Next Article in Journal
Probing the Effects of Multisite Mutations in the Lipoic Acid Region of the BCOADC-E2 Protein
Next Article in Special Issue
Trichostatin A-Induced Epigenetic Modifications and Their Influence on the Development of Porcine Cloned Embryos Derived from Bone Marrow–Mesenchymal Stem Cells
Previous Article in Journal
Empirical Comparison and Analysis of Artificial Intelligence-Based Methods for Identifying Phosphorylation Sites of SARS-CoV-2 Infection
Previous Article in Special Issue
Anabolic Steroids Activate the NF-κB Pathway in Porcine Ovarian Putative Stem Cells Independently of the ZIP-9 Receptor
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Molecular Mechanisms of Somatic Cell Cloning and Other Assisted Reproductive Technologies in Mammals: Which Determinants Have Been Unraveled Thus Far?—Current Status, Further Progress and Future Challenges

by
Marcin Samiec
Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
Int. J. Mol. Sci. 2024, 25(24), 13675; https://doi.org/10.3390/ijms252413675
Submission received: 9 December 2024 / Accepted: 19 December 2024 / Published: 21 December 2024
Taking into consideration recent reports on the successful creation of cloned rhesus monkeys [1,2,3,4], a total of 25 mammalian species representing not only livestock, laboratory, companion and other domesticated animals, but also free-living animals, have been generated by somatic cell nuclear transfer (SCNT)-based cloning [5,6,7,8,9,10,11,12,13,14,15,16,17]. In spite of this fact, the effectiveness of SCNT-mediated assisted reproductive technologies (ARTs) remains at a disappointingly low range, oscillating between 0.1% and a maximum level of 5% as estimated by the rate of the propagated progeny to the number of enucleated oocytes (ooplasts) reconstructed with somatic or stem cell nuclei [3,16,17]. In this context, remarkably higher developmental outcomes of mammalian embryos and conceptuses are noticed for other ARTs focused on the extracorporeal production of embryos by either the non-assisted in vitro fertilization (IVF) of oocytes with capacitated and hyperactivated single spermatozoa or IVF assisted by intraooplasmic sperm microinjection [18,19]. Nevertheless, the developmental competences of cloned and in vitro-fertilized embryos and conceptuses seem to be profoundly mitigated in relation to the ARTs focused on the intracorporeal production of embryos [20,21]. As a consequence, it is worth highlighting that a multifaceted characterization of the parameters exerting considerable impacts on the developmental outcomes and functional attributes of SCNT- and IVF-derived embryos is indispensable to comprehensively unravel a wide variety of biological, biotechnological, molecular, transcriptomic, proteomic and epigenetic factors determining the efficiency of SCNT-based cloning and other strategies of in vitro embryo production (IVP) [17,22,23,24].
The complex IVP procedures in mammalian species comprise multiple steps, such as:
(1)
In vitro meiotic maturation (IVM) of prophase I dictyotene-stage oocytes [25,26,27].
(2)
Propagation of diploid zygotes from IVM-derived nuclear recipient oocytes achieved by either (A) standard IVF of meiotically matured oocytes via their co-incubation with motile sperm cells [28,29,30,31] or (B) their microsurgically assisted IVF accomplished by intracytoplasmic sperm injection (ICSI) followed by ectopic activation of ICSI-fertilized oocytes [32,33,34] or (C) reconstruction of enucleated metaphase II (MII)-stage oocytes (ooplasts) as a result of SCNT-based cloning completed by direct intraooplasmic injection of nuclear donor somatic/stem cells or their karyoplasts, or alternatively completed by the electrofusion of ooplasts with subzonally injected nuclear donor cells followed by the artificial activation of an embryo-specific developmental program of SCNT-generated oocytes [11,14,35,36].
(3)
In vitro culture (IVC) of cloned or IVF/ICSI-derived embryos up to the morula/blastocyst stages prior to the possibility of their surgical/non-surgical transfer into reproductive tracts of surrogate females [37,38,39,40,41].
Considering the multi-complexity of IVP-mediated ARTs, a broad spectrum of determinants exert impact on the efficiency of propagating nuclear-transferred or ex vivo-fertilized embryos [17,20,23]. A predominant role is played by the parameters of functional quality pinpointed for nuclear recipient oocytes at the MII stage, which are undoubtedly correlated with a synergistic crosstalk of molecular factors responsible for the meiotic, cytoplasmic and epigenomic maturation of female gametes under in vitro culture conditions [42,43,44,45,46]. It is noteworthy that a pivotal influence is exerted by the approaches to extrinsically stimulate the embryonic developmental program of SCNT- or ICSI-reconstructed oocytes by using artificial (physical, chemical, physico-chemical or biological) activators [33,47,48,49,50,51]. Not without significance, also, is the molecular susceptibility of donor nuclear genomes inherited from somatic/stem cells or spermatozoa to functionally remodel and reprogram their transcriptomic and epigenomic signatures in host ooplasm, and subsequently in corresponding cytoplasm within blastomeres of cloned or in vitro-fertilized embryos [52,53,54,55]. In turn, the competences of donor cell nuclei to be epigenetically reprogrammed and transcriptionally activated in SCNT- or IVF/ICSI-generated embryos are largely dependent on the incidence of efficient maternal-to-embryonic transition for controlling gene expression, which is inextricably linked to the capabilities of donor nuclear genomes to successfully overcome the developmental hindrance related to cleavage blocking of extracorporeal embryogenesis [56,57,58]. Moreover, taking nuclear donor somatic or stem cells into account, and the extent of transcriptional reprogramming within their gene expression profiles during the ex vivo development of cloned embryos, the wide array of parameters is of great importance, putting the highest emphasis on
(1)
The anatomo-histological origin of fetal or adult cells serving as a source of genomic DNA for the reconstruction of enucleated oocytes [59,60,61,62,63,64];
(2)
The degree of cytodifferentiation or the extent of nondifferentiation/stemness determining the inheritance of epigenetic memory encoded in donor nuclei after their transplantation into host ooplasm [65,66,67,68,69];
(3)
The abilities of somatic/stem cell-descended nuclear genomes to ontogenetically dedifferentiate or rearrange their transcriptomic landscapes due to the molecular erasure of donor cell-specific epigenomic obstacles/barriers within reprogramming-resistant regions enriched for transcriptionally repressive epigenetic marks, which have been found to exhibit resilience to the onset of embryonic genome activity [70,71,72,73,74,75].
Furthermore, the inter-genomic, inter-transcriptomic and inter-proteomic communication between nuclear and mitochondrial (mt) compartments and the degree of mtDNA heteroplasmy arising from the hybridization of nuclear donor cytoplasm-inherited and nuclear recipient ooplasm-descended mitochondrial genotypes (mitotypes) represent another set of molecular determinants that remarkably affect the ex vivo developmental potential and quality attributes of IVP-derived embryos created by SCNT or IVF/ICSI [76,77,78,79,80,81,82,83,84].
To summarize, this Special Issue provides not only insightful interpretation, but also topical and coming trends targeted at meticulously unveiling and explicating the role of intracellular hallmarks and the molecular interplay of cytophysiological, transcriptomic, proteomic and epigenomic factors reciprocally determining the efficiency of propagating and multiplying in vitro-generated embryos, conceptuses and progeny with the aid of SCNT-mediated cloning or IVF/ICSI-based IVP procedures, including comparative and mechanistic insights underlying in vivo embryo production. Deciphering the above-mentioned molecular networks resulting from inter-transcriptomic, inter-proteomic and inter-epigenomic crosstalk between factors affecting somatic cell cloning and a variety of other ARTs has been found to be a sine qua non condition for an increase in developmental outcomes and quality parameters of nuclear-transferred, IVF/ICSI-derived and in vivo-produced embryos. As a consequence, this contributes to a critical turning point inevitable for expedited and intensified, but also multi-faceted, inter-disciplinary and translational implementation of different IVP-based ARTs and their counterparts entailing in vivo embryo production to an extensive range of biomedical, biopharmacological, oncological, pathophysiological, biotechnological, embryological and agricultural research fields, as well as to eco-zoological studies aimed at the assessment and ex situ protection of biological diversity and, finally, to embryonic/adult stem cell research focused on the preclinical or clinical establishment of pluri-directionally differentiated cell derivatives in the most advanced, i.e., homeothermic vertebrates (mammals and aves) [16,17,23,54,75,85,86,87,88].

Funding

The present study was financially supported by statutory research grant No. 01-19-12-21 from the National Research Institute of Animal Production in Balice near Kraków, Poland, given to M.S. (Marcin Samiec).

Conflicts of Interest

The author declares no conflicts of interest. The author had no financial or other relationships with other people or organizations that might inappropriately influence this work. The funders had no role in the writing of the manuscript or in the decision to publish the results.

References

  1. Liao, Z.; Zhang, J.; Sun, S.; Li, Y.; Xu, Y.; Li, C.; Cao, J.; Nie, Y.; Niu, Z.; Liu, J.; et al. Reprogramming mechanism dissection and trophoblast replacement application in monkey somatic cell nuclear transfer. Nat. Commun. 2024, 15, 5. [Google Scholar] [CrossRef]
  2. Naddaf, M. Cloned rhesus monkey lives to adulthood for first time. Nature 2024, 625, 641–642. [Google Scholar] [CrossRef]
  3. Kwon, T. Advancing primatology through ethical and scientific perspectives on rhesus monkey (Macaca mulatta) cloning. J. Med. Primatol. 2024, 53, e12704. [Google Scholar] [CrossRef] [PubMed]
  4. Moura, M.T. Genome-Scale Analyses Reveal Roadblocks to Monkey Cloning. Cell. Reprogram. 2024, 26, 120–123. [Google Scholar] [CrossRef] [PubMed]
  5. Kim, J.H.; Shim, J.; Ko, N.; Kim, H.J.; Lee, Y.; Choi, K. Analysis of production efficiency of cloned transgenic Yucatan miniature pigs according to recipient breeds with embryo transfer conditions. Theriogenology 2024, 218, 193–199. [Google Scholar] [CrossRef] [PubMed]
  6. Zhang, C.; Xu, M.; Yang, M.; Liao, A.; Lv, P.; Liu, X.; Chen, Y.; Liu, H.; He, Z. Efficient generation of cloned cats with altered coat colour by editing of the KIT gene. Theriogenology 2024, 222, 54–65. [Google Scholar] [CrossRef] [PubMed]
  7. Wang, J.H.; Wu, S.J.; Li, Y.; Zhao, Y.; Liu, Z.M.; Deng, S.L.; Lian, Z.X. Improving the Efficiency of Precise Genome Editing with CRISPR/Cas9 to Generate Goats Overexpressing Human Butyrylcholinesterase. Cells 2023, 12, 1818. [Google Scholar] [CrossRef] [PubMed]
  8. Keim, J.; Liu, Y.; Regouski, M.; Stott, R.; Singina, G.N.; White, K.L.; Polejaeva, I.A. Cytokine supplemented maturation medium improved development to term following somatic cell nuclear transfer (SCNT) in cattle. Reprod. Fertil. Dev. 2023, 35, 575–588. [Google Scholar] [CrossRef]
  9. Cortez, J.V.; Hardwicke, K.; Cuervo-Arango, J.; Grupen, C.G. Cloning horses by somatic cell nuclear transfer: Effects of oocyte source on development to foaling. Theriogenology 2023, 203, 99–108. [Google Scholar] [CrossRef]
  10. Ji, K.; Park, K.; Kim, D.; Kim, E.; Kil, T.; Kim, M. Accomplishment of canine cloning through in vitro matured oocytes: A pioneering milestone. J. Anim. Sci. Technol. 2024, 66, 577–586. [Google Scholar] [CrossRef]
  11. Qu, P.; Cao, W.; Zhang, Y.; Qi, J.; Meng, B.; Liu, S.; Zhuang, Y.; Duan, C.; Liu, E. Sperm-borne proteins improve rabbit cloning efficiency via regulating embryonic cleavage and epigenetics. Proteomics 2022, 22, e2200020. [Google Scholar] [CrossRef]
  12. Liu, Z.; Cai, Y.; Liao, Z.; Xu, Y.; Wang, Y.; Wang, Z.; Jiang, X.; Li, Y.; Lu, Y.; Nie, Y.; et al. Cloning of a gene-edited macaque monkey by somatic cell nuclear transfer. Natl. Sci. Rev. 2019, 6, 101–108. [Google Scholar] [CrossRef] [PubMed]
  13. Ruan, Z.; Zhao, X.; Qin, X.; Luo, C.; Liu, X.; Deng, Y.; Zhu, P.; Li, Z.; Huang, B.; Shi, D.; et al. DNA methylation and expression of imprinted genes are associated with the viability of different sexual cloned buffaloes. Reprod. Domest. Anim. 2018, 53, 203–212. [Google Scholar] [CrossRef] [PubMed]
  14. Wani, N.A.; Praveen Kumar, K.; Hong, S.; Umer, M.A. Telomere length in dromedary camels (Camelus dromedarius) produced by somatic cell nuclear transfer (SCNT) and their age-matched naturally produced counterparts. Theriogenology 2022, 177, 151–156. [Google Scholar] [CrossRef]
  15. Gómez, M.C.; Pope, C.E. Cloning Endangered Felids by Interspecies Somatic Cell Nuclear Transfer. Methods Mol. Biol. 2015, 1330, 133–152. [Google Scholar] [CrossRef]
  16. Czernik, M.; Anzalone, D.A.; Palazzese, L.; Oikawa, M.; Loi, P. Somatic cell nuclear transfer: Failures, successes and the challenges ahead. Int. J. Dev. Biol. 2019, 63, 123–130. [Google Scholar] [CrossRef] [PubMed]
  17. Srirattana, K.; Kaneda, M.; Parnpai, R. Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int. J. Mol. Sci. 2022, 23, 1969. [Google Scholar] [CrossRef] [PubMed]
  18. Martin-Pelaez, S.; Fuente, A.; Takahashi, K.; Perez, I.T.; Orozco, J.; Okada, C.T.C.; Neto, C.R.; Meyers, S.; Dini, P. IVF with frozen-thawed sperm after prolonged capacitation yields comparable results to ICSI in horses: A morphokinetics study. Theriogenology 2025, 232, 39–45. [Google Scholar] [CrossRef] [PubMed]
  19. El-Naga, E.M.A.; Ali, M.E.; Sindi, R.A.; Hussein, H.A. Effect of histidine and L-Tyrosine supplementation in maturation medium on in-vitro developmental outcomes of buffalo oocytes. BMC Vet. Res. 2024, 20, 414. [Google Scholar] [CrossRef] [PubMed]
  20. Mikkola, M.; Desmet, K.L.J.; Kommisrud, E.; Riegler, M.A. Recent advancements to increase success in assisted reproductive technologies in cattle. Anim. Reprod. 2024, 21, e20240031. [Google Scholar] [CrossRef] [PubMed]
  21. Garcia-Canovas, M.; Parrilla, I.; Cuello, C.; Gil, M.A.; Martinez, E.A. Swine in vitro embryo production: Potential, challenges, and advances. Anim. Reprod. Sci. 2024, 270, 107600. [Google Scholar] [CrossRef] [PubMed]
  22. Sadeghi, M.; Andani, M.R.; Hajian, M.; Sanei, N.; Moradi-Hajidavaloo, R.; Mahvash, N.; Jafarpour, F.; Nasr-Esfahani, M.H. Developmental competence of IVF and SCNT goat embryos is improved by inhibition of canonical WNT signaling. PLoS ONE 2023, 18, e0281331. [Google Scholar] [CrossRef] [PubMed]
  23. Moura, M.T. Cloning by SCNT: Integrating Technical and Biology-Driven Advances. Methods Mol. Biol. 2023, 2647, 1–35. [Google Scholar] [CrossRef] [PubMed]
  24. Diao, Y.F.; Lin, T.; Li, X.; Oqani, R.K.; Lee, J.E.; Kim, S.Y.; Jin, D.I. Dynamic changes of SETD2, a histone H3K36 methyltransferase, in porcine oocytes, IVF and SCNT embryos. PLoS ONE 2018, 13, e0191816. [Google Scholar] [CrossRef] [PubMed]
  25. Morato, A.L.C.; Verruma, C.G.; Furtado, C.L.M.; Dos Reis, R.M. In vitro maturation of oocytes: What is already known? Biol. Reprod. 2024, 1–13, ioae147, Epub ahead of print. [Google Scholar] [CrossRef]
  26. Yang, Z.; Wei, Y.; Fu, Y.; Wang, X.; Shen, W.; Shi, A.; Zhang, H.; Li, H.; Song, X.; Wang, J.; et al. Folic acids promote in vitro maturation of bovine oocytes by inhibition of ferroptosis via upregulated glutathione and downregulated Fe2+ accumulation. Anim. Reprod. Sci. 2024, 270, 107605. [Google Scholar] [CrossRef]
  27. Walter, J.; Colleoni, S.; Lazzari, G.; Fortes, C.; Grossmann, J.; Roschitzki, B.; Laczko, E.; Naegeli, H.; Bleul, U.; Galli, C. Maturational competence of equine oocytes is associated with alterations in their ’cumulome’. Mol. Hum. Reprod. 2024, 30, gaae033. [Google Scholar] [CrossRef] [PubMed]
  28. Anzalone, D.A.; Palazzese, L.; Czernik, M.; Sabatucci, A.; Valbonetti, L.; Capra, E.; Loi, P. Controlled spermatozoa-oocyte interaction improves embryo quality in sheep. Sci. Rep. 2021, 11, 22629. [Google Scholar] [CrossRef] [PubMed]
  29. Mogas, T.; García-Martínez, T.; Martínez-Rodero, I. Methodological approaches in vitrification: Enhancing viability of bovine oocytes and in vitro-produced embryos. Reprod. Domest. Anim. 2024, 59 (Suppl. 3), e14623. [Google Scholar] [CrossRef] [PubMed]
  30. Veraguas, D.; Saez, S.; Aguilera, C.; Echeverry, D.; Gallegos, P.F.; Saez-Ruiz, D.; Castro, F.O.; Rodriguez-Alvarez, L. In vitro and in vivo development of domestic cat embryos generated by in vitro fertilization after eCG priming and oocyte in vitro maturation. Theriogenology 2020, 146, 94–103. [Google Scholar] [CrossRef]
  31. Leme, L.O.; Carvalho, J.O.; Mendes, C.M.; Assumpção, M.E.O.D.; Caetano, A.R.; Franco, M.M.; Dode, M.A.N. Impact of sperm sex sorting on sperm quality and in vitro embryo production in bovine. Anim. Reprod. Sci. 2024, 270, 107604. [Google Scholar] [CrossRef]
  32. Tharasanit, T.; Buarpung, S.; Manee-In, S.; Thongkittidilok, C.; Tiptanavattana, N.; Comizzoli, P.; Techakumphu, M. Birth of kittens after the transfer of frozen-thawed embryos produced by intracytoplasmic sperm injection with spermatozoa collected from cryopreserved testicular tissue. Reprod. Domest. Anim. 2012, 47 (Suppl. 6), 305–308. [Google Scholar] [CrossRef]
  33. Fuentes, F.; Aguila, L.; Pérez, F.; Muñoz, E.; Arias, M.E.; Felmer, R. Comparative analysis of Piezo-ICSI and conventional ICSI in bovine embryo development. Theriogenology 2025, 232, 46–55. [Google Scholar] [CrossRef]
  34. Cardona Barberán, A.; Reddy Guggilla, R.; Colenbier, C.; Van der Velden, E.; Rybouchkin, A.; Stoop, D.; Leybaert, L.; Coucke, P.; Symoens, S.; Boel, A.; et al. High rate of detected variants in male PLCZ1 and ACTL7A genes causing failed fertilization after ICSI. Hum. Reprod. Open 2024, 2024, hoae057. [Google Scholar] [CrossRef] [PubMed]
  35. Felmer, R.; Arias, M.E. Activation treatment of recipient oocytes affects the subsequent development and ploidy of bovine parthenogenetic and somatic cell nuclear transfer (SCNT) embryos. Mol. Reprod. Dev. 2015, 82, 441–449. [Google Scholar] [CrossRef] [PubMed]
  36. Lee, J.; You, J.; Lee, G.S.; Lee, S.T.; Hyun, S.H.; Lee, E. Combined Treatment with Demecolcine and 6-Dimethylaminopurine during Postactivation Improves Developmental Competence of Somatic Cell Nuclear Transfer Embryos in Pigs. Anim. Biotechnol. 2018, 29, 41–49. [Google Scholar] [CrossRef] [PubMed]
  37. Li, Y.; Zheng, C.; Liu, Y.; He, J.; Zhang, Q.; Zhang, Y.; Kou, X.; Zhao, Y.; Liu, K.; Bai, D.; et al. Inhibition of Wnt activity improves peri-implantation development of somatic cell nuclear transfer embryos. Natl. Sci. Rev. 2023, 10, nwad173. [Google Scholar] [CrossRef] [PubMed]
  38. Men, H. Evolution of Media Supporting the Development of Mammalian Preimplantation Embryos In Vitro. Biology 2024, 13, 789. [Google Scholar] [CrossRef] [PubMed]
  39. Abu El-Naga, E.M.; Ali, M.E.; Ali, R.H.; Hozyen, H.F.; Hussein, H.A. Cleavage and in vitro cultivation rates monitoring in culture media supplemented with energy sources, non-essential amino acids, and antioxidants in the buffalo embryos. BMC Vet. Res. 2024, 20, 521. [Google Scholar] [CrossRef] [PubMed]
  40. Gualtieri, R.; De Gregorio, V.; Candela, A.; Travaglione, A.; Genovese, V.; Barbato, V.; Talevi, R. In Vitro Culture of Mammalian Embryos: Is There Room for Improvement? Cells 2024, 13, 996. [Google Scholar] [CrossRef] [PubMed]
  41. Bang, S.; Qamar, A.Y.; Fang, X.; Kim, H.; Han, A.; Kang, H.; Cha, D.; Shim, J.; Kim, J.H.; Choi, K.; et al. Effects of extracellular vesicles derived from steroids-primed oviductal epithelial cells on porcine in vitro embryonic development. Theriogenology 2023, 209, 213–223. [Google Scholar] [CrossRef]
  42. Zhao, B.; Li, H.; Zhang, H.; Ren, S.; Li, Y.; Wang, X.; Lan, X.; Qiao, H.; Ma, H.; Zhang, Y.; et al. The effect of L-carnitine supplementation during in vitro maturation on oocyte maturation and somatic cloned embryo development. Reprod. Biol. 2024, 24, 100853. [Google Scholar] [CrossRef] [PubMed]
  43. Kumari, N.; Saini, S.; Thakur, S.; Sharma, S.; Punetha, M.; Kumar, P.; Sango, C.; Sharma, R.K.; Datta, T.K.; Yadav, P.S.; et al. Enhancing the quality of inferior oocytes of buffalo for in vitro embryo production: The impact of melatonin on maturation, SCNT, and epigenetic modifications. Tissue Cell 2024, 89, 102480. [Google Scholar] [CrossRef] [PubMed]
  44. Vargas, L.N.; Caixeta, F.M.C.; Dode, M.A.N.; Caetano, A.R.; Franco, M.M. DNA methylation profile of single in vitro matured bovine oocytes. Mol. Reprod. Dev. 2023, 90, 227–235. [Google Scholar] [CrossRef] [PubMed]
  45. Oh, S.H.; Lee, S.E.; Han, D.H.; Yoon, J.W.; Kim, S.H.; Lim, E.S.; Lee, H.B.; Kim, E.Y.; Park, S.P. Treatments of Porcine Nuclear Recipient Oocytes and Somatic Cell Nuclear Transfer-Generated Embryos with Various Reactive Oxygen Species Scavengers Lead to Improvements of Their Quality Parameters and Developmental Competences by Mitigating Oxidative Stress-Related Impacts. Cell. Reprogram. 2023, 25, 73–81. [Google Scholar] [CrossRef] [PubMed]
  46. Gupta, M.K.; Heo, Y.T.; Kim, D.K.; Lee, H.T.; Uhm, S.J. 5-Azacytidine improves the meiotic maturation and subsequent in vitro development of pig oocytes. Anim. Reprod. Sci. 2019, 208, 106118. [Google Scholar] [CrossRef]
  47. Gioia, L.; Palazzese, L.; Czernik, M.; Iuso, D.; Fulka, H.; Fulka, J., Jr.; Loi, P. Oocyte activation is a cytoplasm-confined event so far: What about the nucleus? Reproduction 2024, 167, e230360. [Google Scholar] [CrossRef] [PubMed]
  48. Bellido-Quispe, D.K.; Arcce, I.M.L.; Pinzón-Osorio, C.A.; Campos, V.F.; Remião, M.H. Chemical activation of mammalian oocytes and its application in camelid reproductive biotechnologies: A review. Anim. Reprod. Sci. 2024, 266, 107499. [Google Scholar] [CrossRef] [PubMed]
  49. Ongaratto, F.L.; Rodriguez-Villamil, P.; Bertolini, M.; Carlson, D.F. Influence of oocyte selection, activation with a zinc chelator and inhibition of histone deacetylases on cloned porcine embryo and chemically activated oocytes development. Zygote 2020, 28, 286–290. [Google Scholar] [CrossRef]
  50. Akagi, S.; Tamura, S.; Matsukawa, K. Timing of the First Cleavage and In Vitro Developmental Potential of Bovine Somatic Cell Nuclear Transfer Embryos Activated by Different Protocols. Cell. Reprogram. 2020, 22, 36–42. [Google Scholar] [CrossRef]
  51. Uh, K.; Ryu, J.; Zhang, L.; Errington, J.; Machaty, Z.; Lee, K. Development of novel oocyte activation approaches using Zn2+ chelators in pigs. Theriogenology 2019, 125, 259–267. [Google Scholar] [CrossRef] [PubMed]
  52. Kumar, D.; Tiwari, M.; Goel, P.; Singh, M.K.; Selokar, N.L.; Palta, P. Comparative transcriptome profile of embryos at different developmental stages derived from somatic cell nuclear transfer (SCNT) and in-vitro fertilization (IVF) in riverine buffalo (Bubalus bubalis). Vet. Res. Commun. 2024, 48, 2457–2475. [Google Scholar] [CrossRef]
  53. Zhao, L.; Long, C.; Zhao, G.; Su, J.; Ren, J.; Sun, W.; Wang, Z.; Zhang, J.; Liu, M.; Hao, C.; et al. Reprogramming barriers in bovine cells nuclear transfer revealed by single-cell RNA-seq analysis. J. Cell. Mol. Med. 2022, 26, 4792–4804. [Google Scholar] [CrossRef]
  54. Li, Y.; Sun, Q. Epigenetic manipulation to improve mouse SCNT embryonic development. Front. Genet. 2022, 13, 932867. [Google Scholar] [CrossRef] [PubMed]
  55. Zhou, C.; Zhang, J.; Zhang, M.; Wang, D.; Ma, Y.; Wang, Y.; Wang, Y.; Huang, Y.; Zhang, Y. Transcriptional memory inherited from donor cells is a developmental defect of bovine cloned embryos. FASEB J. 2020, 34, 1637–1651. [Google Scholar] [CrossRef]
  56. Grow, E.J.; Liu, Y.; Fan, Z.; Perisse, I.V.; Patrick, T.; Regouski, M.; Shadle, S.; Polejaeva, I.; White, K.L.; Cairns, B.R. Chromatin Reprogramming of In Vitro Fertilized and Somatic Cell Nuclear Transfer Bovine Embryos During Embryonic Genome Activation. bioRxiv 2023. [Google Scholar] [CrossRef]
  57. Zhai, Y.; Yu, H.; An, X.; Zhang, Z.; Zhang, M.; Zhang, S.; Li, Q.; Li, Z. Profiling the transcriptomic signatures and identifying the patterns of zygotic genome activation—A comparative analysis between early porcine embryos and their counterparts in other three mammalian species. BMC Genomics 2022, 23, 772. [Google Scholar] [CrossRef]
  58. Cuthbert, J.M.; Russell, S.J.; Polejaeva, I.A.; Meng, Q.; White, K.L.; Benninghoff, A.D. Dynamics of small non-coding RNAs in bovine scNT embryos through the maternal-to-embryonic transition. Biol. Reprod. 2021, 105, 918–933. [Google Scholar] [CrossRef] [PubMed]
  59. Jozi, M.; Jafarpour, F.; Moradi, R.; Zadegan, F.G.; Karbalaie, K.; Nasr-Esfahani, M.H. Induced DNA hypomethylation by Folic Acid Deprivation in Bovine Fibroblast Donor Cells Improves Reprogramming of Somatic Cell Nuclear Transfer Embryos. Sci. Rep. 2020, 10, 5076. [Google Scholar] [CrossRef] [PubMed]
  60. Schumann, N.A.B.; Mendonça, A.S.; Silveira, M.M.; Vargas, L.N.; Leme, L.O.; de Sousa, R.V.; Franco, M.M. Procaine and S-Adenosyl-L-Homocysteine Affect the Expression of Genes Related to the Epigenetic Machinery and Change the DNA Methylation Status of In Vitro Cultured Bovine Skin Fibroblasts. DNA Cell Biol. 2020, 39, 37–49. [Google Scholar] [CrossRef]
  61. Toorani, T.; Mackie, P.M.; Mastromonaco, G.F. Investigating Markers of Reprogramming Potential in Somatic Cell Lines Derived from Matched Donors. Cell. Reprogram. 2021, 23, 73–88. [Google Scholar] [CrossRef] [PubMed]
  62. Zhang, Y.T.; Yao, W.; Chai, M.J.; Liu, W.J.; Liu, Y.; Liu, Z.H.; Weng, X.G. Evaluation of porcine urine-derived cells as nuclei donor for somatic cell nuclear transfer. J. Vet. Sci. 2022, 23, e40. [Google Scholar] [CrossRef] [PubMed]
  63. Zhai, Y.; Li, W.; Zhang, Z.; Cao, Y.; Wang, Z.; Zhang, S.; Li, Z. Epigenetic states of donor cells significantly affect the development of somatic cell nuclear transfer (SCNT) embryos in pigs. Mol. Reprod. Dev. 2018, 85, 26–37. [Google Scholar] [CrossRef] [PubMed]
  64. Samiec, M.; Skrzyszowska, M. Roscovitine is a novel agent that can be used for the activation of porcine oocytes reconstructed with adult cutaneous or fetal fibroblast cell nuclei. Theriogenology 2012, 78, 1855–1867. [Google Scholar] [CrossRef]
  65. Salehi, M.; Abouhamzeh, B.; Hosseini, A.; Zare, Z.; Bakhtari, A. Comparison of Epigenetic Modifier Genes in Bovine Adipose Tissue-Derived Stem Cell Based Embryos, as Donors, with In Vitro and Parthenogenesis Embryos. Cell J. 2020, 22, 149–157. [Google Scholar] [CrossRef] [PubMed]
  66. Olivera, R.; Moro, L.N.; Jordan, R.; Pallarols, N.; Guglielminetti, A.; Luzzani, C.; Miriuka, S.G.; Vichera, G. Bone marrow mesenchymal stem cells as nuclear donors improve viability and health of cloned horses. Stem Cells Cloning 2018, 11, 13–22. [Google Scholar] [CrossRef] [PubMed]
  67. Secher, J.O.; Liu, Y.; Petkov, S.; Luo, Y.; Li, D.; Hall, V.J.; Schmidt, M.; Callesen, H.; Bentzon, J.F.; Sørensen, C.B.; et al. Evaluation of porcine stem cell competence for somatic cell nuclear transfer and production of cloned animals. Anim. Reprod. Sci. 2017, 178, 40–49. [Google Scholar] [CrossRef] [PubMed]
  68. Xiao, J.; Li, Q.; Qu, P.; Zhang, Z.; Pan, S.; Wang, Y.; Zhang, Y. Isolation of Bovine Skin-Derived Precursor Cells and Their Developmental Potential After Nuclear Transfer. Cell. Reprogram. 2016, 18, 411–418. [Google Scholar] [CrossRef] [PubMed]
  69. Samiec, M.; Romanek, J.; Lipiński, D.; Opiela, J. Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Anim. Sci. J. 2019, 90, 1127–1141. [Google Scholar] [CrossRef] [PubMed]
  70. Fulka, H.; Loi, P.; Czernik, M.; Surani, A.; Fulka, J. Omne vivum ex ovo: The oocyte reprogramming and remodeling activities. Reproduction 2023, 165, R75–R89. [Google Scholar] [CrossRef] [PubMed]
  71. Dahlen, C.R.; Borowicz, P.P.; Ward, A.K.; Caton, J.S.; Czernik, M.; Palazzese, L.; Loi, P.; Reynolds, L.P. Programming of Embryonic Development. Int. J. Mol. Sci. 2021, 22, 11668. [Google Scholar] [CrossRef] [PubMed]
  72. Ross, P.J.; Goissis, M.D.; Martins, J.P.N.; Chitwood, J.L.; Pursley, J.R.; Rosa, G.J.M.; Cibelli, J.B. Blastocyst Cell Number and Allocation Affect the Developmental Potential and Transcriptome of Bovine Somatic Cell Nuclear Transfer Embryos. Stem Cells Dev. 2023, 32, 515–523. [Google Scholar] [CrossRef]
  73. Ma, X.; Zhan, C.; Ma, P.; Jing, G.; Liyan, S.; Zhang, Y.; Jing, Z.; Liu, H.; Wang, J.; Lu, W. PsA inhibits the development of bovine embryos through epigenetic and oxidative stress. Am. J. Vet. Res. 2023, 84, ajvr.22.09.0159. [Google Scholar] [CrossRef]
  74. Simmet, K.; Wolf, E.; Zakhartchenko, V. Manipulating the Epigenome in Nuclear Transfer Cloning: Where, When and How. Int. J. Mol. Sci. 2020, 22, 236. [Google Scholar] [CrossRef] [PubMed]
  75. Samiec, M.; Trzcińska, M. From genome to epigenome: Who is a predominant player in the molecular hallmarks determining epigenetic mechanisms underlying ontogenesis? Reprod. Biol. 2024, 24, 100965. [Google Scholar] [CrossRef]
  76. Burgstaller, J.P.; Chiaratti, M.R. Mitochondrial Inheritance Following Nuclear Transfer: From Cloned Animals to Patients with Mitochondrial Disease. Methods Mol. Biol. 2023, 2647, 83–104. [Google Scholar] [CrossRef] [PubMed]
  77. Bao, L.; Zhou, Y.; Shu, J.; Li, H.; Xi, S.; Xu, M.; Cai, Q.; Dai, X.; Zeng, Y.; Zeng, F. Impact of telomere length and mitochondrial DNA copy number variants on survival of newborn cloned calves. Theriogenology 2024, 225, 1–8. [Google Scholar] [CrossRef]
  78. Srirattana, K.; St John, J.C. Transmission of Dysfunctional Mitochondrial DNA and Its Implications for Mammalian Reproduction. Adv. Anat. Embryol. Cell Biol. 2019, 231, 75–103. [Google Scholar] [CrossRef]
  79. Srirattana, K.; St John, J.C. Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer. Sci. Rep. 2018, 8, 7246. [Google Scholar] [CrossRef]
  80. Hammond, E.R.; Green, M.P.; Shelling, A.N.; Berg, M.C.; Peek, J.C.; Cree, L.M. Oocyte mitochondrial deletions and heteroplasmy in a bovine model of ageing and ovarian stimulation. Mol. Hum. Reprod. 2016, 22, 261–271. [Google Scholar] [CrossRef]
  81. Liu, Y.; Zhao, S.; Chen, X.; Bian, Y.; Cao, Y.; Xu, P.; Zhang, C.; Zhang, J.; Zhao, S.; Zhao, H. Variations in mitochondrial DNA coding and D-loop region are associated with early embryonic development defects in infertile women. Hum. Genet. 2023, 142, 193–200. [Google Scholar] [CrossRef] [PubMed]
  82. Shi, W.H.; Ye, M.J.; Qin, N.X.; Zhou, Z.Y.; Zhou, X.Y.; Xu, N.X.; Chen, S.C.; Li, S.Y.; Xu, C.M. Associations of Sperm mtDNA Copy Number, DNA Fragmentation Index, and Reactive Oxygen Species With Clinical Outcomes in ART Treatments. Front. Endocrinol. (Lausanne) 2022, 13, 849534. [Google Scholar] [CrossRef] [PubMed]
  83. Morimoto, Y.; Gamage, U.S.K.; Yamochi, T.; Saeki, N.; Morimoto, N.; Yamanaka, M.; Koike, A.; Miyamoto, Y.; Tanaka, K.; Fukuda, A.; et al. Mitochondrial Transfer into Human Oocytes Improved Embryo Quality and Clinical Outcomes in Recurrent Pregnancy Failure Cases. Int. J. Mol. Sci. 2023, 24, 2738. [Google Scholar] [CrossRef] [PubMed]
  84. Ma, H.; Van Dyken, C.; Darby, H.; Mikhalchenko, A.; Marti-Gutierrez, N.; Koski, A.; Liang, D.; Li, Y.; Tippner-Hedges, R.; Kang, E.; et al. Germline transmission of donor, maternal and paternal mtDNA in primates. Hum. Reprod. 2021, 36, 493–505. [Google Scholar] [CrossRef] [PubMed]
  85. Yamashita, M.S.; Melo, E.O. Animal Transgenesis and Cloning: Combined Development and Future Perspectives. Methods Mol. Biol. 2023, 2647, 121–149. [Google Scholar] [CrossRef] [PubMed]
  86. Swegen, A.; Appeltant, R.; Williams, S.A. Cloning in action: Can embryo splitting, induced pluripotency and somatic cell nuclear transfer contribute to endangered species conservation? Biol. Rev. Camb. Philos. Soc. 2023, 98, 1225–1249. [Google Scholar] [CrossRef] [PubMed]
  87. Cao, W.; Zhao, J.; Qu, P.; Liu, E. Current Progress and Prospects in Rabbit Cloning. Cell. Reprogram. 2022, 24, 63–70. [Google Scholar] [CrossRef]
  88. Sun, Y.; Li, Y.; Zong, Y.; Mehaisen, G.M.K.; Chen, J. Poultry genetic heritage cryopreservation and reconstruction: Advancement and future challenges. J. Anim. Sci. Biotechnol. 2022, 13, 115. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Samiec, M. Molecular Mechanisms of Somatic Cell Cloning and Other Assisted Reproductive Technologies in Mammals: Which Determinants Have Been Unraveled Thus Far?—Current Status, Further Progress and Future Challenges. Int. J. Mol. Sci. 2024, 25, 13675. https://doi.org/10.3390/ijms252413675

AMA Style

Samiec M. Molecular Mechanisms of Somatic Cell Cloning and Other Assisted Reproductive Technologies in Mammals: Which Determinants Have Been Unraveled Thus Far?—Current Status, Further Progress and Future Challenges. International Journal of Molecular Sciences. 2024; 25(24):13675. https://doi.org/10.3390/ijms252413675

Chicago/Turabian Style

Samiec, Marcin. 2024. "Molecular Mechanisms of Somatic Cell Cloning and Other Assisted Reproductive Technologies in Mammals: Which Determinants Have Been Unraveled Thus Far?—Current Status, Further Progress and Future Challenges" International Journal of Molecular Sciences 25, no. 24: 13675. https://doi.org/10.3390/ijms252413675

APA Style

Samiec, M. (2024). Molecular Mechanisms of Somatic Cell Cloning and Other Assisted Reproductive Technologies in Mammals: Which Determinants Have Been Unraveled Thus Far?—Current Status, Further Progress and Future Challenges. International Journal of Molecular Sciences, 25(24), 13675. https://doi.org/10.3390/ijms252413675

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop