Genetic Factors Associated with the Development of Neuropathy in Type 2 Diabetes
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Neurological Assessment
4.2. Genetic Analysis
4.2.1. DNA Isolation
4.2.2. Whole Exome Sequencing (WES)
4.2.3. Bioinformatic and Statistical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ziegler, D.; Papanas, N.; Vinik, A.I.; Shaw, J.E. Epidemiology of polyneuropathy in diabetes and prediabetes. Handb. Clin. Neurol. 2014, 126, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Abbott, C.A.; Vileikyte, L.; Williamson, S.; Carrington, A.L.; Boulton, A.J. Multicenter study of the incidence of and predictive risk factors for diabetic neuropathic foot ulceration. Diabetes Care 1998, 21, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- Brownrigg, J.R.; de Lusignan, S.; McGovern, A.; Hughes, C.; Thompson, M.M.; Ray, K.K.; Hinchliffe, R.J. Peripheral neuropathy and the risk of cardiovascular events in type 2 diabetes mellitus. Heart 2014, 100, 1837–1843. [Google Scholar] [CrossRef] [PubMed]
- Calles-Escandon, J.; Lovato, L.C.; Simons-Morton, D.G.; Kendall, D.M.; Pop-Busui, R.; Cohen, R.M.; Bonds, D.E.; Fonseca, V.A.; Ismail-Beigi, F.; Banerji, M.A.; et al. Effect of intensive compared with standard glycemia treatment strategies on mortality by baseline subgroup characteristics: The Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care 2010, 33, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.; Schleicher, E.; Strom, A.; Knebel, B.; Fleming, T.; Nawroth, P.; Haring, H.U.; Papanas, N.; Szendrodi, J.; Mussig, K.; et al. Association of transketolase polymorphisms with measures of polyneuropathy in patients with recently diagnosed diabetes. Diabetes Metab. Res. Rev. 2017, 33, e2811. [Google Scholar] [CrossRef] [PubMed]
- Peculis, R.; Konrade, I.; Skapare, E.; Fridmanis, D.; Nikitina-Zake, L.; Lejnieks, A.; Pirags, V.; Dambrova, M.; Klovins, J. Identification of glyoxalase 1 polymorphisms associated with enzyme activity. Gene 2013, 515, 140–143. [Google Scholar] [CrossRef]
- Alsaloum, M.; Estacion, M.; Almomani, R.; Gerrits, M.M.; Bonhof, G.J.; Ziegler, D.; Malik, R.; Ferdousi, M.; Lauria, G.; Merkies, I.S.; et al. A gain-of-function sodium channel beta2-subunit mutation in painful diabetic neuropathy. Mol. Pain. 2019, 15, 1744806919849802. [Google Scholar] [CrossRef]
- Politi, C.; Ciccacci, C.; D’Amato, C.; Novelli, G.; Borgiani, P.; Spallone, V. Recent advances in exploring the genetic susceptibility to diabetic neuropathy. Diabetes Res. Clin. Pract. 2016, 120, 198–208. [Google Scholar] [CrossRef]
- Meng, W.; Deshmukh, H.A.; Van Zuydam, N.R.; Liu, Y.; Donnelly, L.A.; Zhou, K. A genome-wide association study suggests an association of Chr8p21.3 (GFRA2) with diabetic neuropathic pain. Eur. J. Pain. 2015, 19, 392–399. [Google Scholar] [CrossRef]
- Phan, L.; Jin, Y.; Zhang, H.; Qiang, W.; Shekhtman, E.; Shao, D.; Revoe, D.; Villamarin, R.; Ivanchenko, E.; Kimura, M.; et al. ALFA: Allele Frequency Aggregator; National Center for Biotechnology Information, U.S. National Library of Medicine: Bethesda, MD, USA, 2020. [Google Scholar]
- Bastyr, E.J., 3rd; Price, K.L.; Bril, V.; Group, M.S. Development and validity testing of the neuropathy total symptom score-6: Questionnaire for the study of sensory symptoms of diabetic peripheral neuropathy. Clin. Ther. 2005, 27, 1278–1294. [Google Scholar] [CrossRef] [PubMed]
- Pitei, D.L.; Watkins, P.J.; Stevens, M.J.; Edmonds, M.E. The value of the Neurometer in assessing diabetic neuropathy by measurement of the current perception threshold. Diabet. Med. 1994, 11, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Masson, E.A.; Veves, A.; Fernando, D.; Boulton, A.J. Current perception thresholds: A new, quick, and reproducible method for the assessment of peripheral neuropathy in diabetes mellitus. Diabetologia 1989, 32, 724–728. [Google Scholar] [CrossRef]
- Putz, Z.; Tabak, A.G.; Toth, N.; Istenes, I.; Nemeth, N.; Gandhi, R.A.; Hermanyi, Z.; Keresztes, K.; Jermendy, G.; Tesfaye, S.; et al. Noninvasive evaluation of neural impairment in subjects with impaired glucose tolerance. Diabetes Care 2009, 32, 181–183. [Google Scholar] [CrossRef] [PubMed]
- Ewing, D.J.; Martyn, C.N.; Young, R.J.; Clarke, B.F. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care 1985, 8, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.R.; Rendell, M.S.; Bartek, J.P.; Bamisedun, O.; Connor, S.; Giitter, M. Current perception thresholds in ageing. Age Ageing 1992, 21, 273–279. [Google Scholar] [CrossRef]
- Daniel, R.; He, Z.; Carmichael, K.P.; Halper, J.; Bateman, A. Cellular localization of gene expression for progranulin. J. Histochem. Cytochem. 2000, 48, 999–1009. [Google Scholar] [CrossRef]
- Youn, B.S.; Bang, S.I.; Kloting, N.; Park, J.W.; Lee, N.; Oh, J.E.; Pi, K.B.; Lee, T.H.; Ruschke, K.; Fasshauer, M.; et al. Serum progranulin concentrations may be associated with macrophage infiltration into omental adipose tissue. Diabetes 2009, 58, 627–636. [Google Scholar] [CrossRef]
- Nguyen, A.D.; Nguyen, T.A.; Martens, L.H.; Mitic, L.L.; Farese, R.V., Jr. Progranulin: At the interface of neurodegenerative and metabolic diseases. Trends Endocrinol. Metab. 2013, 24, 597–606. [Google Scholar] [CrossRef]
- Kojima, Y.; Ono, K.; Inoue, K.; Takagi, Y.; Kikuta, K.; Nishimura, M.; Yoshida, Y.; Nakashima, Y.; Matsumae, H.; Furukawa, Y.; et al. Progranulin expression in advanced human atherosclerotic plaque. Atherosclerosis 2009, 206, 102–108. [Google Scholar] [CrossRef]
- Linsel-Nitschke, P.; Heeren, J.; Aherrahrou, Z.; Bruse, P.; Gieger, C.; Illig, T.; Prokisch, H.; Heim, K.; Doering, A.; Peters, A.; et al. Genetic variation at chromosome 1p13.3 affects sortilin mRNA expression, cellular LDL-uptake and serum LDL levels which translates to the risk of coronary artery disease. Atherosclerosis 2010, 208, 183–189. [Google Scholar] [CrossRef]
- Yoo, H.J.; Hwang, S.Y.; Hong, H.C.; Choi, H.Y.; Yang, S.J.; Choi, D.S.; Baik, S.H.; Bluher, M.; Youn, B.S.; Choi, K.M. Implication of progranulin and C1q/TNF-related protein-3 (CTRP3) on inflammation and atherosclerosis in subjects with or without metabolic syndrome. PLoS ONE 2013, 8, e55744. [Google Scholar] [CrossRef]
- Hossein-Nezhad, A.; Mirzaei, K.; Ansar, H.; Emam-Gholipour, S.; Tootee, A.; Keshavarz, S.A. Obesity, inflammation and resting energy expenditure: Possible mechanism of progranulin in this pathway. Minerva Endocrinol. 2012, 37, 255–266. [Google Scholar]
- Finch, N.; Baker, M.; Crook, R.; Swanson, K.; Kuntz, K.; Surtees, R.; Bisceglio, G.; Rovelet-Lecrux, A.; Boeve, B.; Petersen, R.C.; et al. Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 2009, 132, 583–591. [Google Scholar] [CrossRef]
- Carrasquillo, M.M.; Nicholson, A.M.; Finch, N.; Gibbs, J.R.; Baker, M.; Rutherford, N.J.; Hunter, T.A.; DeJesus-Hernandez, M.; Bisceglio, G.D.; Mackenzie, I.R.; et al. Genome-wide screen identifies rs646776 near sortilin as a regulator of progranulin levels in human plasma. Am. J. Hum. Genet. 2010, 87, 890–897. [Google Scholar] [CrossRef]
- Tonjes, A.; Scholz, M.; Kruger, J.; Krause, K.; Schleinitz, D.; Kirsten, H.; Gebhardt, C.; Marzi, C.; Grallert, H.; Ladenvall, C.; et al. Genome-wide meta-analysis identifies novel determinants of circulating serum progranulin. Hum. Mol. Genet. 2018, 27, 546–558. [Google Scholar] [CrossRef]
- Wei, W.; Ying, X.; Chen, L.; Sun, Q.; Lu, X.; Xia, Y.; Xu, R.; Zhu, Z.; Zhang, D.; Tang, Q.; et al. RecQ mediated genome instability 2 (RMI2): A potential prognostic and immunological biomarker for pan-cancers. Aging 2022, 14, 4107–4136. [Google Scholar] [CrossRef] [PubMed]
- Tsunematsu, T.; Yamauchi, E.; Shibata, H.; Maki, M.; Ohta, T.; Konishi, H. Distinct functions of human MVB12A and MVB12B in the ESCRT-I dependent on their posttranslational modifications. Biochem. Biophys. Res. Commun. 2010, 399, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.W.; Guillaud, L. The role of epidermal growth factor and its receptors in mammalian CNS. Cytokine Growth Factor. Rev. 2004, 15, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Perez-Saad, H.; Subiros, N.; Berlanga, J.; Aldana, L.; Garcia Del Barco, D. Neuroprotective effect of epidermal growth factor in experimental acrylamide neuropathy: An electrophysiological approach. J. Peripher. Nerv. Syst. 2017, 22, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Sever, R.; Glass, C.K. Signaling by nuclear receptors. Cold Spring Harb. Perspect. Biol. 2013, 5, a016709. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.M.; Mangelsdorf, D.J. Nuclear Receptors, RXR, and the Big Bang. Cell 2014, 157, 255–266. [Google Scholar] [CrossRef]
- Szanto, A.; Narkar, V.; Shen, Q.; Uray, I.P.; Davies, P.J.; Nagy, L. Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ. 2004, 11 (Suppl. S2), S126–S143. [Google Scholar] [CrossRef]
- Liu, Y.L.; Sennitt, M.V.; Hislop, D.C.; Crombie, D.L.; Heyman, R.A.; Cawthorne, M.A. Retinoid X receptor agonists have anti-obesity effects and improve insulin sensitivity in Zucker fa/fa rats. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 997–1004. [Google Scholar] [CrossRef]
- Pan, Z.; Li, X.; Wu, D.; Chen, X.; Zhang, C.; Jin, S.; Geng, Z. The Duck RXRA Gene Promotes Adipogenesis and Correlates with Feed Efficiency. Animals 2023, 13, 680. [Google Scholar] [CrossRef]
- Grygiel-Gorniak, B. Peroxisome proliferator-activated receptors and their ligands: Nutritional and clinical implications—A review. Nutr. J. 2014, 13, 17. [Google Scholar] [CrossRef]
- Morishita, K.I.; Kakuta, H. Retinoid X Receptor Ligands with Anti-Type 2 Diabetic Activity. Curr. Top. Med. Chem. 2017, 17, 696–707. [Google Scholar] [CrossRef]
- de Almeida, N.R.; Conda-Sheridan, M. A review of the molecular design and biological activities of RXR agonists. Med. Res. Rev. 2019, 39, 1372–1397. [Google Scholar] [CrossRef]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef] [PubMed]
- Witzel, I.I.; Jelinek, H.F.; Khalaf, K.; Lee, S.; Khandoker, A.H.; Alsafar, H. Identifying Common Genetic Risk Factors of Diabetic Neuropathies. Front. Endocrinol. 2015, 6, 88. [Google Scholar] [CrossRef] [PubMed]
- Inanir, A.; Basol, N.; Karakus, N.; Yigit, S. The importance of association between angiotensin-converting enzyme (ACE) Gene I/D polymorphism and diabetic peripheral neuropathy. Gene 2013, 530, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Settin, A.; El-Baz, R.; Ismaeel, A.; Tolba, W.; Allah, W.A. Association of ACE and MTHFR genetic polymorphisms with type 2 diabetes mellitus: Susceptibility and complications. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 838–843. [Google Scholar] [CrossRef]
- Stephens, J.W.; Dhamrait, S.S.; Acharya, J.; Humphries, S.E.; Hurel, S.J. A common variant in the ACE gene is associated with peripheral neuropathy in women with type 2 diabetes mellitus. J. Diabetes Complicat. 2006, 20, 317–321. [Google Scholar] [CrossRef]
- Mansoor, Q.; Javaid, A.; Bilal, N.; Ismail, M. Angiotensin-converting enzyme (ACE) gene II genotype protects against the development of diabetic peripheral neuropathy in type 2 diabetes mellitus. J. Diabetes 2012, 4, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Hankey, G.J.; Eikelboom, J.W. Homocysteine and vascular disease. Lancet 1999, 354, 407–413. [Google Scholar] [CrossRef]
- Wu, S.; Han, Y.; Hu, Q.; Zhang, X.; Cui, G.; Li, Z.; Guan, Y. Effects of Common Polymorphisms in the MTHFR and ACE Genes on Diabetic Peripheral Neuropathy Progression: A Meta-Analysis. Mol. Neurobiol. 2017, 54, 2435–2444. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.K.; Kumar, V.; Ahmed, R.S.; Tripathi, A.K.; Kalra, O.P.; Banerjee, B.D. Effect of GSTM1 and GSTT1 double deletions in the development of oxidative stress in diabetic nephropathy patients. Indian J. Biochem. Biophys. 2010, 47, 100–103. [Google Scholar] [PubMed]
- Vojtkova, J.; Durdik, P.; Ciljakova, M.; Michnova, Z.; Turcan, T.; Babusikova, E. The association between glutathione S-transferase T1 and M1 gene polymorphisms and cardiovascular autonomic neuropathy in Slovak adolescents with type 1 diabetes mellitus. J. Diabetes Complicat. 2013, 27, 44–48. [Google Scholar] [CrossRef]
- Stoian, A.; Banescu, C.; Balasa, R.I.; Motataianu, A.; Stoian, M.; Moldovan, V.G.; Voidazan, S.; Dobreanu, M. Influence of GSTM1, GSTT1, and GSTP1 Polymorphisms on Type 2 Diabetes Mellitus and Diabetic Sensorimotor Peripheral Neuropathy Risk. Dis. Markers 2015, 2015, 638693. [Google Scholar] [CrossRef]
- Groener, J.B.; Reismann, P.; Fleming, T.; Kalscheuer, H.; Lehnhoff, D.; Hamann, A.; Roser, P.; Bierhaus, A.; Nawroth, P.P.; Rudofsky, G. C332C genotype of glyoxalase 1 and its association with late diabetic complications. Exp. Clin. Endocrinol. Diabetes 2013, 121, 436–439. [Google Scholar] [CrossRef]
- Bierhaus, A.; Fleming, T.; Stoyanov, S.; Leffler, A.; Babes, A.; Neacsu, C.; Sauer, S.K.; Eberhardt, M.; Schnolzer, M.; Lasitschka, F.; et al. Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nat. Med. 2012, 18, 926–933. [Google Scholar] [CrossRef]
- Monastiriotis, C.; Papanas, N.; Trypsianis, G.; Karanikola, K.; Veletza, S.; Maltezos, E. The epsilon4 allele of the APOE gene is associated with more severe peripheral neuropathy in type 2 diabetic patients. Angiology 2013, 64, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Ciccacci, C.; Di Fusco, D.; Cacciotti, L.; Morganti, R.; D’Amato, C.; Novelli, G.; Sangiuolo, F.; Spallone, V.; Borgiani, P. TCF7L2 gene polymorphisms and type 2 diabetes: Association with diabetic retinopathy and cardiovascular autonomic neuropathy. Acta Diabetol. 2013, 50, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, T.; Hashiguchi, T.; Horinouchi, S.; Uto, T.; Oku, H.; Kimura, K.; Makisumi, K.; Arimura, K. Serum VEGF increases in diabetic polyneuropathy, particularly in the neurologically active symptomatic stage. Diabet. Med. 2009, 26, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Cameron, N.E.; Cotter, M.A. Vascular changes in animal models of diabetic neuropathy. J. Neurochem. 2003, 85, 14. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Z.; Jiang, H.; Song, X. Relationship between single nucleotide polymorphisms in the 3′-untranslated region of the vascular endothelial growth factor gene and susceptibility to diabetic peripheral neuropathy in China. Arch. Med. Sci. 2014, 10, 1028–1034. [Google Scholar] [CrossRef]
- Basol, N.; Inanir, A.; Yigit, S.; Karakus, N.; Kaya, S.U. High association of IL-4 gene intron 3 VNTR polymorphism with diabetic peripheral neuropathy. J. Mol. Neurosci. 2013, 51, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.S.; Prior, S.L.; Li, K.W.; Ireland, H.A.; Bain, S.C.; Hurel, S.J.; Cooper, J.A.; Humphries, S.E.; Stephens, J.W. Association between the rs1050450 glutathione peroxidase-1 (C > T) gene variant and peripheral neuropathy in two independent samples of subjects with diabetes mellitus. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 417–425. [Google Scholar] [CrossRef]
- Boulton, A.J. Diabetic neuropathy: Classification, measurement and treatment. Curr. Opin. Endocrinol. Diabetes Obes. 2007, 14, 141–145. [Google Scholar] [CrossRef]
- Shah, V.N.; Cheema, B.S.; Kohli, H.S.; Sharma, R.; Khullar, M.; Bhansali, A. Endothelial nitric oxide synthase gene polymorphism and the risk of diabetic neuropathy in Asian Indian patients with type 2 diabetes. Diabetes Metab. 2013, 4, 243. [Google Scholar] [CrossRef]
- Sivenius, K.; Lindi, V.; Niskanen, L.; Laakso, M.; Uusitupa, M. Effect of a three-amino acid deletion in the alpha2B-adrenergic receptor gene on long-term body weight change in Finnish non-diabetic and type 2 diabetic subjects. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 1609–1614. [Google Scholar] [CrossRef]
- Siitonen, N.; Lindstrom, J.; Eriksson, J.; Valle, T.T.; Hamalainen, H.; Ilanne-Parikka, P.; Keinanen-Kiukaanniemi, S.; Tuomilehto, J.; Laakso, M.; Uusitupa, M. Association between a deletion/insertion polymorphism in the alpha2B-adrenergic receptor gene and insulin secretion and Type 2 diabetes. The Finnish Diabetes Prevention Study. Diabetologia 2004, 47, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
- Papazoglou, D.; Papanas, N.; Papatheodorou, K.; Kotsiou, S.; Christakidis, D.; Maltezos, E. An insertion/deletion polymorphism in the alpha2B adrenoceptor gene is associated with age at onset of type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2006, 114, 424–427. [Google Scholar] [CrossRef] [PubMed]
- Sivenius, K.; Niskanen, L.; Laakso, M.; Uusitupa, M. A deletion in the alpha2B-adrenergic receptor gene and autonomic nervous function in central obesity. Obes. Res. 2003, 11, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Matsunaga, T.; Nagasumi, K.; Yamamura, T.; Shihara, N.; Moritani, T.; Ue, H.; Fukushima, M.; Tamon, A.; Seino, Y.; et al. Alpha(2B)-adrenergic receptor deletion polymorphism associates with autonomic nervous system activity in young healthy Japanese. J. Clin. Endocrinol. Metab. 2003, 88, 1184–1187. [Google Scholar] [CrossRef] [PubMed]
- Ueno, L.M.; Frazzatto, E.S.; Batalha, L.T.; Trombetta, I.C.; do Socorro Brasileiro, M.; Irigoyen, C.; Brum, P.C.; Villares, S.M.; Negrao, C.E. Alpha2B-adrenergic receptor deletion polymorphism and cardiac autonomic nervous system responses to exercise in obese women. Int. J. Obes. 2006, 30, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Papanas, N.; Papatheodorou, K.; Papazoglou, D.; Kotsiou, S.; Christakidis, D.; Maltezos, E. An insertion/deletion polymorphism in the alpha2B adrenoceptor gene is associated with peripheral neuropathy in patients with type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 2007, 115, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Ciccacci, C.; Morganti, R.; Di Fusco, D.; D’Amato, C.; Cacciotti, L.; Greco, C.; Rufini, S.; Novelli, G.; Sangiuolo, F.; Marfia, G.A.; et al. Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes. Acta Diabetol. 2014, 51, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.L.; Vincent, A.M.; Cheng, H.T.; Feldman, E.L. Diabetic neuropathy: Mechanisms to management. Pharmacol. Ther. 2008, 120, 1–34. [Google Scholar] [CrossRef]
- Jankovic, M.; Novakovic, I.; Nikolic, D.; Mitrovic Maksic, J.; Brankovic, S.; Petronic, I.; Cirovic, D.; Ducic, S.; Grajic, M.; Bogicevic, D. Genetic and Epigenomic Modifiers of Diabetic Neuropathy. Int. J. Mol. Sci. 2021, 22, 4887. [Google Scholar] [CrossRef]
- Sleczkowska, M.; Almomani, R.; Marchi, M.; de Greef, B.T.A.; Sopacua, M.; Hoeijmakers, J.G.J.; Lindsey, P.; Salvi, E.; Bonhof, G.J.; Ziegler, D.; et al. Peripheral Ion Channel Gene Screening in Painful- and Painless-Diabetic Neuropathy. Int. J. Mol. Sci. 2022, 23, 7190. [Google Scholar] [CrossRef]
- Almomani, R.; Sopacua, M.; Marchi, M.; Sleczkowska, M.; Lindsey, P.; de Greef, B.T.A.; Hoeijmakers, J.G.J.; Salvi, E.; Merkies, I.S.J.; Ferdousi, M.; et al. Genetic Profiling of Sodium Channels in Diabetic Painful and Painless and Idiopathic Painful and Painless Neuropathies. Int. J. Mol. Sci. 2023, 24, 8278. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, A.; Kobayashi, M.; Yokota, T.; Zochodne, D.W. Diabetic Polyneuropathy: New Strategies to Target Sensory Neurons in Dorsal Root Ganglia. Int. J. Mol. Sci. 2023, 24, 5977. [Google Scholar] [CrossRef]
- Spallone, V.; Ziegler, D.; Freeman, R.; Bernardi, L.; Frontoni, S.; Pop-Busui, R.; Stevens, M.; Kempler, P.; Hilsted, J.; Tesfaye, S.; et al. Cardiovascular autonomic neuropathy in diabetes: Clinical impact, assessment, diagnosis, and management. Diabetes Metab. Res. Rev. 2011, 27, 639–653. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Patel, V.M.; Coon, M.; Nguyen, T.; Land, S.J.; Ruden, D.M.; Lu, X. Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front. Genet. 2012, 3, 35. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- Marees, A.T.; de Kluiver, H.; Stringer, S.; Vorspan, F.; Curis, E.; Marie-Claire, C.; Derks, E.M. A tutorial on conducting genome-wide association studies: Quality control and statistical analysis. Int. J. Methods Psychiatr. Res. 2018, 27, e1608. [Google Scholar] [CrossRef] [PubMed]
- Team, R.C. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 22 September 2019).
- Gogarten, S.M.; Sofer, T.; Chen, H.; Yu, C.; Brody, J.A.; Thornton, T.A.; Rice, K.M.; Conomos, M.P. Genetic association testing using the GENESIS R/Bioconductor package. Bioinformatics 2019, 35, 5346–5348. [Google Scholar] [CrossRef]
- Zheng, X.; Levine, D.; Shen, J.; Gogarten, S.M.; Laurie, C.; Weir, B.S. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 2012, 28, 3326–3328. [Google Scholar] [CrossRef]
- Turner, S.D. qqman: An R package for visualizing GWAS results using QQ and manhattan plots. Biorxiv 2014, 14, 005165. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. Available online: https://ggplot2.tidyverse.org (accessed on 22 September 2019).
T2DM with Neuropathy (n = 24) | T2DM without Neuropathy (n = 24) | ||||
---|---|---|---|---|---|
Average | ±SD | Average | ±SD | p Value | |
Age (years) | 66.5 | 9.27 | 56.2 | 10.8 | 0.0012 |
Body mass (kg) | 93.8 | 15.8 | 86.8 | 17.4 | 0.1009 |
Body height (cm) | 172.5 | 9.9 | 170.0 | 10.5 | 0.4030 |
BMI (kg/m2) | 31.5 | 5.00 | 30.0 | 5.2 | 0.1670 |
Systolic blood pressure (Hgmm) | 137.7 | 15.7 | 134.0 | 12.2 | 0.3842 |
Diastolic blood pressure (Hgmm) | 71.3 | 7.1 | 75.0 | 9.1 | 0.1718 |
Duration of diabetes (years) | 10.3 | 6.2 | 13.2 | 7.5 | 0.1322 |
Sex (male/female) | 17/7 | 13/11 | |||
Fasting blood sugar (mmol/L) | 8.92 | 2.81 | 8.97 | 3.18 | 0.9912 |
HbA1c (%) | 7.49 | 1.09 | 7.04 | 1.00 | 0.1376 |
Cholesterol (mmol/L) | 4.80 | 0.88 | 5.05 | 1.23 | 0.5596 |
LDL cholesterol (mmol/L) | 2.91 | 0.82 | 3.2 | 0.94 | 0.4480 |
HDL cholesterol (mmol/L) | 1.26 | 0.36 | 1.17 | 0.29 | 0.6441 |
Triglyceride (mmol/L) | 1.85 | 0.88 | 2.53 | 1.73 | 0.3065 |
Variant ID | Alleles Minor/Major | Position | Gene | Minor Allele Frequency (MAF) of European Population * | Minor Allele Frequency (MAF) of Diabetic Patients with No Neuropathy | Minor Allele Frequency (MAF) of Diabetic Patients with Neuropathy | Logistic Regression Estimate (β) | Logistic Regression Estimate (β) Standard Error | OR for Minor Allele | p Value No Neuropathy vs. Neuropathy |
---|---|---|---|---|---|---|---|---|---|---|
rs2032930 | T/G | chr16:11350573 (GRCh38.p14) | RMI2 | 0.192 | 0.021 | 0.250 | 3.101 | 0.866 | 22.2 | 0.0003 |
rs2032931 | C/T | chr16:11350612 (GRCh38.p14) | RMI2 | 0.191 | 0.021 | 0.250 | 3.101 | 0.866 | 22.2 | 0.0003 |
rs604349 | A/G | chr1:109296770 (GRCh38.p14) | MYBPHL | 0.095 | 0.000 | 0.146 | 3.885 | 1.142 | 48.6 | 0.0007 |
rs917778 | A/G | chr9:126380963 (GRCh38.p14) | MVB12B | 0.206 | 0.313 | 0.104 | −2.618 | 0.767 | 0.07 | 0.0006 |
rs2234753 | G/A | chr9:134401915 (GRCh38.p14) | RXRA | 0.246 | 0.292 | 0.167 | −2.500 | 0.770 | 0.08 | 0.0012 |
SNP | Minor Allele Present | Minor Allele not Present | p-Value | |
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
Current perception threshold n. medianus (mm/s) | ||||
2000 Hz | rs604349 | 448.4 ± 61.5 | 364.2 ± 91.7 | 0.0491 |
rs2234753 | 333.2 ± 47.2 | 376.5 ± 92.8 | 0.0200 | |
250 Hz | rs2032930 | 175.7 ± 49.8 | 124.7 ± 47.8 | 0.0035 |
rs2032931 | 175.7 ± 49.8 | 124.7 ± 47.8 | 0.0035 | |
rs604349 | 180 ± 14.2 | 132.8 ± 53.4 | 0.0180 | |
5 Hz | rs2032930 | 98.1 ± 42.3 | 74.6 ± 32.5 | 0.0428 |
rs604349 | 122.4 ± 28.4 | 78.7 ± 28.5 | 0.0054 | |
Current perception threshold n. peroneus (mm/s) | ||||
5 Hz | rs2032930 | 238.4 ± 270.6 | 169.8 ± 182.2 | 0.0376 |
rs2032931 | 238.4 ± 270.6 | 169.8 ± 182.2 | 0.0376 | |
Beat-to-beat variation (bpm) | rs2032930 | 8.5 ± 5.8 | 12.2 ± 6.6 | 0.0226 |
rs2032931 | 8.5 ± 5.8 | 12.2 ± 6.6 | 0.0226 | |
rs2234753 | 13.4 ± 6.8 | 10.2 ± 6.3 | 0.0400 | |
NTSS6 (score) | rs2032930 | 1.3 ± 0.5 | 1.7 ± 0.5 | 0.0230 |
rs2032931 | 1.3 ± 0.5 | 1.7 ± 0.5 | 0.0230 | |
rs917778 | 1.7 ± 0.5 | 1.4 ± 0.5 | NS | |
rs2234753 | 1.8 ± 0.4 | 1.4 ± 0.5 | 0.0030 | |
Cold detection threshold (degrees Celsius) | rs604349 | 39.3 ± 4.2 | 35.8 ± 2.6 | 0.0419 |
Heat detection threshold (degrees Celsius) | rs917778 | 30.2 ± 1.2 | 28.7 ± 3.1 | 0.0137 |
Current Perception Threshold (Frequency) | Nervus Medianus (Normal Range in mm/s) | Nervus Peroneus (Normal Range in mm/s) |
---|---|---|
2000 Hz | 120–398 | 179–523 |
250 Hz | 22–189 | 44–208 |
5 Hz | 16–101 | 18–170 |
Method | Tested Parameter | Normal Value | Borderline Value | Abnormal Value |
---|---|---|---|---|
Tests for the investigation of parasympathetic functions | ||||
1. Deep breathing test | Beat to beat variation (beats/min) | ≥15 | 11–14 | ≤10 |
2. Valsalva maneuver | Valsalva ratio | ≥1.21 | 1.11–1.2 | ≤1.1 |
3. Heart rate response to standing | 30/15 ratio | ≥1.04 | 1.01–1.03 | ≤1.0 |
Tests for the investigation of sympathetic functions | ||||
1. Blood pressure (BP) response to standing | Reduction of systolic BP (mmHg) | ≤10 | 11–29 | ≥30 |
2. Handgrip test | Increase of diastolic BP (mmHg) | ≥16 | 11–15 | ≤10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tordai, D.Z.; Hajdú, N.; Rácz, R.; Istenes, I.; Békeffy, M.; Vági, O.E.; Kempler, M.; Körei, A.E.; Tóbiás, B.; Illés, A.; et al. Genetic Factors Associated with the Development of Neuropathy in Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 1815. https://doi.org/10.3390/ijms25031815
Tordai DZ, Hajdú N, Rácz R, Istenes I, Békeffy M, Vági OE, Kempler M, Körei AE, Tóbiás B, Illés A, et al. Genetic Factors Associated with the Development of Neuropathy in Type 2 Diabetes. International Journal of Molecular Sciences. 2024; 25(3):1815. https://doi.org/10.3390/ijms25031815
Chicago/Turabian StyleTordai, Dóra Zsuszanna, Noémi Hajdú, Ramóna Rácz, Ildikó Istenes, Magdolna Békeffy, Orsolya Erzsébet Vági, Miklós Kempler, Anna Erzsébet Körei, Bálint Tóbiás, Anett Illés, and et al. 2024. "Genetic Factors Associated with the Development of Neuropathy in Type 2 Diabetes" International Journal of Molecular Sciences 25, no. 3: 1815. https://doi.org/10.3390/ijms25031815