The Construction of an Extreme Radiation-Resistant Perchlorate-Reducing Bacterium Using Deinococcus deserti Promoters
Abstract
1. Introduction
2. Results
2.1. Prediction of Strong Promoters from D. deserti
2.2. Assessment of D. deserti Promoter Activities in D. radiodurans
2.3. Expression of the Target Genes in D. radiodurans
2.4. Stress-Resistant Phenotypes of R1−CKB
3. Discussion
4. Materials and Methods
4.1. Bioinformatic Analysis of the D. deserti Transcriptome
4.2. Strains, Plasmids, and Culture Conditions
4.3. DNA Manipulation and Plasmid Construction
4.4. Real-Time Quantitative PCR (RT-qPCR)
4.5. The Detection of Protein Fluorescence Intensity
4.6. The Determination and Degradation of Perchlorate
4.7. The Phenotypes of R1 and R1−CKB
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erickson, B.E. Tracing the origin of perchlorate. A main ingredient in rocket fuel is showing up almost everywhere researchers look, but where is it all coming from? Anal. Chem. 2004, 76, 388A–389A. [Google Scholar] [CrossRef] [PubMed]
- Sijimol, M.R.; Mohan, M. Environmental impacts of perchlorate with special reference to fireworks—A review. Environ. Monit. Assess. 2014, 186, 7203–7210. [Google Scholar] [CrossRef]
- Dean, K.E.; Palachek, R.M.; Noel, J.M.; Warbritton, R.; Aufderheide, J.; Wireman, J. Development of freshwater water-quality criteria for perchlorate. Environ. Toxicol. Chem. 2004, 23, 1441–1451. [Google Scholar] [CrossRef] [PubMed]
- Orathel, S.P.; Thomas, R.; Chandramohanakumar, N.; Kulavelil, J.J.; Kumar, K.G.; Menon, V.U.; Jayaprakash, P.; Krishnan, S.; Manju, P.S.; Param, S.; et al. Possible effects of perchlorate contamination of drinking water on thyroid health. J. Thyroid. Res. 2020, 2020, 5208657. [Google Scholar] [CrossRef]
- Nadaraja, A.V.; Puthiyaveettil, P.G.; Bhaskaran, K. Surveillance of perchlorate in ground water, surface water and bottled water in Kerala, India. J. Environ. Health Sci. Eng. 2015, 13, 56. [Google Scholar] [CrossRef] [PubMed]
- Sass, J.U.S. Department of defense and white house working together to avoid cleanup and liability for perchlorate pollution. Int. J. Occup. Environ. Health 2004, 10, 330–334. [Google Scholar] [CrossRef]
- Pleus, R.C.; Corey, L.M. Environmental exposure to perchlorate: A review of toxicology and human health. Toxicol. Appl. Pharmacol. 2018, 358, 102–109. [Google Scholar] [CrossRef]
- Wolff, J. Perchlorate and the thyroid gland. Pharmacol. Rev. 1998, 50, 89–105. [Google Scholar]
- Carlson, H.K.; Kuehl, J.V.; Hazra, A.B.; Justice, N.B.; Stoeva, M.K.; Sczesnak, A.; Mullan, M.R.; Iavarone, A.T.; Engelbrektson, A.; Price, M.N.; et al. Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate. ISME J. 2015, 9, 1295–1305. [Google Scholar] [CrossRef]
- Srinivasan, A.; Viraraghavan, T. Perchlorate: Health effects and technologies for its removal from water resources. Int. J. Environ. Res. Public Health 2009, 6, 1418–1442. [Google Scholar] [CrossRef]
- Liebensteiner, M.G.; Oosterkamp, M.J.; Stams, A.J. Microbial respiration with chlorine oxyanions: Diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms. Ann. N. Y. Acad. Sci. 2016, 1365, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Q.; Chen, S.L. How does Mo-dependent perchlorate reductase work in the decomposition of oxyanions? Dalton Trans. 2019, 48, 5683–5691. [Google Scholar] [CrossRef] [PubMed]
- Bender, K.S.; Shang, C.; Chakraborty, R.; Belchik, S.M.; Coates, J.D.; Achenbach, L.A. Identification, characterization, and classification of genes encoding perchlorate reductase. J. Bacteriol. 2005, 187, 5090–5096. [Google Scholar] [CrossRef] [PubMed]
- Mehta-Kolte, M.G.; Loutey, D.; Wang, O.; Youngblut, M.D.; Hubbard, C.G.; Wetmore, K.M.; Conrad, M.E.; Coates, J.D. Mechanism of H2S oxidation by the dissimilatory perchlorate-reducing microorganism Azospira suillum PS. mBio 2017, 8, 10–128. [Google Scholar] [CrossRef]
- Youngblut, M.D.; Tsai, C.L.; Clark, I.C.; Carlson, H.K.; Maglaqui, A.P.; Gau-Pan, P.S.; Redford, S.A.; Wong, A.; Tainer, J.A.; Coates, J.D. Perchlorate reductase is distinguished by active site aromatic gate residues. J. Biol. Chem. 2016, 291, 9190–9202. [Google Scholar] [CrossRef]
- Lynch, K.L.; Jackson, W.A.; Rey, K.; Spear, J.R.; Rosenzweig, F.; Munakata-Marr, J. Evidence for biotic perchlorate reduction in naturally perchlorate-rich sediments of pilot valley basin, Utah. Astrobiology 2019, 19, 629–641. [Google Scholar] [CrossRef]
- Wilson, E.H.; Atreya, S.K.; Kaiser, R.I.; Mahaffy, P.R. Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism. J. Geophys. Res. Planets 2016, 121, 1472–1487. [Google Scholar] [CrossRef]
- Quinn, R.C.; Martucci, H.F.; Miller, S.R.; Bryson, C.E.; Grunthaner, F.J.; Grunthaner, P.J. Perchlorate radiolysis on Mars and the origin of Martian soil reactivity. Astrobiology 2013, 13, 515–520. [Google Scholar] [CrossRef]
- Hecht, M.H.; Kounaves, S.P.; Quinn, R.C.; West, S.J.; Young, S.M.; Ming, D.W.; Catling, D.C.; Clark, B.C.; Boynton, W.V.; Hoffman, J.; et al. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 2009, 325, 64–67. [Google Scholar] [CrossRef]
- Lu, H.; Gao, G.; Xu, G.; Fan, L.; Yin, L.; Shen, B.; Hua, Y. Deinococcus radiodurans PprI switches on DNA damage response and cellular survival networks after radiation damage. Mol. Cell. Proteom. 2009, 8, 481–494. [Google Scholar] [CrossRef]
- Gao, G.; Tian, B.; Liu, L.; Sheng, D.; Shen, B.; Hua, Y. Expression of Deinococcus radiodurans PprI enhances the radioresistance of Escherichia coli. DNA Repair 2003, 2, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Narumi, I.; Gao, G.; Tian, B.; Satoh, K.; Kitayama, S.; Shen, B. PprI: A general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem. Biophys. Res. Commun. 2003, 306, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Rantasalo, A.; Landowski, C.P.; Kuivanen, J.; Korppoo, A.; Reuter, L.; Koivistoinen, O.; Valkonen, M.; Penttila, M.; Jantti, J.; Mojzita, D. A universal gene expression system for fungi. Nucleic Acids Res. 2018, 46, e111. [Google Scholar] [CrossRef] [PubMed]
- Blazeck, J.; Alper, H. Systems metabolic engineering: Genome-scale models and beyond. Biotechnol. J. 2010, 5, 647–659. [Google Scholar] [CrossRef]
- Trinh, C.T.; Wlaschin, A.; Srienc, F. Elementary mode analysis: A useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl. Microbiol. Biotechnol. 2009, 81, 813–826. [Google Scholar] [CrossRef]
- Trinh, C.T.; Thompson, R.A. Elementary mode analysis: A useful metabolic pathway analysis tool for reprograming microbial metabolic pathways. Subcell. Biochem. 2012, 64, 21–42. [Google Scholar]
- Bouthier, D.L.T.C.; Blanchard, L.; Dulermo, R.; Ludanyi, M.; Devigne, A.; Armengaud, J.; Sommer, S.; de Groot, A. The abundant and essential HU proteins in Deinococcus deserti and Deinococcus radiodurans are translated from leaderless mRNA. Microbiology 2015, 161, 2410–2422. [Google Scholar] [CrossRef]
- Baudet, M.; Ortet, P.; Gaillard, J.C.; Fernandez, B.; Guerin, P.; Enjalbal, C.; Subra, G.; de Groot, A.; Barakat, M.; Dedieu, A.; et al. Proteomics-based refinement of Deinococcus deserti genome annotation reveals an unwonted use of non-canonical translation initiation codons. Mol. Cell. Proteom. 2010, 9, 415–426. [Google Scholar] [CrossRef]
- Dulermo, R.; Fochesato, S.; Blanchard, L.; De Groot, A. Mutagenic lesion bypass and two functionally different RecA proteins in Deinococcus deserti. Mol. Microbiol. 2009, 74, 194–208. [Google Scholar] [CrossRef]
- de Groot, A.; Roche, D.; Fernandez, B.; Ludanyi, M.; Cruveiller, S.; Pignol, D.; Vallenet, D.; Armengaud, J.; Blanchard, L. RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus deserti. Genome Biol. Evol. 2014, 6, 932–948. [Google Scholar] [CrossRef]
- Appukuttan, D.; Rao, A.S.; Apte, S.K. Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste. Appl. Environ. Microbiol. 2006, 72, 7873–7878. [Google Scholar] [CrossRef] [PubMed]
- Meima, R.; Lidstrom, M.E. Characterization of the minimal replicon of a cryptic Deinococcus radiodurans SARK plasmid and development of versatile Escherichia coli-D. radiodurans shuttle vectors. Appl. Environ. Microbiol. 2000, 66, 3856–3867. [Google Scholar] [CrossRef] [PubMed]
- Lewin, B. Promoter recognition depends on consensus sequences. In Genes IX; Jones & Bartlett Publishers: Sudbury, MA, USA, 2006; Chapter 11.12; pp. 272–274. [Google Scholar]
- Dai, S.; Xie, Z.; Wang, B.; Yu, N.; Zhao, J.; Zhou, Y.; Hua, Y.; Tian, B. Dynamic polyphosphate metabolism coordinating with manganese ions defends against oxidative stress in the extreme bacterium Deinococcus radiodurans. Appl. Environ. Microbiol. 2021, 87, e02785-20. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.; Lee, G.W.; Hong, S.H.; Kaur, S.; Jung, K.W.; Jung, J.H.; Lim, S.; Chung, B.Y.; Lee, S.S. Novel functions of peroxiredoxin Q from Deinococcus radiodurans R1 as a peroxidase and a molecular chaperone. FEBS Lett. 2019, 593, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Gao, K.; Yao, T.; Lu, H.; Zhou, C.; Guo, M.; Dai, S.; Wang, L.; Xu, H.; Tian, B.; et al. Late embryogenesis abundant group3 protein (DrLEA3) is involved in antioxidation in the extremophilic bacterium Deinococcus radiodurans. Microbiol. Res. 2020, 240, 126559. [Google Scholar] [CrossRef]
- Iwasaki, I.; Utsumi, S.; Kang, C. The spectrophotometric determination of micro amounts of perchlorate by the solvent-extraction method. B. Chem. Soc. Jpn. 1963, 36, 325–331. [Google Scholar] [CrossRef]
- Brumwell, S.L.; Van Belois, K.D.; Nucifora, D.P.; Karas, B.J. Slicer: A seamless gene deletion method for Deinococcus radiodurans. Biodes Res. 2023, 5, 9. [Google Scholar] [CrossRef]
- Voit, E.; Neves, A.R.; Santos, H. The intricate side of systems biology. Proc. Natl. Acad. Sci. USA 2006, 103, 9452–9457. [Google Scholar] [CrossRef]
- Dimas, R.P.; Jordan, B.R.; Jiang, X.L.; Martini, C.; Glavy, J.S.; Patterson, D.P.; Morcos, F.; Chan, C. Engineering DNA recognition and allosteric response properties of TetR family proteins by using a module-swapping strategy. Nucleic Acids Res. 2019, 47, 8913–8925. [Google Scholar] [CrossRef]
- Wang, C.Y.; Liu, L.C.; Wu, Y.C.; Zhang, Y.X. Identification and validation of four novel promoters for gene engineering with broad suitability across species. J. Microbiol. Biotechnol. 2021, 31, 1154–1162. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, F.; Xu, H.; Bai, Y.; Zhang, X.; Saris, P.E.; Qiao, M. Isolation of strong constitutive promoters from Lactococcus lactis subsp. lactis N8. FEMS Microbiol. Lett. 2015, 362, fnv107. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Gao, J.; Li, J.; Yu, W.; Bai, F.; Zhou, Y.J. Promoter engineering enables precise metabolic regulation towards efficient beta-elemene production in Ogataea polymorpha. Synth. Syst. Biotechnol. 2024, 9, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Sherman, M.W.; Chu, C.; Gonzalez, N.; Patel, T.; Contreras, L.M. Discovery and characterization of native Deinococcus radiodurans promoters for tunable gene expression. Appl. Environ. Microbiol. 2019, 85, e01356-19. [Google Scholar] [CrossRef] [PubMed]
- Bzymek, M.; Lovett, S.T. Instability of repetitive DNA sequences: The role of replication in multiple mechanisms. Proc. Natl. Acad. Sci. USA 2001, 98, 8319–8325. [Google Scholar] [CrossRef] [PubMed]
- Slade, D.; Lindner, A.B.; Paul, G.; Radman, M. Recombination and replication in DNA repair of heavily irradiated Deinococcus radiodurans. Cell 2009, 136, 1044–1055. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Z.; Tian, B.; Chen, W.; Hu, S.; Hua, Y. Transcriptional profile in response to ionizing radiation at low dose in Deinococcus radiodurans. Prog. Nat. Sci. 2007, 17, 529–536. [Google Scholar]
- Mortazavi, A.; Williams, B.A.; Mccue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
Name | Transcript ID | Gene ID | Protein Characteristics | FPKM |
---|---|---|---|---|
gene_1 | RS03290 | Deide_05740 | acyl carrier protein | 27,414.9 |
gene_2 | RS12670 | Deide_22131 | putative ferredoxin | 20,881.3 |
gene_3 | RS19070 | Deide_17971 | hypothetical protein | 19,113.8 |
gene_4 | RS19355 | Deide_04426 | conserved hypothetical protein, precursor | 13,246.9 |
gene_5 | RS02555 | Deide_04493 | hypothetical protein | 13,108.6 |
gene_6 | RS10680 | Deide_18600 | putative Thioredoxin | 11,626.1 |
gene_7 | RS11895 | Deide_20641 | hypothetical protein | 8012.08 |
gene_8 | RS00720 | Deide_01280 | putative transglycosylase associated protein | 6118.36 |
gene_9 | RS00860 | Deide_01461 | putative adenylate/guanylate cyclase | 5842.14 |
gene_10 | RS13035 | Deide_22810 | hypothetical protein | 5471.95 |
gene_11 | RS10440 | Deide_18130 | hypothetical protein | 5034.39 |
gene_12 | RS10375 | Deide_18000 | hypothetical protein | 4916.47 |
gene_13 | RS19380 | Deide_15270 | hypothetical protein | 4738.24 |
gene_14 | RS01615 | Deide_02853 | hypothetical protein | 4392.33 |
gene_15 | RS06335 | Deide_11052 | preprotein translocase SecG subunit | 3790.97 |
gene_16 | RS11225 | Deide_19564 | hypothetical protein | 3758.24 |
gene_17 | RS04270 | Deide_07352 | hypothetical protein | 3715.04 |
gene_18 | RS18505 | Deide_20313 | hypothetical protein | 3694.73 |
gene_19 | RS03580 | Deide_06180 | conserved hypothetical protein, precursor | 3349.25 |
gene_20 | RS08665 | Deide_15010 | putative Peptidylprolyl isomerase | 3184.30 |
gene_21 | RS01005 | Deide_01740 | putative peptidase S8 and S53 | 3099.67 |
gene_22 | RS03375 | Deide_05864 | hypothetical protein | 3080.87 |
gene_23 | RS19395 | Deide_19231 | hypothetical protein | 2953.04 |
gene_24 | RS01030 | Deide_01780 | conserved hypothetical protein | 2907.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Tan, Z.; Wang, B.; Xu, H.; Zhao, Y.; Tian, B.; Hua, Y.; Wang, L. The Construction of an Extreme Radiation-Resistant Perchlorate-Reducing Bacterium Using Deinococcus deserti Promoters. Int. J. Mol. Sci. 2024, 25, 11533. https://doi.org/10.3390/ijms252111533
Chen S, Tan Z, Wang B, Xu H, Zhao Y, Tian B, Hua Y, Wang L. The Construction of an Extreme Radiation-Resistant Perchlorate-Reducing Bacterium Using Deinococcus deserti Promoters. International Journal of Molecular Sciences. 2024; 25(21):11533. https://doi.org/10.3390/ijms252111533
Chicago/Turabian StyleChen, Shanhou, Zichun Tan, Binqiang Wang, Hong Xu, Ye Zhao, Bing Tian, Yuejin Hua, and Liangyan Wang. 2024. "The Construction of an Extreme Radiation-Resistant Perchlorate-Reducing Bacterium Using Deinococcus deserti Promoters" International Journal of Molecular Sciences 25, no. 21: 11533. https://doi.org/10.3390/ijms252111533
APA StyleChen, S., Tan, Z., Wang, B., Xu, H., Zhao, Y., Tian, B., Hua, Y., & Wang, L. (2024). The Construction of an Extreme Radiation-Resistant Perchlorate-Reducing Bacterium Using Deinococcus deserti Promoters. International Journal of Molecular Sciences, 25(21), 11533. https://doi.org/10.3390/ijms252111533