Synthesis, the Reversible Isostructural Phase Transition, and the Dielectric Properties of a Functional Material Based on an Aminobenzimidazole–Iron Thiocyanate Complex
Abstract
1. Introduction
2. Results and Discussion
2.1. IR Spectroscopy
2.2. Powder XRD Analysis
2.3. Crystal Structure Analysis
2.4. Hirshfeld Surface Analysis
2.5. UV-Vis Spectral Analysis
2.6. TGA
2.7. DSC Analysis
2.8. Dielectric Property Tests
3. Materials and Methods
3.1. Reagents and Instruments
3.2. Synthesis of Compound 1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, T.; Cheng, C.; Zhang, W.-Y.; Ye, Q.; Fu, D.-W. Semiconducting Organic—Inorganic Hybrid Material with Distinct Switchable Dielectric Phase Transition. J. Phys. Chem. C 2018, 122, 20989–20995. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Tang, Y.-Y.; Gu, Z.-X.; Wang, P.; Chen, X.-G.; Lv, H.-P.; Li, P.-F.; Jiang, Q.; Gu, N.; Ren, S.; et al. Biodegradable ferroelectric molecular crystal with large piezoelectric response. Science 2024, 383, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.P.; Ding, N.; Wang, N.; Ye, H.-Y.; Shi, C.; Dong, S. Fast switching of spontaneous polarization in a microporous molecular rotor ferroelectric. Inorg. Chem. Front. 2023, 10, 61–66. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Y.; Li, T. Crystal structure, thin film preparation, theoretical and experimental study the nonlinear optical properties of a novel copper complex. Inorg. Chem. Commun. 2021, 12, 108–115. [Google Scholar] [CrossRef]
- Ravisankar, V.; Ramesh, V.; Girisun, T.C.S.; Sridevi, D.V.; Gunasekaran, B. Synthesis, growth, structural, physicochemical, linear and nonlinear optical properties of new hybrid [(Ba(C10H20O5)2)(Mn(SCN)4)] single crystal. Appl. Phys. A 2021, 127, 885. [Google Scholar] [CrossRef]
- Zheng, H.; Meng, Y.S.; Zhou, G.L.; Duan, C.; Sato, O.; Hayami, S.; Luo, Y.; Liu, T. Simultaneous Modulation of Magnetic and Dielectric Transition via Spin-Crossover-Tuned Spin Arrangement and Charge Distribution. Angew. Chem. Intl. Ed. 2018, 57, 8468–8472. [Google Scholar] [CrossRef]
- Zheng, X.D.; Huang, Y.L.; Tong, Y.P. A pair of homochiral complexes generated via spontaneous resolution: Synthesis, structures and dielectric properties. Inorg. Chem. Acta 2018, 48, 454–459. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Q.L.; Tan, Y.H.; Tang, Y.-Z.; Fan, X.-W.; Luo, J.-L.; Wang, F.-X.; Wan, M.-Y. High-Temperature Ferroelasticity and Photoluminescence in a 2D Monolayer Perovskite Compound: (C5NH8Br)2PbBr4. Inorg. Chem. 2023, 62, 10847–10853. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Ying, T.T.; Tan, Y.H.; Tang, Y.-Z.; Liao, J.; Wang, L.-J.; Wang, F.-X.; Wan, M.-Y. 2-Chloroethylamine·trifluoromethanesulfonate combined with 18-crown-6: A ferroelectric with excellent dielectric switching properties. Dalton Trans. 2023, 52, 11196–11202. [Google Scholar] [CrossRef] [PubMed]
- Trzebiatowska, M.; Kowalska, D.A.; Gusowski, M.A.; Jach, E.; Ciżman, A. Dielectric switching in correlation with the structural phase transitions in tetrapropylammonium perchlorate. Phys. Chem. Chem. Phys. 2023, 25, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.X.; Chen, X.X.; Ye, Z.M.; Zhang, W.X.; Chen, X.M. High- and low-temperature dual ferroelasticity in a new hybrid crystal:(Me3NCH2CH2OH)4[Ni(NCS)6]. Sci. China Mater. 2022, 65, 263–267. [Google Scholar] [CrossRef]
- He, L.; Zhou, L.; Shi, P.-P.; Ye, Q.; Fu, D.-W. One-dimensional cadmium thiocyanate perovskite ferroelastics tuned by halogen substitution. Chem. Mater. 2019, 31, 10236–10242. [Google Scholar] [CrossRef]
- Sarkar, S.; Ghosh, S.R.; Brandão, P.; Jana, A.D. Role of imidazole edge to edge supramolecular interaction in the crystal packing of Cu(II)(SCN−)2(imidazole)2 complex: A novel variety of supramolecular interaction revealed by CCDC database analysis and explored through DFT computational studies. J. Mol. Struct. 2021, 12, 278–291. [Google Scholar] [CrossRef]
- Sadhu, M.H.; Kumar, S.B. Synthesis, characterization and structures of copper(II), nickel(II), cobalt(II) and cadmium(II) complexes involving N4–donor ligand and cyanate as coligand: Formation of 1D and 2D crystallographic networks by short intermolecular interactions. Polyhedron 2017, 12, 419–429. [Google Scholar] [CrossRef]
- Karoui, S.; Chouaib, H.; Kamoun, S. Synthesis, X-ray powder diffraction study, thermal analysis, Hirshfeld surface analysis and optical properties of new crystalline polymer: {(C2H10N2)(MnCl(NCS)2)2}n. J. Mol. Struct. 2021, 1223, 128933. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhang, T.; Lun, M.M.; Zhang, Y.; Chen, L.; Fu, D. Facile Control of Ferroelectricity Driven by Ingenious Interaction Engineering. Small 2023, 19, e2301364. [Google Scholar] [CrossRef]
- Wan, M.Y.; Tang, Y.Z.; Tan, Y.H.; Wang, F.-X.; Li, Y.-N.; Wang, L.-J.; Liao, J.; Wang, M.-N. Excellent Switchable Properties, Broad-Band Emission, Ferroelectricity, and High T c in a Two-Dimensional Hybrid Perovskite: (4,4-DCA)2PbBr4 Exploited by H/F Substitution. Inorg. Chem. 2023, 62, 12525–12533. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, T.; Zhang, Z.-X.; Su, C.-Y.; Zhang, Y.; Fu, D.-W. Methylation Design Strategy to Trigger a Dual Dielectric Switch and Improve the Phase Transition Temperature. Inorg. Chem. 2020, 59, 16635–16643. [Google Scholar] [CrossRef]
- Su, C.-Y.; Zhang, Z.-X.; Zhang, W.-Y.; Shi, P.-P.; Fu, D.-W.; Ye, Q. Unique Design Strategy for Dual Phase Transition That Successfully Validates Dual Switch Implementation in the Dielectric Material. Inorg. Chem. 2020, 59, 4720–4728. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Shi, P.-P.; Zheng, X.; Geng, F.-J.; Ye, Q.; Fu, D.-W. Molecular design of high-temperature organic dielectric switches. Chem. Commun. 2018, 54, 13111–13114. [Google Scholar] [CrossRef] [PubMed]
- Day, B.J.; Bratcher, P.E.; Chandler, J.D.; Kilgore, M.B.; Min, E.; LiPuma, J.J.; Hondal, R.J.; Nichols, D.P. The thiocyanate analog selenocyanate is a more potent antimicrobial pro-drug that also is selectively detoxified by the host. Free Radic. Biol. Med. 2020, 146, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Numata, Y.; Sanehira, Y.; Ishikawa, R.A.; Shirai, H.; Miyasaka, T. Thiocyanate Containing Two-Dimensional Cesium Lead Iodide Perovskite, Cs2PbI2(NCS)2: Characterization, Photovoltaic Application, and Degradation Mechanism. ACS Appl. Mater. Interfaces 2018, 10, 42363–42371. [Google Scholar] [CrossRef]
- Echeverría, J. Intermolecular Interactions between Thiocyanato Ligands in Metal Complexes. Cryst. Growth Des. 2021, 21, 1636–1644. [Google Scholar] [CrossRef]
- Peng, H.; Xu, Z.K.; Du, Y.; Li, P.; Wang, Z.; Xiong, R.; Liao, W. The First Enantiomeric Stereogenic Sulfur-Chiral Organic Ferroelectric Crystals. Angew. Chem. Intl. Ed. 2023, 62, e202306732. [Google Scholar] [CrossRef]
- Jia, Q.Q.; Lun, M.M.; Teri, G.; Xie, L.-Y.; Fu, D.-W.; Guo, Q. Fluorescence Emission Is Highly Structure-Dependent in Hybrid Lead Halides. Inorg. Chem. 2023, 62, 7186–7194. [Google Scholar] [CrossRef] [PubMed]
- Moon, D.; Choi, J.H. Synthesis, Crystal Structure, Infrared Spectroscopy and Hirshfeld Surface Analysis of Cis-(Thiocyanato-κN)(1,4,8,11-Tetraazacyclotetradecane-κN4)Chromium(III)(µ-1,3-Thiocyanato-κN,S)Trichloridozincate. J. Coord. Chem. 2021, 74, 969–982. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zhang, Z.X.; Su, C.Y.; Zhang, T.; Fu, D.-W.; Zhang, Y. A-site cation with high vibrational motion in ABX3 perovskite effectively induces dielectric phase transition. Dalton Trans. 2021, 50, 3841–3847. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, W.; Gao, L.; Gan, X.; Sun, X.; Cui, Z.; Cai, H.-L.; Wu, X.S. A high-temperature organic-inorganic ferroelectric with outstanding switchable dielectric characteristics. RSC Adv. 2017, 7, 47933–47937. [Google Scholar] [CrossRef]
- Sui, Y.; Zhang, G.; Wang, W.; Hu, F.; Liu, C.L.; Luo, D.; Liu, D.S. A semiconducting organic-inorganic hybrid metal halide [(C6H15ClNO)2CdBr4] with switchable dielectric and large phase transition thermal hysteresis. ChemistrySelect 2019, 4, 3921–3925. [Google Scholar] [CrossRef]
- Portela, S.; Fernández, I. Nature of the hydrogen bond enhanced halogen bond. Molecules 2021, 26, 1885. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Dong, X.X.; Xu, Q.; Tan, Y.H.; Tang, Y.Z. Nopinic acid is an unprecedented homochiral single-component organic ferroelectric. Appl. Mater. Today 2020, 20, 10–27. [Google Scholar] [CrossRef]
- Deng, B.-W.; Yang, Z.; Ding, K.; Li, J.; Lun, M.-M.; Fu, D.-W.; Zhang, Z.-X. Homochiral Chemistry Strategy to Trigger Second-Harmonic Generation and Dual Dielectric Switches. Inorg. Chem. 2023, 62, 11701–11707. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.L.; Ying, T.T.; Zhao, Y.R.; Tang, Y.Z.; Tan, Y.-H.; Li, Q.-L.; Liu, W.-F.; Wan, M.-Y.; Wang, F.-X. Zero-Dimensional Sn-Based Enantiomeric Phase-Transition Materials with High-Tc and Dielectric Switching. Chem. A Eur. J. 2023, 29, e202301499. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Huang, C.R.; Xu, Z.K.; Hu, W.; Li, P.-F.; Xiong, R.-G.; Wang, Z.-X. Photochromic Single-Component Organic Fulgide Ferroelectric with Photo-Triggered Polarization Response. J. Am. Chem. Soc. Au 2023, 3, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Q.; Zhang, H.; Huang, X.Q.; Liu, Y.-L. A high-temperature halide perovskite molecular ferroelastic with evident dielectric switching. Inorg. Chem. Front. 2021, 8, 1197–1204. [Google Scholar] [CrossRef]
- Rok, M.; Ciżman, A.; Zarychta, B.; Zaręba, J.K.; Trzebiatowska, M.; Mączka, M.; Stroppa, A.; Yuan, S.; Phillips, A.E.; Bator, G. Cyano-bridged perovskite[(CH3)3NOH]2[KM(CN)6], [M: Fe(iii), and Co(iii)] for high-temperature multi-axial ferroelectric applications with enhanced thermal and nonlinear optical performance. J. Mater. Chem. C 2020, 8, 17491–17501. [Google Scholar] [CrossRef]
- Cao, Y.-J.; Zhou, L.; Shi, P.-P.; Ye, Q.; Fu, D.-W. H/F substituted perovskite compounds with above-room-temperature ferroelasticity: [(CH3)4P][Cd(SCN)3] and [(CH3)3PCH2F][Cd(SCN)3. Chem. Commun. 2019, 55, 8418–8421. [Google Scholar] [CrossRef]
- Abdelkader, M.M.; Abdelmohsen, M. Hydrogen-bonded and supramolecular ferroelectricity in a new hybrid (C12H25NH3)2CoCl4. Mater. Res. Express 2018, 6, 025608. [Google Scholar] [CrossRef]
- Zhou, L.; Li, R.X.; Shi, P.-P.; Ye, Q.; Fu, D.-W. Successive Phase Transitions and Dual Dielectric Switching in an Organic-Inorganic Hybrid Perovskite. Inorg. Chem. 2020, 59, 18174–18180. [Google Scholar] [CrossRef]
- Xu, Y.L.; Zhang, J.; Chen, L.S.; Zeng, Y.-Y.; Zhou, J.-R.; Ni, C.-L.; Zheng, W.-X. Crystal structure, spectroscopic, non-linear optical, magnetic properties and DFT studies of bis(2-aminopyridinium) tetrachlorocobaltate(II). J. Mol. Struct. 2020, 12, 128902. [Google Scholar] [CrossRef]
- Gong, J.M.; Shao, T.; Huang, P.Z.; Su, C.-Y.; Chen, M.; Fu, D.-W.; Lu, H.-F. Reversible Phase Transition and Second-Harmonic Response Based on a Zero-Dimensional Organic-Inorganic Hybrid Compound. J. Phys. Chem. C 2022, 126, 15274–15279. [Google Scholar] [CrossRef]
- You, X.; Yao, J.; Wei, Z. Tin-based organic-inorganic hybrid semiconductors with reversible phase transition and dielectric anomaly. Dalton Trans. 2020, 49, 7252–7257. [Google Scholar] [CrossRef]
- Alsaad, A.M.; Qattan, I.A.; Ahmad, A.A.; Al Bataineh, Q.M.; Al Abed, H.I.; Albataineh, Z.; Telfah, A.; Sabirianov, R.F. Theoretical and experimental overview of structural, dielectric, crystallographic, electronic, optical, and physical tensors of α-DIPAB and iodine-doped α-DIPAB molecular ferroelectric crystals. J. Electron. Mater. 2020, 49, 7112–7132. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.; Li, Z.; Qian, K.; Sao, F. High-temperature ferroelastic phase transition in a perovskite-like complex: [Et4N]2[PbBr3]2. RSC Adv. 2019, 9, 10364–10370. [Google Scholar] [CrossRef] [PubMed]
- An, L.-C.; Zhao, C.; Zhao, Y.; Zhang, Y.; Li, K.; Stroppa, A.; Li, W.; Bu, X.-H. Chiral 1D Hybrid Metal Halides with Piezoelectric Energy Harvesting and Sensing Properties. Small Struct. 2023, 4, 2300135. [Google Scholar] [CrossRef]
- Li, J.; Xu, C.; Zhang, W.Y.; Shi, P.-P.; Ye, Q.; Fu, D.-W. Smart and efficient opto-electronic dual response material based on two-dimensional perovskite crystal/thin film. J. Mater. Chem. C 2020, 8, 1953–1961. [Google Scholar] [CrossRef]
- Gao, H.; Chen, Y.-D.; Zhang, T.; Ge, J.-Z.; Fu, D.-W.; Zhang, Y. Homochiral Chemistry Strategy To Trigger Dielectric Switching and Second-Harmonic Generation Response on Spirocyclic Derivatives. Inorg. Chem. 2022, 61, 10872–10879. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; Yoo, J.C. Loop-mediated isothermal amplification using a lab-on-a-disc device with thin-film phase change material. Appl. Biochem. Biotechnol. 2018, 186, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Zhang, Z.; Shi, P.; Zhang, W.; Ye, Q.; Fu, D. High-temperature dielectric switch and second harmonic generation integrated in a stimulus responsive material. Chin. Chem. Lett. 2021, 32, 539–542. [Google Scholar] [CrossRef]
- Wang, P.; Chen, M.-K.; Tong, Y.-Q.; Yin, S.Q.; Huang, B. Structural phase transition and dielectric relaxation in an organic-inorganic hybrid compound: [(CH3)3NH]4[Fe(SCN)6]Cl. CrystEngComm 2022, 24, 7083–7088. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, W.Y.; Shi, P.P.; Ye, Q.; Fu, D.W. Switchable Dielectric Phase Transition Triggered by Pendulum-Like Motion in an Ionic Co-crystal. Chem. Asian J. 2018, 13, 2916–2922. [Google Scholar] [CrossRef] [PubMed]
D-H···A | d(D-A)/Å | % | ∠D-H···A/(°) | % |
---|---|---|---|---|
100 K | ||||
N14-H14···S6 | 3.3 | 7.1% | 164.6 | 4.7% |
N3-H3A···S6 | 3.3 | 7.1% | 173.0 | 13.3% |
C18-H18···S3 | 3.4 | 2.9% | 167.4 | 7.7% |
O1-H1B···S3 | 3.2 | 17.1% | 143.2 | 16.5% |
O1-H1C···S5 | 3.6 | 22.9% | 145.7 | 14.0% |
N3-H3B···S2 | 3.4 | 2.9% | 166.2 | 6.5% |
N2-H2···S1 | 3.4 | 2.9% | 157.8 | 1.9% |
293 K | ||||
N14-H14···S6 | 3.3 | 8.6% | 163.2 | 11.3% |
N3-H3A···S6 | 3.3 | 8.6% | 171.2 | 19.3% |
C18-H18···S3 | 3.4 | 1.4% | 163.7 | 11.8% |
O1-H1B···S3 | 3.2 | 18.6% | 119.8 | 32.0% |
O1-H1C···S5 | 3.6 | 21.4% | 121.6 | 30.2% |
N3-H3B···S2 | 3.4 | 1.4% | 166.9 | 15.1% |
N2-H2···S1 | 3.5 | 11.4% | 156.4 | 4.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Abuduheni, A.; Yang, F.; Hu, H.; Liu, Z. Synthesis, the Reversible Isostructural Phase Transition, and the Dielectric Properties of a Functional Material Based on an Aminobenzimidazole–Iron Thiocyanate Complex. Int. J. Mol. Sci. 2024, 25, 9064. https://doi.org/10.3390/ijms25169064
Liu Y, Abuduheni A, Yang F, Hu H, Liu Z. Synthesis, the Reversible Isostructural Phase Transition, and the Dielectric Properties of a Functional Material Based on an Aminobenzimidazole–Iron Thiocyanate Complex. International Journal of Molecular Sciences. 2024; 25(16):9064. https://doi.org/10.3390/ijms25169064
Chicago/Turabian StyleLiu, Yang, Adila Abuduheni, Fang Yang, Hongzhi Hu, and Zunqi Liu. 2024. "Synthesis, the Reversible Isostructural Phase Transition, and the Dielectric Properties of a Functional Material Based on an Aminobenzimidazole–Iron Thiocyanate Complex" International Journal of Molecular Sciences 25, no. 16: 9064. https://doi.org/10.3390/ijms25169064
APA StyleLiu, Y., Abuduheni, A., Yang, F., Hu, H., & Liu, Z. (2024). Synthesis, the Reversible Isostructural Phase Transition, and the Dielectric Properties of a Functional Material Based on an Aminobenzimidazole–Iron Thiocyanate Complex. International Journal of Molecular Sciences, 25(16), 9064. https://doi.org/10.3390/ijms25169064