
mouse lung tissues | lipid coverage | MeOH:H2O (9:1) nanoDESI | spatial localization of lipids in tissues. 50% of lipid coverage in comparison with Folch extraction-LC-MS/MS method | [91] |
Sample | Analytes | Extraction Type | Extraction Solvent | Method | Results | Ref. |
---|---|---|---|---|---|---|
porcine oocyte | lipidomic profile | LLE | MeOH:CHCl3 | nanoLC-TIMS-MS | oocyte lipids identification and relative quantification at the single-cell level | [120] |
human plasma, serum | lipid profiling | LLE | MTBE:MeOH (10:3) | UHPLC-TIMS-PASEF-MS | Annotation of 370 lipids in reference plasma and 364 lipids in serum sample | [121] |
mouse brain tissue | lipid localization | - | MeOH:H2O (9:1) nanoDESI | nanoDESI-TIMS-MSI | separation of lipid isomers and isobars and localization in brain tissue | [122] |
plasma | lipid profile | LLE | MTBE | UHPLC-TIMS-MS | approach development for untargeted lipidomics | [123] |
human plasma, mouse liver, HeLa cells | lipidomic profile | LLE | MeOH:MTBE:H2O | nanoLC-TIMS-PASEF-MS | 1108 lipids (0.05 μL plasma), 976 lipids (10 μg liver tissue) and 1351 lipids (~2000 HeLa cells) were identified | [124] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerhardtova, I.; Jankech, T.; Majerova, P.; Piestansky, J.; Olesova, D.; Kovac, A.; Jampilek, J. Recent Analytical Methodologies in Lipid Analysis. Int. J. Mol. Sci. 2024, 25, 2249. https://doi.org/10.3390/ijms25042249
Gerhardtova I, Jankech T, Majerova P, Piestansky J, Olesova D, Kovac A, Jampilek J. Recent Analytical Methodologies in Lipid Analysis. International Journal of Molecular Sciences. 2024; 25(4):2249. https://doi.org/10.3390/ijms25042249
Chicago/Turabian StyleGerhardtova, Ivana, Timotej Jankech, Petra Majerova, Juraj Piestansky, Dominika Olesova, Andrej Kovac, and Josef Jampilek. 2024. "Recent Analytical Methodologies in Lipid Analysis" International Journal of Molecular Sciences 25, no. 4: 2249. https://doi.org/10.3390/ijms25042249
APA StyleGerhardtova, I., Jankech, T., Majerova, P., Piestansky, J., Olesova, D., Kovac, A., & Jampilek, J. (2024). Recent Analytical Methodologies in Lipid Analysis. International Journal of Molecular Sciences, 25(4), 2249. https://doi.org/10.3390/ijms25042249