Modeling Spinal Muscular Atrophy in Zebrafish: Current Advances and Future Perspectives
Abstract
1. Introduction
2. SMA Zebrafish Models
2.1. Transient smn Antisense Morphants
2.2. SMA Transgenic Zebrafish Models
2.3. Pharmacological SMA Zebrafish Model
3. Concluding Remarks and Future Perspectives
Protein/Gene/Molecule | Function | Experimental Condition | Results | Reference(s) |
---|---|---|---|---|
Transient SMA antisense morpholino models | ||||
Smn | Deletion or mutations in Smn are linked to SMA | Knocked down | Motor axon abnormalities | [26] |
U snRNP | Small nuclear ribonucleoproteins involved in forming spliceosome | Knocked down | Rescues Smn-deficient zebrafish | [28] |
Etv5b | Transcription factor orthologous to human ETV5 | Knocked down | Phenocopies Smn-deficient zebrafish | [34] |
PLS3 | Actin-binding protein | Overexpressed | Rescues Smn-deficient zebrafish | [35,36] |
CORO1C | F-actin-binding protein | Overexpressed | Rescues Smn-deficient zebrafish | [37] |
Pgrn | Secreted glycoprotein involved in several cell processes | Knocked down | Rescues Smn-deficient zebrafish | [40] |
Cpg15 | Promotes axon branching and NMJ formation; highly expressed in developing ventral spinal cord | Overexpressed | Rescues Smn-deficient zebrafish | [41] |
Stasimon | Transmembrane protein involved in motor circuit function | Knocked down | Phenocopies Smn-deficient zebrafish | [42] |
SBL-154, SBL-185, SBL-190 | Small molecules that lower Aβ42 production | - | Rescues Smn-deficient zebrafish | [43] |
Quercetin | Disrupts activity of the β-catenin-Tcf complex | Pharmacologically inhibited | Rescues Smn-deficient zebrafish | [45] |
Non-P tau | Microtubule-assembly factor, regulator of intracellular trafficking | Overexpressed | Rescues Smn-deficient zebrafish | [47] |
Uba1 | Ubiquitination enzyme downstream ubiquitin pathways | Overexpressed | Rescues Smn-deficient zebrafish | [48] |
Necdin | Involved in neuronal mitochondria biogenesis | Overexpressed | Rescues Smn-deficient zebrafish | [49] |
Pgk1 | Involved in ATP synthesis in the glycolytic process | Overexpressed/ Pharmacological induction | Rescues Smn-deficient zebrafish | [49] |
Transgenic SMA zebrafish models | ||||
smn | - | smnY262stop, smnL265stop, smnG264D mutations | Decreased levels of SV2 | [52] |
smn | - | mz-smn | Abnormal SC, DRG, and motor neuron development | [53] |
smn | - | miRNA-based | Recapitulates different forms of SMA | [54] |
smn | - | Cell-specific miRNA-based | smn1 downregulation in motor neurons causes SMA | [55] |
smn | - | smnA6Tind27 | Affected motor neurons, NMJ, and skeletal muscles in late stages | [56] |
HuD | RNA-binding protein expressed early in motor neurons | Overexpressed in mz-smn | Rescues motor axon and locomotor alterations | [57] |
PLS3 | Actin-binding protein | Overexpressed in smn−/− (smnY262stop) | Rescues locomotor function | [59] |
hSMN2 | Human SMN2 | Overexpressed in smn−/− (smnY262stop) | Rescues low levels of SV2 observed in smn−/− larvae | [58] |
Pharmacological SMN zebrafish models | ||||
Uba1 | Ubiquitination enzyme downstream ubiquitin pathways | Uba1 inhibition (UBEI-41) | Motor axon alterations | [46] |
Dipyridamole | Adenosine uptake inhibitor | Treated Uba1-inhibited (UBEI-41) | Rescues motor axon abnormalities | [61] |
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babin, P.J.; Goizet, C.; Raldúa, D. Zebrafish Models of Human Motor Neuron Diseases: Advantages and Limitations. Prog. Neurobiol. 2014, 118, 36–58. [Google Scholar] [CrossRef]
- Hahnen, E.; Forkert, R.; Marke, C.; Rudnik-Schöneborn, S.; Schönling, J.; Zerres, K.; Wirth, B. Molecular Analysis of Candidate Genes on Chromosome 5q13 in Autosomal Recessive Spinal Muscular Atrophy: Evidence of Homozygous Deletions of the SMN Gene in Unaffected Individuals. Hum. Mol. Genet. 1995, 4, 1927–1933. [Google Scholar] [CrossRef] [PubMed]
- Chaytow, H.; Huang, Y.T.; Gillingwater, T.H.; Faller, K.M.E. The Role of Survival Motor Neuron Protein (SMN) in Protein Homeostasis. Cell. Mol. Life Sci. 2018, 75, 3877–3894. [Google Scholar] [CrossRef]
- D’Amico, A.; Mercuri, E.; Tiziano, F.D.; Bertini, E. Spinal Muscular Atrophy. Orphanet J. Rare Dis. 2011, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Prior, T.W.; Snyder, P.J.; Rink, B.D.; Pearl, D.K.; Pyatt, R.E.; Mihal, D.C.; Conlan, T.; Schmalz, B.; Montgomery, L.; Ziegler, K.; et al. Newborn and Carrier Screening for Spinal Muscular Atrophy. Am. J. Med. Genet. A 2010, 152, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- Swoboda, K.J. Seize the Day: Newborn Screening for SMA. Am. J. Med. Genet. A 2010, 152, 1605–1607. [Google Scholar] [CrossRef] [PubMed]
- Munstat, T.L.; Davies, K.E. International sma consortium meeting. Neuromuscul. Disord. 1992, 2, 423–428. [Google Scholar]
- Singh, R.N.; Howell, M.D.; Ottesen, E.W.; Singh, N.N. Diverse Role of Survival Motor Neuron Protein. Biochim. Biophys. Acta Gene Regul. Mech. 2017, 1860, 299–315. [Google Scholar] [CrossRef]
- Vitte, J.; Fassier, C.; Tiziano, F.D.; Dalard, C.; Soave, S.; Roblot, N.; Brahe, C.; Saugier-Veber, P.; Bonnefont, J.P.; Melki, J. Refined Characterization of the Expression and Stability of the SMN Gene Products. Am. J. Pathol. 2007, 171, 1269–1280. [Google Scholar] [CrossRef]
- Wirth, B. An Update of the Mutation Spectrum of the Survival Motor Neuron Gene (SMN1) in Autosomal Recessive Spinal Muscular Atrophy (SMA). Hum. Mutat. 2000, 15, 228–237. [Google Scholar] [CrossRef]
- Gavrilov, D.K.; Shi, X.; Das, K.; Gilliam, T.C.; Wang, C.H. Differential SMN2 Expression Associated with SMA Severity. Nat. Genet. 1998, 20, 230–231. [Google Scholar] [CrossRef] [PubMed]
- Feldkötter, M.; Schwarzer, V.; Wirth, R.; Wienker, T.F.; Wirth, B. Quantitative Analyses of SMN1 and SMN2 Based on Real-Time LightCycler PCR: Fast and Highly Reliable Carrier Testing and Prediction of Severity of Spinal Muscular Atrophy. Am. J. Hum. Genet. 2002, 70, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Rudnik-Schöneborn, S.; Berg, C.; Zerres, K.; Betzler, C.; Grimm, T.; Eggermann, T.; Eggermann, K.; Wirth, R.; Wirth, B.; Heller, R. Genotype-Phenotype Studies in Infantile Spinal Muscular Atrophy (SMA) Type I in Germany: Implications for Clinical Trials and Genetic Counselling. Clin. Genet. 2009, 76, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Burghes, A.H.; Beattie, C.E. Spinal Muscular Atrophy: Why Do Low Levels of Survival Motor Neuron Protein Make Motor Neurons Sick? Nat. Rev. Neurosci. 2009, 8, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Yeo, C.J.J.; Darras, B.T. Overturning the Paradigm of Spinal Muscular Atrophy as Just a Motor Neuron Disease. Pediatr. Neurol. 2020, 109, 12–19. [Google Scholar] [CrossRef]
- Lefebvre, S.; Bürglen, L.; Reboullet, S.; Clermont, O.; Burlet, P.; Viollet, L.; Benichou, B.; Cruaud, C.; Millasseau, P.; Zeviani, M.; et al. Identification and Characterization of a Spinal Muscular Atrophy-determining Gene. Cell 1995, 80, 155–165. [Google Scholar] [CrossRef]
- Finkel, R.S.; Mercuri, E.; Darras, B.T.; Connolly, A.M.; Kuntz, N.L.; Kirschner, J.; Chiriboga, C.A.; Saito, K.; Servais, L.; Tizzano, E.; et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1723–1732. [Google Scholar] [CrossRef]
- Mercuri, E.; Darras, B.T.; Chiriboga, C.A.; Day, J.W.; Campbell, C.; Connolly, A.M.; Iannaccone, S.T.; Kirschner, J.; Kuntz, N.L.; Saito, K.; et al. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2018, 378, 625–635. [Google Scholar] [CrossRef]
- Tabet, R.; El Bitar, S.; Zaidan, J.; Dabaghian, G. Spinal Muscular Atrophy: The Treatment Approved. Cureus 2017, 9, e1644. [Google Scholar] [CrossRef]
- Mahajan, R. Onasemnogene Abeparvovec for Spinal Muscular Atrophy: The Costlier Drug Ever. Int. J. Appl. Basic. Med. Res. 2019, 9, 127. [Google Scholar] [CrossRef]
- Markati, T.; Fisher, G.; Ramdas, S.; Servais, L. Risdiplam: An Investigational Survival Motor Neuron 2 (SMN2) Splicing Modifier for Spinal Muscular Atrophy (SMA). Expert Opin. Investig. Drugs 2022, 31, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, S.; Boccanegra, B.; Vitturi, G.; Trifirò, G.; De Luca, A. Pharmacological Therapies of Spinal Muscular Atrophy: A Narrative Review of Preclinical, Clinical-Experimental, and Real-World Evidence. Brain Sci. 2023, 13, 1446. [Google Scholar] [CrossRef]
- Bandmann, O.; Burton, E.A. Genetic Zebrafish Models of Neurodegenerative Diseases. Neurobiol. Dis. 2010, 40, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Becker, T.S.; Rinkwitz, S. Zebrafish as a Genomics Model for Human Neurological and Polygenic Disorders. Dev. Neurobiol. 2012, 72, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Bertrandy, S.; Burlet, P.; Clermont, O.; Huber, C.; Fondrat, C.; Thierry-Mieg, D.; Munnich, A.; Lefebvre, S. The RNA-Binding Properties of SMN: Deletion Analysis of the Zebrafish Orthologue Defines Domains Conserved in Evolution. Hum. Mol. Genet. 1999, 8, 775–782. [Google Scholar] [CrossRef] [PubMed]
- McWhorter, M.L.; Monani, U.R.; Burghes, A.H.M.; Beattie, C.E. Knockdown of the Survival Motor Neuron (Smn) Protein in Zebrafish Causes Defects in Motor Axon Outgrowth and Pathfinding. J. Cell Biol. 2003, 162, 919–931. [Google Scholar] [CrossRef] [PubMed]
- Beattie, C.E.; Carrel, T.L.; McWhorter, M.L. Fishing for a Mechanism: Using Zebrafish to Understand Spinal Muscular Atrophy. J. Child. Neurol. 2007, 22, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Winkler, C.; Eggert, C.; Gradl, D.; Meister, G.; Giegerich, M.; Wedlich, D.; Laggerbauer, B.; Fischer, U. Reduced U SnRNP Assembly Causes Motor Axon Degeneration in an Animal Model for Spinal Muscular Atrophy. Genes. Dev. 2005, 19, 2320–2330. [Google Scholar] [CrossRef]
- Pellizzoni, L.; Yong, J.; Dreyfuss, G. Essential Role for the SMN Complex in the Specificity of SnRNP Assembly. Science 2002, 298, 1775–1779. [Google Scholar] [CrossRef]
- McWhorter, M.L.; Boon, K.I.; Horan, E.S.; Burghes, A.H.M.; Beattie, C.E. The SMN Binding Protein Gemin2 Is Not Involved in Motor Axon Outgrowth. Dev. Neurobiol. 2008, 68, 182–194. [Google Scholar] [CrossRef]
- Jablonka, S.; Bandilla, M.; Wiese, S.; Buhler, D.; Wirth, B.; Sendtner, M.; Fischer, U. Co-regulation of survival of motor neuron (SMN) protein and its interactor SIP1 during development and in spinal muscular atrophy. Hum. Mol. Genet. 2001, 10, 497–505. [Google Scholar] [CrossRef]
- Zhang, H.; Xing, L.; Rossoll, W.; Wichterle, H.; Singer, R.H.; Bassell, G.J. Multiprotein complexes of the survival of motor neuron protein SMN with Gemins traffic to neuronal processes and growth cones of motor neurons. J. Neurosci. 2006, 26, 8622–8632. [Google Scholar] [CrossRef] [PubMed]
- Carrel, T.L.; McWhorter, M.L.; Workman, E.; Zhang, H.; Wolstencroft, E.C.; Lorson, C.; Bassell, G.J.; Burghes, A.H.M.; Beattie, C.E. Survival Motor Neuron Function in Motor Axons Is Independent of Functions Required for Small Nuclear Ribonucleoprotein Biogenesis. J. Neurosci. 2006, 26, 11014–11022. [Google Scholar] [CrossRef] [PubMed]
- Spiró, Z.; Koh, A.; Tay, S.; See, K.; Winkler, C. Transcriptional Enhancement of Smn Levels in Motoneurons Is Crucial for Proper Axon Morphology in Zebrafish. Sci. Rep. 2016, 6, 27470. [Google Scholar] [CrossRef] [PubMed]
- Oprea, G.E.; Kröber, S.; Mcwhorter, M.L.; Rossoll, W.; Müller, S.; Krawczak, M.; Bassell, G.J.; Beattie, C.E.; Wirth, B. Plastin 3 Is a Protective Modifier of Autosomal Recessive Spinal Muscular Atrophy. Science 2008, 320, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.N.; Pineda, R.H.; Hao, L.T.; Kudryashova, E.; Kudryashov, D.S.; Beattie, C.E. Calcium Binding Is Essential for Plastin 3 Function in Smn-Deficient Motoneurons. Hum. Mol. Genet. 2014, 23, 1990–2004. [Google Scholar] [CrossRef]
- Hosseinibarkooie, S.; Peters, M.; Torres-Benito, L.; Rastetter, R.H.H.; Hupperich, K.; Hoffmann, A.; Mendoza-Ferreira, N.; Kaczmarek, A.; Janzen, E.; Milbradt, J.; et al. The Power of Human Protective Modifiers: PLS3 and CORO1C Unravel Impaired Endocytosis in Spinal Muscular Atrophy and Rescue SMA Phenotype. Am. J. Hum. Genet. 2016, 99, 647–665. [Google Scholar] [CrossRef] [PubMed]
- Riessland, M.; Kaczmarek, A.; Schneider, S.; Swoboda, K.J.; Löhr, H.; Bradler, C.; Grysko, V.; Dimitriadi, M.; Hosseinibarkooie, S.; Torres-Benito, L.; et al. Neurocalcin Delta Suppression Protects against Spinal Muscular Atrophy in Humans and across Species by Restoring Impaired Endocytosis. Am. J. Hum. Genet. 2017, 100, 297–315. [Google Scholar] [CrossRef]
- Janzen, E.; Mendoza-Ferreira, N.; Hosseinibarkooie, S.; Schneider, S.; Hupperich, K.; Tschanz, T.; Grysko, V.; Riessland, M.; Hammerschmidt, M.; Rigo, F.; et al. CHP1 Reduction Ameliorates Spinal Muscular Atrophy Pathology by Restoring Calcineurin Activity and Endocytosis. Brain 2018, 141, 2343–2361. [Google Scholar] [CrossRef]
- Chitramuthu, B.P.; Baranowski, D.C.; Kay, D.G.; Bateman, A.; Bennett, H.P.J. Progranulin Modulates Zebrafish Motoneuron Development in Vivo and Rescues Truncation Defects Associated with Knockdown of Survival Motor Neuron 1. Mol. Neurodegener. 2010, 5, 41. [Google Scholar] [CrossRef]
- Akten, B.; Kye, M.J.; Hao, L.T.; Wertz, M.H.; Singh, S.; Nie, D.; Huang, J.; Merianda, T.T.; Twiss, J.L.; Beattie, C.E.; et al. Interaction of Survival of Motor Neuron (SMN) and HuD Proteins with MRNA Cpg15 Rescues Motor Neuron Axonal Deficits. Proc. Natl. Acad. Sci. USA 2011, 108, 10337–10342. [Google Scholar] [CrossRef] [PubMed]
- Lotti, F.; Imlach, W.L.; Saieva, L.; Beck, E.S.; Hao, L.T.; Li, D.K.; Jiao, W.; Mentis, G.Z.; Beattie, C.E.; McCabe, B.D.; et al. An SMN-Dependent U12 Splicing Event Essential for Motor Circuit Function. Cell 2012, 151, 440–454. [Google Scholar] [CrossRef] [PubMed]
- Gassman, A.; Hao, L.T.; Bhoite, L.; Bradford, C.L.; Chien, C.B.; Beattie, C.E.; Manfredi, J.P. Small Molecule Suppressors of Drosophila Kinesin Deficiency Rescue Motor Axon Development in a Zebrafish Model of Spinal Muscular Atrophy. PLoS ONE 2013, 8, e0074325. [Google Scholar] [CrossRef] [PubMed]
- Bäumer, D.; Lee, S.; Nicholson, G.; Davies, J.L.; Parkinson, N.J.; Murray, L.M.; Gillingwater, T.H.; Ansorge, O.; Davies, K.E.; Talbot, K. Alternative Splicing Events Are a Late Feature of Pathology in a Mouse Model of Spinal Muscular Atrophy. PLoS Genet. 2009, 5, e1000773. [Google Scholar] [CrossRef] [PubMed]
- Sleigh, J.N.; Barreiro-Iglesias, A.; Oliver, P.L.; Biba, A.; Becker, T.; Davies, K.E.; Becker, C.G.; Talbot, K. Chondrolectin Affects Cell Survival and Neuronal Outgrowth in in Vitro and in Vivo Models of Spinal Muscular Atrophy. Hum. Mol. Genet. 2014, 23, 855–869. [Google Scholar] [CrossRef] [PubMed]
- Wishart, T.M.; Mutsaers, C.A.; Riessland, M.; Reimer, M.M.; Hunter, G.; Hannam, M.L.; Eaton, S.L.; Fuller, H.R.; Roche, S.L.; Somers, E.; et al. Dysregulation of Ubiquitin Homeostasis and β-Catenin Signaling Promote Spinal Muscular Atrophy. J. Clin. Investig. 2014, 124, 1821–1834. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.; Feng, Z.; Edens, B.M.; Yang, B.; Shi, H.; Sze, C.C.; Hong, B.T.; Su, S.C.; Cantu, J.A.; Topczewski, J.; et al. Non-Aggregating Tau Phosphorylation by Cyclin-Dependent Kinase 5 Contributes to Motor Neuron Degeneration in Spinal Muscular Atrophy. J. Neurosci. 2015, 35, 6038–6050. [Google Scholar] [CrossRef]
- Powis, R.A.; Karyka, E.; Boyd, P.; Côme, J.; Jones, R.A.; Zheng, Y.; Szunyogova, E.; Groen, E.J.N.; Hunter, G.; Thomson, D.; et al. Systemic Restoration of UBA1 Ameliorates Disease in Spinal Muscular Atrophy. JCI Insight 2016, 1, e87908. [Google Scholar] [CrossRef]
- Boyd, P.J.; Tu, W.Y.; Shorrock, H.K.; Groen, E.J.N.; Carter, R.N.; Powis, R.A.; Thomson, S.R.; Thomson, D.; Graham, L.C.; Motyl, A.A.L.; et al. Bioenergetic Status Modulates Motor Neuron Vulnerability and Pathogenesis in a Zebrafish Model of Spinal Muscular Atrophy. PLoS Genet. 2017, 13, e1006744. [Google Scholar] [CrossRef]
- Koh, A.; Sarusie, M.V.; Ohmer, J.; Fischer, U.; Winkler, C.; Wohland, T. Fluorescence Correlation Spectroscopy Reveals Survival Motor Neuron Oligomerization but No Active Transport in Motor Axons of a Zebrafish Model for Spinal Muscular Atrophy. Front. Cell Dev. Biol. 2021, 9, 639904. [Google Scholar] [CrossRef]
- Riboldi, G.M.; Faravelli, I.; Kuwajima, T.; Delestrée, N.; Dermentzaki, G.; De Planell-Saguer, M.; Rinchetti, P.; Hao, L.T.; Beattie, C.C.; Corti, S.; et al. Sumoylation Regulates the Assembly and Activity of the SMN Complex. Nat. Commun. 2021, 12, 5040. [Google Scholar] [CrossRef] [PubMed]
- Boon, K.L.; Xiao, S.; McWhorter, M.L.; Donn, T.; Wolf-Saxon, E.; Bohnsack, M.T.; Moens, C.B.; Beattie, C.E. Zebrafish Survival Motor Neuron Mutants Exhibit Presynaptic Neuromuscular Junction Defects. Hum. Mol. Genet. 2009, 18, 3615–3625. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.T.; Duy, P.Q.; Jontes, J.D.; Beattie, C.E. Motoneuron Development Influences Dorsal Root Ganglia Survival and Schwann Cell Development in a Vertebrate Model of Spinal Muscular Atrophy. Hum. Mol. Genet. 2015, 24, 346–360. [Google Scholar] [CrossRef] [PubMed]
- Giacomotto, J.; Rinkwitz, S.; Becker, T.S. Effective Heritable Gene Knockdown in Zebrafish Using Synthetic MicroRNAs. Nat. Commun. 2015, 6, 7378. [Google Scholar] [CrossRef] [PubMed]
- Laird, A.S.; Mackovski, N.; Rinkwitz, S.; Becker, T.S.; Giacomotto, J. Tissue-Specific Models of Spinal Muscular Atrophy Confirm a Critical Role of SMN in Motor Neurons from Embryonic to Adult Stages. Hum. Mol. Genet. 2016, 25, 1728–1738. [Google Scholar] [CrossRef]
- Tay, S.H.; Ellieyana, E.N.; Le, Y.; Sarusie, M.V.; Grimm, C.; Ohmer, J.; Mathuru, A.S.; Fischer, U.; Winkler, C. A Novel Zebrafish Model for Intermediate Type Spinal Muscular Atrophy Demonstrates Importance of Smn for Maintenance of Mature Motor Neurons. Hum. Mol. Genet. 2021, 30, 2488–2502. [Google Scholar] [CrossRef]
- Hao Le, T.; Duy, P.Q.; An, M.; Talbot, J.; Iyer, C.C.; Wolman, M.; Beattie, C.E. HuD and the Survival Motor Neuron Protein Interact in Motoneurons and Are Essential for Motoneuron Development, Function, and MRNA Regulation. J. Neurosci. 2017, 37, 11559–11571. [Google Scholar] [CrossRef]
- Hao, L.T.; Burghes, A.H.M.; Beattie, C.E. Generation and Characterization of a Genetic Zebrafish Model of SMA Carrying the Human SMN2 Gene. Mol. Neurodegener. 2011, 6, 24. [Google Scholar] [CrossRef]
- Hao, L.T.; Wolman, M.; Granato, M.; Beattie, C.E. Survival Motor Neuron Affects Plastin 3 Protein Levels Leading to Motor Defects. J. Neurosci. 2012, 32, 5074–5084. [Google Scholar] [CrossRef]
- Ramser, J.; Ahearn, M.E.; Lenski, C.; Yariz, K.O.; Hellebrand, H.; von Rhein, M.; Clark, R.D.; Schmutzler, R.K.; Lichtner, P.; Hoffman, E.P.; et al. Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am. J. Hum. Genet. 2008, 82, 188–193. [Google Scholar] [CrossRef]
- Oprişoreanu, A.M.; Smith, H.L.; Krix, S.; Chaytow, H.; Carragher, N.O.; Gillingwater, T.H.; Becker, C.G.; Becker, T. Automated in Vivo Drug Screen in Zebrafish Identifies Synapse Stabilising Drugs with Relevance to Spinal Muscular Atrophy. DMM Dis. Models Mech. 2021, 14, dmm047761. [Google Scholar] [CrossRef] [PubMed]
- Farinelli, S.E.; Greene, L.A.; Friedman, W.J. Neuroprotective actions of dipyridamole on cultured CNS neurons. J. Neurosci. 1998, 18, 5112–5123. [Google Scholar] [CrossRef] [PubMed]
- Höllerhage, M.; Moebius, C.; Melms, J.; Chiu, W.H.; Goebel, J.N.; Chakroun, T.; Koeglsperger, T.; Oertel, W.H.; Rösler, T.W.; Bickle, M.; et al. Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells. Sci. Rep. 2017, 7, 11469. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, D.; Vásquez-Doorman, C.; Luna, A.; Allende, M.L. Modeling Spinal Muscular Atrophy in Zebrafish: Current Advances and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 1962. https://doi.org/10.3390/ijms25041962
Gonzalez D, Vásquez-Doorman C, Luna A, Allende ML. Modeling Spinal Muscular Atrophy in Zebrafish: Current Advances and Future Perspectives. International Journal of Molecular Sciences. 2024; 25(4):1962. https://doi.org/10.3390/ijms25041962
Chicago/Turabian StyleGonzalez, David, Constanza Vásquez-Doorman, Adolfo Luna, and Miguel L. Allende. 2024. "Modeling Spinal Muscular Atrophy in Zebrafish: Current Advances and Future Perspectives" International Journal of Molecular Sciences 25, no. 4: 1962. https://doi.org/10.3390/ijms25041962
APA StyleGonzalez, D., Vásquez-Doorman, C., Luna, A., & Allende, M. L. (2024). Modeling Spinal Muscular Atrophy in Zebrafish: Current Advances and Future Perspectives. International Journal of Molecular Sciences, 25(4), 1962. https://doi.org/10.3390/ijms25041962