Changes in Gut Microbial Composition and DNA Methylation in Obese Patients with NAFLD After Bariatric Surgery
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Study Participants
2.2. Gut Microbiota Diversity and Taxonomic Distribution of Predominant Bacteria in NAFLD Patients
2.3. Association Between Clinical, Biochemical, and Lifestyle Characteristics and Taxa Relative Abundance of NAFLD Patients at Baseline
2.4. Changes in Clinical Characteristics, Biochemical Parameters, and Gut Microbiota Diversity After Bariatric Surgery
2.5. Changes in the DNA Methylation Profile After Bariatric Surgery
3. Discussion
4. Materials and Methods
4.1. Study Design and Population
4.2. Clinical and Biochemical Assessment
4.3. Lifestyle and Diet Quality Assessment
4.4. Bariatric Surgery Intervention and Follow-Up of Patients
4.5. Gut Microbiota Analysis
4.6. DNA Methylation Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kani, H.T.; Ozer Demirtas, C.; Keklikkiran, C.; Ergenc, I.; Mehdiyev, S.; Akdeniz, E.; Yilmaz, Y. Evaluation of the Impact of Metabolic Syndrome on Fibrosis in Metabolic Dysfunction-Associated Fatty Liver Disease. Turk. J. Gastroenterol. 2021, 32, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD Development and Therapeutic Strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, C.M.; Garcia, M.; Armando, L.; Ortiz, G.; Lascano, F.M.; Foscarini, J.M. Laparoscopic Sleeve Gastrectomy Resolves NAFLD: Another Formal Indication for Bariatric Surgery? Obes. Surg. 2018, 28, 4022–4033. [Google Scholar] [CrossRef] [PubMed]
- Fakhry, T.K.; Mhaskar, R.; Schwitalla, T.; Muradova, E.; Gonzalvo, J.P.; Murr, M.M. Bariatric Surgery Improves Nonalcoholic Fatty Liver Disease: A Contemporary Systematic Review and Meta-Analysis. Surg. Obes. Relat. Dis. 2019, 15, 502–511. [Google Scholar] [CrossRef]
- Sepulveda-Villegas, M.; Roman, S.; Rivera-Iñiguez, I.; Ojeda-Granados, C.; Gonzalez-Aldaco, K.; Torres-Reyes, L.A.; Jose-Abrego, A.; Panduro, A. High Prevalence of Nonalcoholic Steatohepatitis and Abnormal Liver Stiffness in a Young and Obese Mexican Population. PLoS ONE 2019, 14, e0208926. [Google Scholar] [CrossRef] [PubMed]
- Petrucciani, N.; Gugenheim, J. Molecular Pathways between Obesity, Non-Alcoholic Steatohepatitis (NASH) and Hepatocellular Carcinoma (HCC). Hepatobiliary Surg. Nutr. 2019, 8, 395–397. [Google Scholar] [CrossRef]
- Marengo, A.; Rosso, C.; Bugianesi, E. Liver Cancer: Connections with Obesity, Fatty Liver, and Cirrhosis. Annu. Rev. Med. 2016, 67, 103–117. [Google Scholar] [CrossRef]
- Seo, M.-W.; Eum, Y.; Jung, H.C. Increased Risk of Cardiometabolic Disease in Normal-Weight Individuals with Non-Alcoholic Fatty Liver Disease. Obes. Res. Clin. Pract. 2023, 17, 390–397. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A Multisociety Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. Ann. Hepatol. 2024, 29, 101133. [Google Scholar] [CrossRef]
- Tilg, H.; Adolph, T.E.; Dudek, M.; Knolle, P. Non-Alcoholic Fatty Liver Disease: The Interplay between Metabolism, Microbes and Immunity. Nat. Metab. 2021, 3, 1596–1607. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.-F.; Schattenberg, J.M.; et al. A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Mazo, D.F.; Malta, F.M.; Stefano, J.T.; Salles, A.P.M.; Gomes-Gouvea, M.S.; Nastri, A.C.S.; Almeida, J.R.; Pinho, J.R.R.; Carrilho, F.J.; Oliveira, C.P. Validation of PNPLA3 Polymorphisms as Risk Factor for NAFLD and Liver Fibrosis in an Admixed Population. Ann. Hepatol. 2019, 18, 466–471. [Google Scholar] [CrossRef]
- Salari, N.; Darvishi, N.; Mansouri, K.; Ghasemi, H.; Hosseinian-Far, M.; Darvishi, F.; Mohammadi, M. Association between PNPLA3 Rs738409 Polymorphism and Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. BMC Endocr. Disord. 2021, 21, 125. [Google Scholar] [CrossRef] [PubMed]
- Pirola, C.J.; Salatino, A.; Quintanilla, M.F.; Castaño, G.O.; Garaycoechea, M.; Sookoian, S. The Influence of Host Genetics on Liver Microbiome Composition in Patients with NAFLD. eBioMedicine 2022, 76, 103858. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Yang, C.; Xu, J.; Xu, X.; Xu, W.; Tong, B.; Wang, S.; Ji, R.; Tan, Y.; Zhu, Y. Characteristics of Gut Microbiota in Patients with Metabolic Associated Fatty Liver Disease. Sci. Rep. 2023, 13, 9988. [Google Scholar] [CrossRef]
- Aron-Wisnewsky, J.; Warmbrunn, M.V.; Nieuwdorp, M.; Clément, K. Nonalcoholic Fatty Liver Disease: Modulating Gut Microbiota to Improve Severity? Gastroenterology 2020, 158, 1881–1898. [Google Scholar] [CrossRef]
- Sharpton, S.R.; Schnabl, B.; Knight, R.; Loomba, R. Current Concepts, Opportunities, and Challenges of Gut Microbiome-Based Personalized Medicine in Nonalcoholic Fatty Liver Disease. Cell Metab. 2021, 33, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Castaño-Rodríguez, N.; Mitchell, H.M.; Kaakoush, N.O. NAFLD, Helicobacter Species and the Intestinal Microbiome. Best Pract. Res. Clin. Gastroenterol. 2017, 31, 657–668. [Google Scholar] [CrossRef]
- Cheng, D.; He, C.; Ai, H.; Huang, Y.; Lu, N. The Possible Role of Helicobacter Pylori Infection in Non-Alcoholic Fatty Liver Disease. Front. Microbiol. 2017, 8, 743. [Google Scholar] [CrossRef]
- von Schönfels, W.; Beckmann, J.H.; Ahrens, M.; Hendricks, A.; Röcken, C.; Szymczak, S.; Hampe, J.; Schafmayer, C. Histologic Improvement of NAFLD in Patients with Obesity after Bariatric Surgery Based on Standardized NAS (NAFLD Activity Score). Surg. Obes. Relat. Dis. 2018, 14, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Lassailly, G.; Caiazzo, R.; Buob, D.; Pigeyre, M.; Verkindt, H.; Labreuche, J.; Raverdy, V.; Leteurtre, E.; Dharancy, S.; Louvet, A.; et al. Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients. Gastroenterology 2015, 149, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Kwak, M.; Mehaffey, J.H.; Hawkins, R.B.; Hsu, A.; Schirmer, B.; Hallowell, P.T. Bariatric Surgery Is Associated with Reduction in Non-Alcoholic Steatohepatitis and Hepatocellular Carcinoma: A Propensity Matched Analysis. Am. J. Surg. 2020, 219, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Calderon, J.R.; Cuellar-Tamez, R.; Castillo, E.C.; Luna-Ceron, E.; García-Rivas, G.; Elizondo-Montemayor, L. Metabolic Shift Precedes the Resolution of Inflammation in a Cohort of Patients Undergoing Bariatric and Metabolic Surgery. Sci. Rep. 2021, 11, 12127. [Google Scholar] [CrossRef]
- Ahrens, M.; Ammerpohl, O.; von Schönfels, W.; Kolarova, J.; Bens, S.; Itzel, T.; Teufel, A.; Herrmann, A.; Brosch, M.; Hinrichsen, H.; et al. DNA Methylation Analysis in Nonalcoholic Fatty Liver Disease Suggests Distinct Disease-Specific and Remodeling Signatures after Bariatric Surgery. Cell Metab. 2013, 18, 296–302. [Google Scholar] [CrossRef]
- Kheirvari, M.; Dadkhah Nikroo, N.; Jaafarinejad, H.; Farsimadan, M.; Eshghjoo, S.; Hosseini, S.; Anbara, T. The Advantages and Disadvantages of Sleeve Gastrectomy; Clinical Laboratory to Bedside Review. Heliyon 2020, 6, e03496. [Google Scholar] [CrossRef]
- Głuszyńska, P.; Łukaszewicz, A.; Diemieszczyk, I.; Chilmończyk, J.; Reszeć, J.; Citko, A.; Szczerbiński, Ł.; Krętowski, A.; Razak Hady, H. The Effect of Laparoscopic Sleeve Gastrectomy on the Course of Non-Alcoholic Fatty Liver Disease in Morbidly Obese Patients during One Year of Follow Up. J. Clin. Med. 2023, 12, 4122. [Google Scholar] [CrossRef]
- Eilenberg, M.; Langer, F.B.; Beer, A.; Trauner, M.; Prager, G.; Staufer, K. Significant Liver-Related Morbidity After Bariatric Surgery and Its Reversal-a Case Series. Obes. Surg. 2018, 28, 812–819. [Google Scholar] [CrossRef]
- Ahmed, L.; Gebran, S.; Persaud, A.; Saeed, K.; Khan, K.; Saeed, S.; Alothman, S.; Passos-Fox, B.; DePaz, H.; Suman, P. The Use of Noninvasive Scores in Predicting NAFLD Progression After Bariatric Surgery. Obes. Surg. 2023, 33, 4026–4033. [Google Scholar] [CrossRef]
- Wu, J.; Wang, K.; Wang, X.; Pang, Y.; Jiang, C. The Role of the Gut Microbiome and Its Metabolites in Metabolic Diseases. Protein Cell 2021, 12, 360–373. [Google Scholar] [CrossRef]
- Hassan, N.E.; El-Masry, S.A.; El Shebini, S.M.; Ahmed, N.H.; Mohamed, T.F.; Mostafa, M.I.; Afify, M.A.S.; Kamal, A.N.; Badie, M.M.; Hashish, A.; et al. Gut Dysbiosis Is Linked to Metabolic Syndrome in Obese Egyptian Women: Potential Treatment by Probiotics and High Fiber Diets Regimen. Sci. Rep. 2024, 14, 5464. [Google Scholar] [CrossRef] [PubMed]
- Kaakoush, N.O. Insights into the Role of Erysipelotrichaceae in the Human Host. Front. Cell. Infect. Microbiol. 2015, 5, 84. [Google Scholar] [CrossRef] [PubMed]
- Tett, A.; Pasolli, E.; Masetti, G.; Ercolini, D.; Segata, N. Prevotella Diversity, Niches and Interactions with the Human Host. Nat. Rev. Microbiol. 2021, 19, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Human Gut Microbes Associated with Obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A Core Gut Microbiome in Obese and Lean Twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.-M.; Kennedy, S.; et al. Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef]
- Hsu, C.L.; Schnabl, B. The Gut-Liver Axis and Gut Microbiota in Health and Liver Disease. Nat. Rev. Microbiol. 2023, 21, 719–733. [Google Scholar] [CrossRef]
- Park, Y.S.; Ahn, K.; Yun, K.; Jeong, J.; Baek, K.-W.; Lee, J.; Kim, H.-H.; Han, K.; Ahn, Y.J. Alterations in Gastric and Gut Microbiota Following Sleeve Gastrectomy in High-Fat Diet-Induced Obese Rats. Sci. Rep. 2023, 13, 21294. [Google Scholar] [CrossRef]
- Lin, X.-H.; Huang, K.-H.; Chuang, W.-H.; Luo, J.-C.; Lin, C.-C.; Ting, P.-H.; Young, S.-H.; Fang, W.-L.; Hou, M.-C.; Lee, F.-Y. The Long Term Effect of Metabolic Profile and Microbiota Status in Early Gastric Cancer Patients after Subtotal Gastrectomy. PLoS ONE 2018, 13, e0206930. [Google Scholar] [CrossRef]
- Ulker, İ.; Yildiran, H. The Effects of Bariatric Surgery on Gut Microbiota in Patients with Obesity: A Review of the Literature. Biosci. Microbiota Food Health 2019, 38, 3–9. [Google Scholar] [CrossRef]
- Mohammadzadeh, N.; Razavi, S.; Ebrahimipour, G. Impact of Bariatric Surgery on Gut Microbiota Composition in Obese Patients Compared to Healthy Controls. AMB Expr. 2024, 14, 115. [Google Scholar] [CrossRef] [PubMed]
- Dempsey, E.; Corr, S.C. Lactobacillus Spp. for Gastrointestinal Health: Current and Future Perspectives. Front. Immunol. 2022, 13, 840245. [Google Scholar] [CrossRef]
- Hitch, T.C.A.; Hall, L.J.; Walsh, S.K.; Leventhal, G.E.; Slack, E.; de Wouters, T.; Walter, J.; Clavel, T. Microbiome-Based Interventions to Modulate Gut Ecology and the Immune System. Mucosal Immunol. 2022, 15, 1095–1113. [Google Scholar] [CrossRef]
- Mann, E.R.; Lam, Y.K.; Uhlig, H.H. Short-Chain Fatty Acids: Linking Diet, the Microbiome and Immunity. Nat. Rev. Immunol. 2024, 24, 577–595. [Google Scholar] [CrossRef]
- Allen, E.A.; Baehrecke, E.H. Autophagy in Animal Development. Cell Death Differ. 2020, 27, 903–918. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, P.; Fu, S.; Calay, E.S.; Hotamisligil, G.S. Defective Hepatic Autophagy in Obesity Promotes ER Stress and Causes Insulin Resistance. Cell Metab. 2010, 11, 467. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-Y.; Han, J.; Cao, S.Y.; Hong, T.; Zhuo, D.; Shi, J.; Liu, Z.; Cao, W. Hepatic Autophagy Is Suppressed in the Presence of Insulin Resistance and Hyperinsulinemia: Inhibition of FoxO1-Dependent Expression of Key Autophagy Genes by Insulin. J. Biol. Chem. 2009, 284, 31484–31492. [Google Scholar] [CrossRef] [PubMed]
- Czaja, M.J.; Ding, W.-X.; Donohue, T.M.; Friedman, S.L.; Kim, J.-S.; Komatsu, M.; Lemasters, J.J.; Lemoine, A.; Lin, J.D.; Ou, J.J.; et al. Functions of Autophagy in Normal and Diseased Liver. Autophagy 2013, 9, 1131. [Google Scholar] [CrossRef]
- Choi, E.; Bai, X.-C. The Activation Mechanism of the Insulin Receptor: A Structural Perspective. Annu. Rev. Biochem. 2023, 92, 247–272. [Google Scholar] [CrossRef]
- Xiong, H.; Sun, L.; Lian, J.; He, F. Involvement of Acetylation of ATG4B in Controlling Autophagy Induction. Autophagy 2023, 19, 1039–1041. [Google Scholar] [CrossRef]
- Rashid, F.; Awan, H.M.; Shah, A.; Chen, L.; Shan, G. Induction of miR-3648 Upon ER Stress and Its Regulatory Role in Cell Proliferation. Int. J. Mol. Sci. 2017, 18, 1375. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, J.; Li, C.; Yang, X. Research of the Effect of miR-663 on the Proliferation of Prostate Cancer Cells, and the Correlations of miR-663 with Pathological Grade and Clinical Stage. J. BU ON 2017, 22, 1011–1016. [Google Scholar]
- Li, Y.; Pan, Y.; Zhao, X.; Wu, S.; Li, F.; Wang, Y.; Liu, B.; Zhang, Y.; Gao, X.; Wang, Y.; et al. Peroxisome Proliferator-Activated Receptors: A Key Link between Lipid Metabolism and Cancer Progression. Clin. Nutr. 2024, 43, 332–345. [Google Scholar] [CrossRef] [PubMed]
- De Luca, M.; Zappa, M.A.; Zese, M.; Bardi, U.; Carbonelli, M.G.; Carrano, F.M.; Casella, G.; Chianelli, M.; Chiappetta, S.; Iossa, A.; et al. Development of the Italian Clinical Practice Guidelines on Bariatric and Metabolic Surgery: Design and Methodological Aspects. Nutrients 2022, 15, 189. [Google Scholar] [CrossRef]
- Lee, J.-H.; Kim, D.; Kim, H.J.; Lee, C.-H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.-H.; Cho, S.-H.; Sung, M.-W.; et al. Hepatic Steatosis Index: A Simple Screening Tool Reflecting Nonalcoholic Fatty Liver Disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; S Sulkowski, M.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a Simple Noninvasive Index to Predict Significant Fibrosis in Patients with HIV/HCV Coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Weir, C.B.; Jan, A. BMI Classification Percentile and Cut Off Points. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Bredin, C.; Naimimohasses, S.; Norris, S.; Wright, C.; Hancock, N.; Hart, K.; Moore, J.B. Development and Relative Validation of a Short Food Frequency Questionnaire for Assessing Dietary Intakes of Non-Alcoholic Fatty Liver Disease Patients. Eur. J. Nutr. 2020, 59, 571–580. [Google Scholar] [CrossRef]
- Naimimohasses, S.; O’Gorman, P.; Wright, C.; Ni Fhloinn, D.; Holden, D.; Conlon, N.; Monaghan, A.; Kennedy, M.; Gormley, J.; Beddy, P.; et al. Differential Effects of Dietary versus Exercise Intervention on Intrahepatic MAIT Cells and Histological Features of NAFLD. Nutrients 2022, 14, 2198. [Google Scholar] [CrossRef]
- Akalin, A.; Kormaksson, M.; Li, S.; Garrett-Bakelman, F.E.; Figueroa, M.E.; Melnick, A.; Mason, C.E. methylKit: A Comprehensive R Package for the Analysis of Genome-Wide DNA Methylation Profiles. Genome Biol. 2012, 13, R87. [Google Scholar] [CrossRef]
- Park, Y.; Wu, H. Differential Methylation Analysis for BS-Seq Data under General Experimental Design. Bioinformatics 2016, 32, 1446–1453. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.-G.; He, Q.-Y. ChIPseeker: An R/Bioconductor Package for ChIP Peak Annotation, Comparison and Visualization. Bioinformatics 2015, 31, 2382–2383. [Google Scholar] [CrossRef] [PubMed]
Clinical Parameter | NAFLD Patients Undergoing SG (n = 22) | p | |
---|---|---|---|
Baseline | After SG | ||
BMI, kg/m2 | 40.4 (5.6) | 30.5 (4.8) | <0.001 |
Overweight | 0 (0.0) | 8 (36.4) | <0.001 |
Obesity Class I | 0 (0.0) | 10 (45.5) | |
Obesity Class II | 10 (45.5) | 3 (13.6) | |
Obesity Class III | 12 (54.5) | 1 (4.5) | |
Body fat, % | 65.0 (22.0) | 46.8 (18.0) | <0.001 |
WHtR | 0.78 (0.06) | 0.69 (0.10) | <0.001 |
PLT, 109/L | 262.0 (78.0) | 222.5 (77.0) | <0.001 |
Urea, mg/dL | 31.4 (7.3) | 30.9 (10.3) | 0.626 |
Creatinine, mg/dL | 0.78 (0.22) | 0.71 (0.20) | 0.062 |
Albumin, g/dL | 4.4 (0.5) | 4.3 (0.4) | 0.650 |
Blood glucose, mg/dL | 90.0 (19) | 86.5 (9.0) | 0.030 |
Total cholesterol, mg/dL | 189.5 (43) | 182.4 (49.0) | 0.455 |
Triglycerides, mg/dL | 118.0 (83.0) | 84.0 (41.0) | <0.001 |
HDL-c, mg/dL | 45.0 (11.0) | 48.5 (17.0) | 0.010 |
LDL-c, mg/dL | 119.5 (32.0) | 113.05 (33.0) | 0.263 |
VLDL-c, mg/dL | 23.6 (16.5) | 16.8 (8.1) | <0.001 |
GGT, IU/L | 28.0 (23.0) | 13.0 (8.0) | <0.001 |
ALT, IU/L | 25.5 (29.3) | 11.4 (10.1) | <0.001 |
AST, IU/L | 20.9 (11.9) | 16.0 (7.5) | <0.001 |
AST/ALT ratio | 0.74 (0.34) | 1.3 (0.75) | <0.001 |
Total bilirubin, mg/dL | 0.37 (0.25) | 0.67 (0.33) | <0.001 |
HIS | 54.2 (9.8) | 39.1 (6.55) | <0.001 |
FIB-4 | 0.65 (0.44) | 0.79 (0.63) | <0.001 |
FIB-4 fibrosis stage | 0.317 | ||
0–1 | 19 (86.4) | 18 (81.8) | |
2–3 | 3 (13.6) | 4 (18.2) | |
ARFI fibrosis stage | 0.317 | ||
F0 | 19 (86.4) | 18 (81.8) | |
F1 | 3 (13.6) | 3 (13.6) | |
F2 | 0 (0.0) | 1 (4.5) |
Taxonomy Level | Name | log2FC | p-Values | FDR |
---|---|---|---|---|
Class | Bacilli | 2.8717 | 3.08 × 10−6 | 8.63 × 10−5 |
Class | Erysipelotrichia | −1.2383 | 0.002898 | 0.04057 |
Order | Lactobacillales | 2.8717 | 3.0069 × 10−6 | 0.000153 |
Family | Lactobacillaceae | 3.09 | 6.6511 × 10−7 | 5.7865 × 10−5 |
Genus | Lactobacillus | 3.0832 | 4.9059 × 10−7 | 0.000106 |
Species | Lactobacillus crispatus | 1.6327 | 1.1462 × 10−7 | 9.2617 × 10−5 |
Species | Lactobacillus iners | 1.365 | 2.4339 × 10−5 | 0.01311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agodi, A.; Ojeda-Granados, C.; Maugeri, A.; Barchitta, M.; Coco, O.; Pezzino, S.; Magro, G.; Greca, G.L.; Latteri, F.S.; Castorina, S.; et al. Changes in Gut Microbial Composition and DNA Methylation in Obese Patients with NAFLD After Bariatric Surgery. Int. J. Mol. Sci. 2024, 25, 11510. https://doi.org/10.3390/ijms252111510
Agodi A, Ojeda-Granados C, Maugeri A, Barchitta M, Coco O, Pezzino S, Magro G, Greca GL, Latteri FS, Castorina S, et al. Changes in Gut Microbial Composition and DNA Methylation in Obese Patients with NAFLD After Bariatric Surgery. International Journal of Molecular Sciences. 2024; 25(21):11510. https://doi.org/10.3390/ijms252111510
Chicago/Turabian StyleAgodi, Antonella, Claudia Ojeda-Granados, Andrea Maugeri, Martina Barchitta, Ornella Coco, Salvatore Pezzino, Gaetano Magro, Gaetano La Greca, Francesco Saverio Latteri, Sergio Castorina, and et al. 2024. "Changes in Gut Microbial Composition and DNA Methylation in Obese Patients with NAFLD After Bariatric Surgery" International Journal of Molecular Sciences 25, no. 21: 11510. https://doi.org/10.3390/ijms252111510
APA StyleAgodi, A., Ojeda-Granados, C., Maugeri, A., Barchitta, M., Coco, O., Pezzino, S., Magro, G., Greca, G. L., Latteri, F. S., Castorina, S., & Puleo, S. (2024). Changes in Gut Microbial Composition and DNA Methylation in Obese Patients with NAFLD After Bariatric Surgery. International Journal of Molecular Sciences, 25(21), 11510. https://doi.org/10.3390/ijms252111510