Molecular Morbidity Score–Can MicroRNAs Assess the Burden of Disease?
Abstract
1. Introduction
2. Aims
3. Multimorbidity
4. MicroRNAs and Multimorbidity
5. MicroRNAs and the Hallmarks of Ageing
5.1. Primary Hallmarks
5.1.1. Genomic Instability
Hallmark | MicroRNA | Effect | Model | Target/Mechanism | Findings | Reference |
---|---|---|---|---|---|---|
Genomic Instability | ||||||
miR-101-3p | ↑ | Human melanoma cells and melanocytes | Lamin B1, ATRX, CASP3 and PARP | Re-expression of miR-101-3p led to an increase in DNA damage and induction of apoptosis | [65] | |
miR-105-5p and miR-767-5p | ↑ | Patients with breast cancer | Untested | 2 microRNA signature was associated with genomic instability and could predict prognosis | [70] | |
miR-653-3p | ↑ | Human colorectal cancer cells | SIRT1/TWIST1 signalling pathway | Ectopic expression of miR-653-3p induced increased DNA damage and chromosomal instability but inhibited apoptosis | [66] | |
Telomere Attrition | ||||||
miR-340-5p | ↓ | Murine model of Alzheimer’s disease | POT1 | miR-340-5p upregulated telomerase activity and increased cellular telomere length, improving Alzheimer’s disease symptoms | [72] | |
Deleting miR-126a | ↓ | Murine model of cholestasis | versican | Deleting miR-126a induced telomere shortening and associated inflammation and hepatic dysfunction | [73] | |
miR-185 | ↑ | Human cell lines | POT1 | miR-185 reduces P0T1 and overexpression increases telomere dysfunction-induced foci signals and cellular senescence | [74] | |
Epigenetic Alterations | ||||||
miR-148a | ↓ | Pancreatic surgery specimens | N/A | Hypermethylation of the DNA region encoding miR-148a differentiates chronic pancreatitis and pancreatic ductal adenocarcinoma | [75] | |
miR-7 | ↓ | Buccal epithelial samples from patients with COPD | N/A | miR-7 methylated levels could differentiate COPD phenotypes | [76] | |
miR-223-3p | ↑ | Gastric cancer tissue specimens | Arid1a | Mir-2223-3p promotes the progression of gastric cancer | [77] | |
Loss of Proteostasis | ||||||
miR-34 | ↓ | Drosophilia melanogaster | H3K27me3, Lst8 subunit of TORC1 | Loss of miR-34 expression associated with increased protein accumulation, early ageing and neurodegeneration | [78] | |
miR-9 | ↓ | Multiple models for Hutchinson–Gilford progeria syndrome | Lamin A and progerin expression | miR-9 inhibits lamin A and progerin expression in neural cells, mitigating toxic accumulation and protecting against neurodegeneration | [79] | |
miR-320a | ↓ | Colorectal cancer cells | eIF2, unfolded protein response | miR-320a regulates the unfolded protein response in colorectal cancer cells | [80] | |
Disabled Macro-Autophagy | ||||||
miR-33 | ↑ | BAL cells from patients with idiopathic pulmonary fibrosis | Mitochondrial homeostasis and autophagy pathways | Inhibition of miR-33 ameliorates mitochondrial homeostasis and autophagy, decreasing inflammation after bleomycin exposure | [81] | |
miR-125b | ↑ | Thyroid surgical specimens | MAPK and AKT/mTOR signalling | miR125 expression was associated with thyroid cancer invasion and BRAFV600E mutation status | [82] | |
miR-494 | ↑ | Rat model of diabetic cardiomyopathy | PI3K/AKT/mTOR pathway | Decreased miR-494 expression reduced apoptosis and autophagy induced by hyperglycaemia | [83] |
5.1.2. Telomere Attrition
5.1.3. Epigenetic Alterations
5.1.4. Loss of Proteostasis
5.1.5. Disabled Macro-Autophagy
5.2. Antagonistic Hallmarks
5.2.1. Cellular Senescence
Hallmark | MicroRNA | Effect | Model | Target/Mechanism | Findings | Reference |
---|---|---|---|---|---|---|
Cellular Senescence | ||||||
miR-3200-3p | ↑ | Cellular and murine model | DDB1 in Treg cells | Inhibition of VEGFR2 upregulates miR-3200-3p which targets DDB1 in Treg cells to promote senescence in non-small-cell lung cancer | [96] | |
miR-377-3p | ↑ | Human patients and cellular and murine models | ZFP36L1 | miR-377-3p promotes lung fibroblast senescence and suppresses ZFP36L1 to exacerbate COPD | [98] | |
miR-106b-5p | ↑ | Human gastric cancer cell lines and patient gastric tissue samples | E2F/miR-106b-5p/p21 axis | BRD4 modulates the proliferation of gastric cancer cells by controlling cellular senescence by targeting E2F/miR-106b-5p/p21 axis | [97] | |
Mitochondrial Dysfunction | ||||||
miR-128-3p | ↓ | Murine asthma model | SIX1 | miR-128-3p controls airway inflammation by targeting SIX1 and regulating mitochondrial function | [105] | |
miR-181a | ↓ | Murine model | PDCD4 | miR-181a targets PDCD4 to modulate mitochondrial fission and apoptosis and preserve left ventricular function following myocardial infarction | [106] | |
miR-328-5p | ↓ | in vitro and murine model | Sirt1 | lncRNA Glis2 inhibited miR-328-5p to improve mitochondrial function and mitigate podocyte apoptosis and progression of diabetic nephropathy | [107] | |
Deregulated Nutrient-Sensing | ||||||
miR-221 | ↑ | Breast cancer cell line | PTEN/Akt/mTOR signalling | miR-221 mediated breast cancer cell proliferation and resistance to adriamycin by modulating PTEN/Akt/mTOR signalling | [108] | |
miR-125b | ↑ | Murine model | RRAGD/mTOR/ULK1 pathway | Atherosclerotic progression was associated with reduced autophagy and downregulated expression of miR-125b | [109] | |
miR-192-5p | ↑ | Human patients with NAFLD and murine models | Rictor/Akt/FOX01 | Increased expression of miR-192-5p promotes hepatic macrophage activation and disease progression in NAFLD by modulating Rictor/Akt/Fox01 signalling | [110] |
5.2.2. Mitochondrial Dysfunction
5.2.3. Deregulated Nutrient Sensing
5.3. Integrative Hallmarks
5.3.1. Stem Cell Exhaustion
Hallmark | MicroRNA | Effect | Model | Target/Mechanism | Findings | Reference |
---|---|---|---|---|---|---|
Stem Cell Exhaustion | ||||||
miR-31 | ↓ | Murine model | IL34, JAK-STAT3 signalling | miR-31 modulates IL-34/JAK-STAT3 signalling to determine the differentiation and functional reserve of satellite cells, thus regulating the regenerative capacity of skeletal muscle | [133] | |
miR-524-5p | ↓ | NSCLC cell lines | miR-524-5p-METTL3/SOX2 axis | circVMP1 potentiates NSCLC progression and DDP resistance by modulating miR-524-5p-METTL3/SOX2 axis | [139] | |
miR-122 | ↓ | Human hepatic cancer cell line | Wnt/β-catenin | miR-122 reduces the stemness and chemoresistance of hepatic cancer cells by modulating Wnt/β-catenin signalling | [141] | |
Altered Intercellular Communication | ||||||
miR-322-5p | ↓ | Rat model of myocardial infarction | Smurf2, TGF-β/Smad pathway | miR-322-5p/Smurf2 axis modulates TGF-β/Smad signalling to potentiate myocardial injury following myocardial infarction | [142] | |
miR-582-5p | ↓ | Human NSCLC cell lines | Hippo-YAP/TAZ | miR-582-5p induces tumour-suppressive changes in NSCLC cells by downregulating YAP/TAZ signalling | [143] | |
miR-133b | ↑ | Murine model of atherosclerosis | Notch signalling | MiR-133b exacerbates atherosclerosis by activating Notch signalling | [144] | |
Chronic Inflammation | ||||||
miR-210 | ↑ | Human patients with psoriasis vulgaris | FOXP3 | Upregulated miR-210 modulates FOXP3 in CD4+ T cells to potentiate immune dysfunction in psoriasis vulgaris | [145] | |
miR-181b | ↑ | Human osteosarcoma tissue samples | Il-1β/NF-κB | IL-1β/NF-κB signalling induces overexpression of miR-181b which promotes the proliferation of osteosarcoma cells | [146] | |
miR-29a/29b | ↓ | Human patients with cirrhosis | N/A | Reduced miR-29a/miR-29b expression was associated with upregulated IL-6 and TNF-α and a more advanced grade of cirrhosis | [147] | |
Dysbiosis | ||||||
miR-582-3p | ↑ | Patients with NASH and in vitro models | TMBIM1 | Gut microbiota affected expression of miR-582-3p which potentiated hepatic fibrosis | [148] | |
miR-122 | ↑ | Murine model | N/A | Intestinal flora-produced butyrate downregulates miR-122 expression which ameliorates diet-induced hypercholesterolaemia | [149] | |
miR-29a | ↓ | Murine model | N/A | miR-29a alleviated hepatic steatosis, altered the intestinal flora, reduced inflammation and improved lipid metabolism | [150] |
5.3.2. Altered Intercellular Communication
5.3.3. Chronic Inflammation
5.3.4. Dysbiosis
6. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ho, I.S.-S.; Azcoaga-Lorenzo, A.; Akbari, A.; Davies, J.; Hodgins, P.; Khunti, K.; Kadam, U.; Lyons, R.; McCowan, C.; Mercer, S.W. Variation in the estimated prevalence of multimorbidity: Systematic review and meta-analysis of 193 international studies. BMJ Open 2022, 12, e057017. [Google Scholar] [CrossRef] [PubMed]
- Feinstein, A.R. The pre-therapeutic classification of co-morbidity in chronic disease. J. Chronic Dis. 1970, 23, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Carrozzino, D.; Guidi, J.; Patierno, C. Charlson comorbidity index: A critical review of clinimetric properties. Psychother. Psychosom. 2022, 91, 8–35. [Google Scholar] [CrossRef] [PubMed]
- Librero, J.; Peiró, S.; Ordiñana, R. Chronic comorbidity and outcomes of hospital care: Length of stay, mortality, and readmission at 30 and 365 days. J. Clin. Epidemiol. 1999, 52, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Chua, Y.P.; Xie, Y.; Lee, P.S.S.; Lee, E.S. Definitions and prevalence of multimorbidity in large database studies: A scoping review. Int. J. Environ. Res. Public Health 2021, 18, 1673. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.; Fortin, M.; van den Akker, M.; Mair, F.; Calderon-Larranaga, A.; Boland, F.; Wallace, E.; Jani, B.; Smith, S. Comorbidity versus Multimorbidity: Why It Matters; SAGE Publications Sage UK: London, UK, 2021; Volume 11, p. 2633556521993993. [Google Scholar]
- Banerjee, A.; Hurst, J.; Fottrell, E.; Miranda, J.J. Multimorbidity: Not just for the West. Glob. Heart 2020, 15, 45. [Google Scholar] [CrossRef]
- Skou, S.T.; Mair, F.S.; Fortin, M.; Guthrie, B.; Nunes, B.P.; Miranda, J.J.; Boyd, C.M.; Pati, S.; Mtenga, S.; Smith, S.M. Multimorbidity. Nat. Rev. Dis. Primers 2022, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Beach, J.; Senthilselvan, A. Prevalence and determinants of multimorbidity in the Canadian population. PLoS ONE 2024, 19, e0297221. [Google Scholar] [CrossRef]
- St John, P.D.; Menec, V.; Tyas, S.L.; Tate, R.; Griffith, L. Multimorbidity in Canadians living in the community: Results from the Canadian Longitudinal Study of Aging. Can. Fam. Physician 2021, 67, 187–197. [Google Scholar] [CrossRef]
- Kudesia, P.; Salimarouny, B.; Stanley, M.; Fortin, M.; Stewart, M.; Terry, A.; Ryan, B.L. The incidence of multimorbidity and patterns in accumulation of chronic conditions: A systematic review. J. Multimorb. Comorbidity 2021, 11, 26335565211032880. [Google Scholar] [CrossRef]
- Asogwa, O.A.; Boateng, D.; Marzà-Florensa, A.; Peters, S.; Levitt, N.; van Olmen, J.; Klipstein-Grobusch, K. Multimorbidity of non-communicable diseases in low-income and middle-income countries: A systematic review and meta-analysis. BMJ Open 2022, 12, e049133. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.; Allen, L.; Wickramasinghe, K.; Mikkelsen, B.; Roberts, N.; Townsend, N. A systematic review of associations between non-communicable diseases and socioeconomic status within low-and lower-middle-income countries. J. Glob. Health 2018, 8, 020409. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Manolova, G.; Daskalopoulou, C.; Vitoratou, S.; Prince, M.; Prina, A.M. Prevalence of multimorbidity in community settings: A systematic review and meta-analysis of observational studies. J. Comorbidity 2019, 9, 2235042X19870934. [Google Scholar] [CrossRef] [PubMed]
- Soley-Bori, M.; Ashworth, M.; Bisquera, A.; Dodhia, H.; Lynch, R.; Wang, Y.; Fox-Rushby, J. Impact of multimorbidity on healthcare costs and utilisation: A systematic review of the UK literature. Br. J. Gen. Pract. 2021, 71, e39–e46. [Google Scholar] [CrossRef] [PubMed]
- Mair, A.; Wilson, M.; Dreischulte, T. Addressing the challenge of polypharmacy. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 661–681. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.K.; Rankin, A.J.; Jani, B.D.; Mair, F.S.; Mark, P.B. Associations between multimorbidity and adverse clinical outcomes in patients with chronic kidney disease: A systematic review and meta-analysis. BMJ Open 2020, 10, e038401. [Google Scholar] [CrossRef] [PubMed]
- Rizzuto, D.; Melis, R.J.; Angleman, S.; Qiu, C.; Marengoni, A. Effect of chronic diseases and multimorbidity on survival and functioning in elderly adults. J. Am. Geriatr. Soc. 2017, 65, 1056–1060. [Google Scholar] [CrossRef] [PubMed]
- Vetrano, D.L.; Palmer, K.; Marengoni, A.; Marzetti, E.; Lattanzio, F.; Roller-Wirnsberger, R.; Lopez Samaniego, L.; Rodríguez-Mañas, L.; Bernabei, R.; Onder, G. Frailty and multimorbidity: A systematic review and meta-analysis. J. Gerontol. Ser. A 2019, 74, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Kuan, V.; Denaxas, S.; Patalay, P.; Nitsch, D.; Mathur, R.; Gonzalez-Izquierdo, A.; Sofat, R.; Partridge, L.; Roberts, A.; Wong, I.C. Identifying and visualising multimorbidity and comorbidity patterns in patients in the English National Health Service: A population-based study. Lancet Digit. Health 2023, 5, e16–e27. [Google Scholar] [CrossRef]
- Guthrie, B.; Payne, K.; Alderson, P.; McMurdo, M.E.; Mercer, S.W. Adapting clinical guidelines to take account of multimorbidity. Bmj 2012, 345, e6341. [Google Scholar] [CrossRef]
- Du Vaure, C.B.; Dechartres, A.; Battin, C.; Ravaud, P.; Boutron, I. Exclusion of patients with concomitant chronic conditions in ongoing randomised controlled trials targeting 10 common chronic conditions and registered at ClinicalTrials. gov: A systematic review of registration details. BMJ Open 2016, 6, e012265. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Morales, D.R.; Guthrie, B. Exclusion rates in randomized controlled trials of treatments for physical conditions: A systematic review. Trials 2020, 21, 228. [Google Scholar] [CrossRef]
- Unger, J.M.; Hershman, D.L.; Fleury, M.E.; Vaidya, R. Association of patient comorbid conditions with cancer clinical trial participation. JAMA Oncol. 2019, 5, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.; Fenu, E.; O’Flynn, N.; Guthrie, B. Clinical assessment and management of multimorbidity: Summary of NICE guidance. BMJ 2016, 354, i4843. [Google Scholar] [CrossRef] [PubMed]
- Sarfati, D. How do we measure comorbidity? In Cancer and Chronic Conditions: Addressing the Problem of Multimorbidity in Cancer Patients and Survivors; Springer: Berlin/Heidelberg, Germany, 2016; pp. 35–70. [Google Scholar]
- Lee, E.S.; Koh, H.L.; Ho, E.Q.-Y.; Teo, S.H.; Wong, F.Y.; Ryan, B.L.; Fortin, M.; Stewart, M. Systematic review on the instruments used for measuring the association of the level of multimorbidity and clinically important outcomes. BMJ Open 2021, 11, e041219. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Wallace, E.; Salisbury, C.; Sasseville, M.; Bayliss, E.; Fortin, M. A core outcome set for multimorbidity research (COSmm). Ann. Fam. Med. 2018, 16, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Aslam, F.; Khan, N.A. Tools for the assessment of comorbidity burden in rheumatoid arthritis. Front. Med. 2018, 5, 39. [Google Scholar] [CrossRef]
- Niedzwiedz, C.L.; Katikireddi, S.V.; Pell, J.P.; Smith, D.J. Sex differences in the association between salivary telomere length and multimorbidity within the US Health & Retirement Study. Age Ageing 2019, 48, 703–710. [Google Scholar] [PubMed]
- Bernabeu-Wittel, M.; Gómez-Díaz, R.; González-Molina, Á.; Vidal-Serrano, S.; Díez-Manglano, J.; Salgado, F.; Soto-Martín, M.; Ollero-Baturone, M.; Researchers, P. Oxidative stress, telomere shortening, and apoptosis associated to sarcopenia and frailty in patients with multimorbidity. J. Clin. Med. 2020, 9, 2669. [Google Scholar] [CrossRef]
- Desdín-Micó, G.; Soto-Heredero, G.; Aranda, J.F.; Oller, J.; Carrasco, E.; Gabandé-Rodríguez, E.; Blanco, E.M.; Alfranca, A.; Cussó, L.; Desco, M. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 2020, 368, 1371–1376. [Google Scholar] [CrossRef]
- Hornsby, P.J. The nature of aging and the geroscience hypothesis. In Handbook of the Biology of Aging; Elsevier: Amsterdam, The Netherlands, 2021; pp. 69–76. [Google Scholar]
- Fraser, H.C.; Kuan, V.; Johnen, R.; Zwierzyna, M.; Hingorani, A.D.; Beyer, A.; Partridge, L. Biological mechanisms of aging predict age-related disease co-occurrence in patients. Aging Cell 2022, 21, e13524. [Google Scholar] [CrossRef]
- Fabbri, E.; An, Y.; Zoli, M.; Simonsick, E.M.; Guralnik, J.M.; Bandinelli, S.; Boyd, C.M.; Ferrucci, L. Aging and the burden of multimorbidity: Associations with inflammatory and anabolic hormonal biomarkers. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2015, 70, 63–70. [Google Scholar] [CrossRef]
- Wessman, T.; Tofik, R.; Ruge, T.; Melander, O. Associations between biomarkers of multimorbidity burden and mortality risk among patients with acute dyspnea. Intern. Emerg. Med. 2022, 17, 559–567. [Google Scholar] [CrossRef]
- Vázquez-Fernández, A.; Lana, A.; Struijk, E.A.; Vega-Cabello, V.; Cárdenas-Valladolid, J.; Salinero-Fort, M.Á.; Rodríguez-Artalejo, F.; Lopez-Garcia, E.; Caballero, F.F. Cross-sectional association between plasma biomarkers and multimorbidity patterns in older adults. J. Gerontol. Ser. A 2024, 79, glad249. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.D.; Simoes, J.A.; Senaratna, C.; Pati, S.; Timm, P.F.; Batista, S.R.; Nunes, B.P. Physiological markers and multimorbidity: A systematic review. J. Comorbidity 2018, 8, 2235042X18806986. [Google Scholar] [CrossRef]
- Peters, L.J.; Floege, J.; Biessen, E.A.; Jankowski, J.; van der Vorst, E.P. MicroRNAs in chronic kidney disease: Four candidates for clinical application. Int. J. Mol. Sci. 2020, 21, 6547. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.G.; Feeney, G.; Annuk, H.; Paganga, M.; Holian, E.; Lowery, A.J.; Kerin, M.J.; Miller, N. Identification of a Five-MiRNA Expression Assay to Aid Colorectal Cancer Diagnosis. Gastrointest. Disord. 2022, 4, 190–204. [Google Scholar] [CrossRef]
- Davey, M.G.; McGuire, A.; Casey, M.C.; Waldron, R.M.; Paganga, M.; Holian, E.; Newell, J.; Heneghan, H.M.; McDermott, A.M.; Keane, M.M. Evaluating the role of circulating microRNAs in predicting long-term survival outcomes in breast cancer: A prospective, multicenter clinical trial. J. Am. Coll. Surg. 2023, 236, 317–327. [Google Scholar] [CrossRef]
- Bouz Mkabaah, L.; Davey, M.G.; Lennon, J.C.; Bouz, G.; Miller, N.; Kerin, M.J. Assessing the Role of MicroRNAs in Predicting Breast Cancer Recurrence—A Systematic Review. Int. J. Mol. Sci. 2023, 24, 7115. [Google Scholar] [CrossRef]
- Davey, M.G.; Abbas, R.; Kerin, E.P.; Casey, M.C.; McGuire, A.; Waldron, R.M.; Heneghan, H.M.; Newell, J.; McDermott, A.M.; Keane, M.M. Circulating microRNAs can predict chemotherapy-induced toxicities in patients being treated for primary breast cancer. Breast Cancer Res. Treat. 2023, 202, 73–81. [Google Scholar] [CrossRef]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef] [PubMed]
- Pouladi, N.; Li, H.; Berghout, J.; Kenost, C.; Gonzalez-Garay, M.; Lussier, Y. Biomechanisms of comorbidity: Reviewing integrative analyses of multi-omics datasets and electronic health records. Yearb. Med. Inform. 2016, 25, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-C.; Tseng, Y.-T.; Li, W.; Wu, C.-Y.; Mayzus, I.; Rzhetsky, A.; Sun, F.; Waterman, M.; Chen, J.J.; Chaudhary, P.M. DiseaseConnect: A comprehensive web server for mechanism-based disease–disease connections. Nucleic Acids Res. 2014, 42, W137–W146. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Zeng, X.; Fang, J.; Lin, J.; Chan, S.Y.; Erzurum, S.C.; Cheng, F. A network-based approach to uncover microRNA-mediated disease comorbidities and potential pathobiological implications. NPJ Syst. Biol. Appl. 2019, 5, 41. [Google Scholar] [CrossRef]
- Morselli Gysi, D.; Barabási, A.-L. Noncoding RNAs improve the predictive power of network medicine. Proc. Natl. Acad. Sci. USA 2023, 120, e2301342120. [Google Scholar] [CrossRef] [PubMed]
- Tanase, D.M.; Gosav, E.M.; Petrov, D.; Teodorescu, D.-S.; Buliga-Finis, O.N.; Ouatu, A.; Tudorancea, I.; Rezus, E.; Rezus, C. MicroRNAs (miRNAs) in cardiovascular complications of rheumatoid arthritis (RA): What is new? Int. J. Mol. Sci. 2022, 23, 5254. [Google Scholar] [CrossRef]
- Lopez-Pedrera, C.; Barbarroja, N.; Patiño-Trives, A.M.; Luque-Tévar, M.; Torres-Granados, C.; Aguirre-Zamorano, M.A.; Collantes-Estevez, E.; Pérez-Sánchez, C. Role of microRNAs in the development of cardiovascular disease in systemic autoimmune disorders. Int. J. Mol. Sci. 2020, 21, 2012. [Google Scholar] [CrossRef]
- Xian, N.; Bai, R.; Guo, J.; Luo, R.; Lei, H.; Wang, B.; Zheng, Y. Bioinformatics analysis to reveal the potential comorbidity mechanism in psoriasis and nonalcoholic steatohepatitis. Ski. Res. Technol. 2023, 29, e13457. [Google Scholar] [CrossRef]
- Lei, H.; Chen, X.; Wang, Z.; Xing, Z.; Du, W.; Bai, R.; He, K.; Zhang, W.; Wang, Y.; Zheng, Y. Exploration of the underlying comorbidity mechanism in psoriasis and periodontitis: A bioinformatics analysis. Hereditas 2023, 160, 7. [Google Scholar] [CrossRef]
- Reid, L.V.; Spalluto, C.M.; Watson, A.; Staples, K.J.; Wilkinson, T. The role of extracellular vesicles as a shared disease mechanism contributing to multimorbidity in patients with COPD. Front. Immunol. 2021, 12, 754004. [Google Scholar] [CrossRef]
- Duman, E.T.; Tuna, G.; Ak, E.; Avsar, G.; Pir, P. Optimized network based natural language processing approach to reveal disease comorbidities in COVID-19. Sci. Rep. 2024, 14, 2325. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Xu, Y.; Shi, K.; Zhang, Z.; Xie, Z.; Wu, H.; Ma, Y.; Zhou, Y.; Chen, C.; Yang, J. Multi-omics study reveals associations among neurotransmitter, extracellular vesicle-derived microRNA and psychiatric comorbidities during heroin and methamphetamine withdrawal. Biomed. Pharmacother. 2022, 155, 113685. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Wang, H. The association between depression and gastroesophageal reflux based on phylogenetic analysis of miRNA biomarkers. Curr. Med. Chem. 2020, 27, 6536–6547. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Magdy, M.; Yousef, O.A.E.; Ibrahim, W.; Gharib, D.M. Circulating MicroRNA-30a, Beclin1 and Their Association with Different Variables in Females with Metabolically Healthy/Unhealthy Obesity. Diabetes Metab. Syndr. Obes. 2023, 16, 3065–3074. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Taheri, M. The expression profile and role of non-coding RNAs in obesity. Eur. J. Pharmacol. 2021, 892, 173809. [Google Scholar] [CrossRef] [PubMed]
- Hutny, M.; Hofman, J.; Zachurzok, A.; Matusik, P. MicroRNAs as the promising markers of comorbidities in childhood obesity—A systematic review. Pediatr. Obes. 2022, 17, e12880. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef] [PubMed]
- Lettieri-Barbato, D.; Aquilano, K.; Punziano, C.; Minopoli, G.; Faraonio, R. MicroRNAs, long non-coding RNAs, and circular RNAs in the redox control of cell senescence. Antioxidants 2022, 11, 480. [Google Scholar] [CrossRef]
- Victoria, B.; Lopez, Y.O.N.; Masternak, M.M. MicroRNAs and the metabolic hallmarks of aging. Mol. Cell. Endocrinol. 2017, 455, 131–147. [Google Scholar] [CrossRef]
- Cardoso, A.P.F.; Banerjee, M.; Nail, A.N.; Lykoudi, A.; States, J.C. miRNA dysregulation is an emerging modulator of genomic instability. Semin. Cancer Biol. 2021, 76, 120–131. [Google Scholar] [CrossRef]
- Lämmerhirt, L.; Kappelmann-Fenzl, M.; Fischer, S.; Meier, P.; Staebler, S.; Kuphal, S.; Bosserhoff, A.-K. Loss of miR-101-3p in melanoma stabilizes genomic integrity, leading to cell death prevention. Cell. Mol. Biol. Lett. 2024, 29, 29. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liang, Y.; Zhao, L.; Deng, J.; Li, Y.; Zhao, H.; Zhang, X.; Zou, F. miR-653-3p promotes genomic instability of colorectal cancer cells via targeting SIRT1/TWIST1 signaling pathway. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2023, 1869, 166821. [Google Scholar] [CrossRef] [PubMed]
- Adamowicz, M.; Stukan, I.; Milkiewicz, P.; Bialek, A.; Milkiewicz, M.; Kempinska-Podhorodecka, A. Modulation of mismatch repair and the SOCS1/p53 axis by microRNA-155 in the colon of patients with primary sclerosing cholangitis. Int. J. Mol. Sci. 2022, 23, 4905. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Zhang, Y.; Zhang, Y.; Yuan, J.; Mo, L.; Zhang, Q. Nickel nanoparticle-induced cell transformation: Involvement of DNA damage and DNA repair defect through HIF-1α/miR-210/Rad52 pathway. J. Nanobiotechnology 2021, 19, 370. [Google Scholar] [CrossRef] [PubMed]
- Sudhanva, M.S.; Hariharasudhan, G.; Jun, S.; Seo, G.; Kamalakannan, R.; Kim, H.H.; Lee, J.-H. MicroRNA-145 impairs classical non-homologous end-joining in response to ionizing radiation-induced DNA double-strand breaks via targeting DNA-PKcs. Cells 2022, 11, 1509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Liu, T. Genomic instability-associated two-miRNA signature as a novel prognostic biomarker in breast cancer. J. Gene Med. 2024, 26, e3604. [Google Scholar] [CrossRef]
- Xu, J.; Song, J.; Chen, X.; Huang, Y.; You, T.; Zhu, C.; Shen, X.; Zhao, Y. Genomic instability-related twelve-microRNA signatures for predicting the prognosis of gastric cancer. Comput. Biol. Med. 2023, 155, 106598. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Yang, Y.; Wu, Q.; Ning, H. MicroRNA-340-5p increases telomere length by targeting telomere protein POT1 to improve Alzheimer’s disease in mice. Cell Biol. Int. 2021, 45, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Qin, D.; Hu, B.; Zhang, C.; Liu, S.; Wu, D.; Huang, W.; Huang, X.; Wang, L.; Chen, X. Deletion of miR-126a promotes hepatic aging and inflammation in a mouse model of cholestasis. Mol. Ther. Nucleic Acids 2019, 16, 494–504. [Google Scholar] [CrossRef]
- Li, T.; Luo, Z.; Lin, S.; Li, C.; Dai, S.; Wang, H.; Huang, J.; Ma, W.; Songyang, Z.; Huang, Y. MiR-185 targets POT1 to induce telomere dysfunction and cellular senescence. Aging 2020, 12, 14791. [Google Scholar] [CrossRef] [PubMed]
- Hanoun, N.; Delpu, Y.; Suriawinata, A.A.; Bournet, B.; Bureau, C.; Selves, J.; Tsongalis, G.J.; Dufresne, M.; Buscail, L.; Cordelier, P. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clin. Chem. 2010, 56, 1107–1118. [Google Scholar] [CrossRef]
- Rosas-Alonso, R.; Galera, R.; Sánchez-Pascuala, J.J.; Casitas, R.; Burdiel, M.; Martínez-Cerón, E.; Vera, O.; Rodriguez-Antolin, C.; Pernía, O.; De Castro, J. Hypermethylation of anti-oncogenic microRNA 7 is increased in emphysema patients. Arch. Bronconeumol. 2020, 56, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, K.; Yan, L.; He, Y.; Wang, L.; Sheng, L. miR-223-3p promotes cell proliferation and invasion by targeting Arid1a in gastric cancer. Acta Biochim. Biophys. Sin. 2020, 52, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, A.R.; Tran, T.T.; Bonini, N.M. Loss of miR-34 in Drosophila dysregulates protein translation and protein turnover in the aging brain. Aging Cell 2022, 21, e13559. [Google Scholar] [CrossRef] [PubMed]
- Nissan, X.; Blondel, S.; Navarro, C.; Maury, Y.; Denis, C.; Girard, M.; Martinat, C.; De Sandre-Giovannoli, A.; Levy, N.; Peschanski, M. Unique preservation of neural cells in Hutchinson-Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA. Cell Rep. 2012, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fields, C.J.; Li, L.; Hiers, N.M.; Li, T.; Sheng, P.; Huda, T.; Shan, J.; Gay, L.; Gu, T.; Bian, J. Sequencing of Argonaute-bound microRNA/mRNA hybrids reveals regulation of the unfolded protein response by microRNA-320a. PLoS Genet. 2021, 17, e1009934. [Google Scholar]
- Ahangari, F.; Price, N.L.; Malik, S.; Chioccioli, M.; Bärnthaler, T.; Adams, T.S.; Kim, J.; Pradeep, S.P.; Ding, S.; Cosmos, C., Jr. microRNA-33 deficiency in macrophages enhances autophagy, improves mitochondrial homeostasis, and protects against lung fibrosis. JCI Insight 2023, 8, e158100. [Google Scholar] [CrossRef] [PubMed]
- Spirina, L.V.; Kovaleva, I.V.; Chizhevskaya, S.Y.; Chebodaeva, A.V.; Tarasenko, N.V. Autophagy-Related MicroRNA: Tumor miR-125b and Thyroid Cancers. Genes 2023, 14, 685. [Google Scholar] [CrossRef]
- Ning, S.; Zhang, S.; Guo, Z. MicroRNA-494 regulates high glucose-induced cardiomyocyte apoptosis and autophagy by PI3K/AKT/mTOR signalling pathway. ESC Heart Fail. 2023, 10, 1401–1411. [Google Scholar] [CrossRef]
- Baer, C.; Claus, R.; Frenzel, L.P.; Zucknick, M.; Park, Y.J.; Gu, L.; Weichenhan, D.; Fischer, M.; Pallasch, C.P.; Herpel, E. Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res. 2012, 72, 3775–3785. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chai, N.; Jiang, Q.; Chang, Z.; Chai, Y.; Li, X.; Sun, H.; Hou, J.; Linghu, E. DNA methyltransferase mediates the hypermethylation of the microRNA 34a promoter and enhances the resistance of patient-derived pancreatic cancer cells to molecular targeting agents. Pharmacol. Res. 2020, 160, 105071. [Google Scholar] [CrossRef] [PubMed]
- Bure, I.V.; Nemtsova, M.V. Mutual regulation of ncRNAs and chromatin remodeling complexes in normal and pathological conditions. Int. J. Mol. Sci. 2023, 24, 7848. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tan, L.; Dong, X.; Liu, L.; Jiang, Q.; Li, H.; Shi, J.; Yang, X.; Dai, X.; Qian, Z. MiR-146b-5p suppresses the malignancy of GSC/MSC fusion cells by targeting SMARCA5. Aging 2020, 12, 13647. [Google Scholar] [CrossRef] [PubMed]
- Shcherbakov, D.; Nigri, M.; Akbergenov, R.; Brilkova, M.; Mantovani, M.; Petit, P.I.; Grimm, A.; Karol, A.A.; Teo, Y.; Sanchón, A.C. Premature aging in mice with error-prone protein synthesis. Sci. Adv. 2022, 8, eabl9051. [Google Scholar] [CrossRef] [PubMed]
- Finger, F.; Ottens, F.; Springhorn, A.; Drexel, T.; Proksch, L.; Metz, S.; Cochella, L.; Hoppe, T. Olfaction regulates organismal proteostasis and longevity via microRNA-dependent signalling. Nat. Metab. 2019, 1, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-K.; Jiang, Y.; Ran, X.-R.; Lau, Y.-M.; Ng, K.-M.; Lai, W.-H.K.; Siu, C.-W.; Tse, H.-F. Recent advances in animal and human pluripotent stem cell modeling of cardiac laminopathy. Stem Cell Res. Ther. 2016, 7, 139. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Pang, B.; Xiao, Y.; Zhou, S.; He, B.; Zhang, F.; Liu, W.; Peng, H.; Li, P. The protective microRNA-199a-5p-mediated unfolded protein response in hypoxic cardiomyocytes is regulated by STAT3 pathway. J. Physiol. Biochem. 2019, 75, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Azizi, M.; Salehi-Mazandarani, S.; Nikpour, P.; Andalib, A.; Rezaei, M. The role of unfolded protein response-associated miRNAs in immunogenic cell death amplification: A literature review and bioinformatics analysis. Life Sci. 2023, 314, 121341. [Google Scholar] [CrossRef]
- Choi, S.H.; Cho, K. LAMP2A-mediated autophagy involved in Huntington’s disease progression. Biochem. Biophys. Res. Commun. 2021, 534, 561–567. [Google Scholar] [CrossRef]
- Sermersheim, M.A.; Park, K.H.; Gumpper, K.; Adesanya, T.A.; Song, K.; Tan, T.; Ren, X.; Yang, J.-M.; Zhu, H. MicroRNA regulation of autophagy in cardiovascular disease. Front. Biosci. (Landmark Ed.) 2017, 22, 48. [Google Scholar]
- Ma, X.; Zheng, Q.; Zhao, G.; Yuan, W.; Liu, W. Regulation of cellular senescence by microRNAs. Mech. Ageing Dev. 2020, 189, 111264. [Google Scholar] [CrossRef] [PubMed]
- Hui, K.; Dong, C.; Hu, C.; Li, J.; Yan, D.; Jiang, X. VEGFR affects miR-3200-3p-mediated regulatory T cell senescence in tumour-derived exosomes in non-small cell lung cancer. Funct. Integr. Genom. 2024, 24, 31. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Hu, X.; Chen, J.; Hu, D.; Chen, L.-F. BRD4 regulates cellular senescence in gastric cancer cells via E2F/miR-106b/p21 axis. Cell Death Dis. 2018, 9, 203. [Google Scholar] [CrossRef]
- Lu, F.; Yao, L.-P.; Gao, D.-D.; Alinejad, T.; Jiang, X.-Q.; Wu, Q.; Zhai, Q.-C.; Liu, M.; Zhu, S.-M.; Qian, M.-X. MicroRNA-377-3p exacerbates chronic obstructive pulmonary disease through suppressing ZFP36L1 expression and inducing lung fibroblast senescence. Respir. Res. 2024, 25, 67. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tang, P.; Lin, Y.; Du, M.; Li, H.; Jiang, L.; Xu, H.; Sun, H.; Han, J.; Sun, Z. MiR-203 improves cardiac dysfunction by targeting PARP1-NAD+ axis in aging murine. Aging Cell 2024, 23, e14063. [Google Scholar] [CrossRef] [PubMed]
- Rochín-Hernández, L.J.; Rochín-Hernández, L.S.; Padilla-Cristerna, M.L.; Duarte-García, A.; Jiménez-Acosta, M.A.; Figueroa-Corona, M.P.; Meraz-Ríos, M.A. Mesenchymal Stem Cells from Familial Alzheimer’s Patients Express MicroRNA Differently. Int. J. Mol. Sci. 2024, 25, 1580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xue, X.; Lou, Z.; Lin, Y.; Li, Q.; Huang, C. Exosomes from senescent epithelial cells activate pulmonary fibroblasts via the miR-217-5p/Sirt1 axis in paraquat-induced pulmonary fibrosis. J. Transl. Med. 2024, 22, 310. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, Y.; Yu, J.; Huo, W.; Xu, J.; Yang, H.; Zhang, M.; Yu, S.; Wu, Y.; Wang, M. miR-708-5p deficiency involves the degeneration of mandibular condylar chondrocytes via the TLR4/NF-κB pathway. Osteoarthr. Cartil. 2024, 32, 666–679. [Google Scholar] [CrossRef]
- Liang, L.; Stone, R.C.; Stojadinovic, O.; Ramirez, H.; Pastar, I.; Maione, A.G.; Smith, A.; Yanez, V.; Veves, A.; Kirsner, R.S. Integrative analysis of miRNA and mRNA paired expression profiling of primary fibroblast derived from diabetic foot ulcers reveals multiple impaired cellular functions. Wound Repair Regen. 2016, 24, 943–953. [Google Scholar] [CrossRef]
- Wei, Q.; Su, J.; Meng, S.; Wang, Y.; Ma, K.; Li, B.; Chu, Z.; Huang, Q.; Hu, W.; Wang, Z. MiR-17-5p-engineered sEVs Encapsulated in GelMA Hydrogel Facilitated Diabetic Wound Healing by Targeting PTEN and p21. Adv. Sci. 2024, 11, 2307761. [Google Scholar] [CrossRef]
- Liu, X.; Cui, H.; Bai, Q.; Piao, H.; Song, Y.; Yan, G. miR-128-3p alleviates airway inflammation in asthma by targeting SIX1 to regulate mitochondrial fission and fusion. Int. Immunopharmacol. 2024, 130, 111703. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, Q.; Zheng, Z.; Ma, L.; Guo, J.; Shi, H.; Ying, R.; Gao, B.; Chen, S.; Yu, S. MiR-181a protects the heart against myocardial infarction by regulating mitochondrial fission via targeting programmed cell death protein 4. Sci. Rep. 2024, 14, 6638. [Google Scholar] [CrossRef]
- Wang, T.; Chen, Y.; Liu, Z.; Zhou, J.; Li, N.; Shan, Y.; He, Y. Long noncoding RNA Glis2 regulates podocyte mitochondrial dysfunction and apoptosis in diabetic nephropathy via sponging miR-328-5p. J. Cell. Mol. Med. 2024, 28, e18204. [Google Scholar] [CrossRef]
- Yin, Y.; Wang, X.; Li, T.; Ren, Q.; Li, L.; Sun, X.; Zhang, B.; Wang, X.; Han, H.; He, Y. MicroRNA-221 promotes breast cancer resistance to adriamycin via modulation of PTEN/Akt/mTOR signaling. Cancer Med. 2020, 9, 1544–1552. [Google Scholar] [CrossRef]
- Chen, X.; Cao, Y.; Guo, Y.; Liu, J.; Ye, X.; Li, H.; Zhang, L.; Feng, W.; Xian, S.; Yang, Z. microRNA-125b-1-3p mediates autophagy via the RRAGD/mTOR/ULK1 signaling pathway and mitigates atherosclerosis progression. Cell. Signal. 2024, 118, 111136. [Google Scholar] [CrossRef]
- Liu, X.-L.; Pan, Q.; Cao, H.-X.; Xin, F.-Z.; Zhao, Z.-H.; Yang, R.-X.; Zeng, J.; Zhou, H.; Fan, J.-G. Lipotoxic hepatocyte-derived exosomal miR-192–5p activates macrophages via Rictor/Akt/FoxO1 signaling in NAFLD. Hepatology (Baltim. Md.) 2020, 72, 454. [Google Scholar] [CrossRef]
- Maldonado, E.; Morales-Pison, S.; Urbina, F.; Solari, A. Aging hallmarks and the role of oxidative stress. Antioxidants 2023, 12, 651. [Google Scholar] [CrossRef]
- Li, X.; Han, Y.; Meng, Y.; Yin, L. Small RNA-big impact: Exosomal miRNAs in mitochondrial dysfunction in various diseases. RNA Biol. 2024, 21, 1–20. [Google Scholar] [CrossRef]
- Cheng, M.-H.; Kuo, H.-F.; Chang, C.-Y.; Chang, J.-C.; Liu, I.-F.; Hsieh, C.-C.; Hsu, C.-H.; Li, C.-Y.; Wang, S.-C.; Chen, Y.-H. Curcumin regulates pulmonary extracellular matrix remodeling and mitochondrial function to attenuate pulmonary fibrosis by regulating the miR-29a-3p/DNMT3A axis. Biomed. Pharmacother. 2024, 174, 116572. [Google Scholar] [CrossRef]
- Geng, J.; Feng, J.; Ke, F.; Fang, F.; Jing, X.; Tang, J.; Fang, C.; Zhang, B. MicroRNA-124 negatively regulates STAT3 to alleviate hypoxic-ischemic brain damage by inhibiting oxidative stress. Aging 2024, 16, 2828. [Google Scholar] [CrossRef]
- Jin, J.; Shang, Y.; Zheng, S.; Dai, L.; Tang, J.; Bian, X.; He, Q. Exosomes as nanostructures deliver miR-204 in alleviation of mitochondrial dysfunction in diabetic nephropathy through suppressing methyltransferase-like 7A-mediated CIDEC N6-methyladenosine methylation. Aging 2024, 16, 3302. [Google Scholar] [CrossRef]
- Fu, W.; Wu, G. Targeting mTOR for anti-aging and anti-cancer therapy. Molecules 2023, 28, 3157. [Google Scholar] [CrossRef]
- Nazari, N.; Jafari, F.; Ghalamfarsa, G.; Hadinia, A.; Atapour, A.; Ahmadi, M.; Dolati, S.; Rostamzadeh, D. The emerging role of microRNA in regulating the mTOR signaling pathway in immune and inflammatory responses. Immunol. Cell Biol. 2021, 99, 814–832. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Liu, Z. MicroRNA-147 suppresses proliferation, invasion and migration through the AKT/mTOR signaling pathway in breast cancer. Oncol. Lett. 2016, 11, 405–410. [Google Scholar] [CrossRef]
- Shen, H.; Jin, J.; Wang, H.; Yu, N.; Liu, T.; Sheng, H.; Wan, Z.; Feng, C.; Huang, Y.; Gao, F. Integrated analysis identifies microRNA-188-5p as a suppressor of AKT/mTOR pathway in renal cancer. Cancer Sci. 2023, 114, 3128–3143. [Google Scholar] [CrossRef]
- Niture, S.; Tricoli, L.; Qi, Q.; Gadi, S.; Hayes, K.; Kumar, D. MicroRNA-99b-5p targets mTOR/AR axis, induces autophagy and inhibits prostate cancer cell proliferation. Tumor Biol. 2022, 44, 107–127. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Liu, C.; Naji, A.; Stoffers, D.A. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells. Diabetes 2013, 62, 887–895. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, Q.-L.; Shen, L.; Tao, Y.-Y.; Liu, C.-H. MicroRNA-101 suppresses liver fibrosis by downregulating PI3K/Akt/mTOR signaling pathway. Clin. Res. Hepatol. Gastroenterol. 2019, 43, 575–584. [Google Scholar] [CrossRef]
- Duan, W.; Chen, Y.; Wang, X.R. MicroRNA-155 contributes to the occurrence of epilepsy through the PI3K/Akt/mTOR signaling pathway. Int. J. Mol. Med. 2018, 42, 1577–1584. [Google Scholar] [CrossRef]
- Wei, Y.-Y.; Ren, T.-L. MicroRNA-30a-3p inhibits malignant progression of hepatocellular carcinoma through regulating IGF1. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 12144–12152. [Google Scholar]
- Li, K.; Sun, Y.; Liu, S.; Zhou, Y.; Qu, Q.; Wang, G.; Wang, J.; Chen, R.; Fan, Z.; Liu, B. The AR/miR-221/IGF-1 pathway mediates the pathogenesis of androgenetic alopecia. Int. J. Biol. Sci. 2023, 19, 3307. [Google Scholar] [CrossRef]
- Sarma, S.; Sockalingam, S.; Dash, S. Obesity as a multisystem disease: Trends in obesity rates and obesity-related complications. Diabetes Obes. Metab. 2021, 23, 3–16. [Google Scholar] [CrossRef]
- Taylor, E.B. The complex role of adipokines in obesity, inflammation, and autoimmunity. Clin. Sci. 2021, 135, 731–752. [Google Scholar] [CrossRef]
- Pan, Y.; Hui, X.; Hoo, R.L.C.; Ye, D.; Chan, C.Y.C.; Feng, T.; Wang, Y.; Lam, K.S.L.; Xu, A. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J. Clin. Investig. 2019, 129, 834–849. [Google Scholar] [CrossRef] [PubMed]
- Saini, S.K.; Singh, A.; Saini, M.; Gonzalez-Freire, M.; Leeuwenburgh, C.; Anton, S.D. Time-restricted eating regimen differentially affects circulatory miRNA expression in older overweight adults. Nutrients 2022, 14, 1843. [Google Scholar] [CrossRef]
- Yu, K.-R.; Lee, S.; Jung, J.-W.; Hong, I.-S.; Kim, H.-S.; Seo, Y.; Shin, T.-H.; Kang, K.-S. MicroRNA-141-3p plays a role in human mesenchymal stem cell aging by directly targeting ZMPSTE24. J. Cell Sci. 2013, 126, 5422–5431. [Google Scholar] [CrossRef]
- Jani, P.K.; Petkau, G.; Kawano, Y.; Klemm, U.; Guerra, G.M.; Heinz, G.A.; Heinrich, F.; Durek, P.; Mashreghi, M.-F.; Melchers, F. The miR-221/222 cluster regulates hematopoietic stem cell quiescence and multipotency by suppressing both Fos/AP-1/IEG pathway activation and stress-like differentiation to granulocytes. PLoS Biol. 2023, 21, e3002015. [Google Scholar] [CrossRef]
- Zhao, J.L.; Rao, D.S.; O’Connell, R.M.; Garcia-Flores, Y.; Baltimore, D. MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. eLife 2013, 2, e00537. [Google Scholar] [CrossRef]
- Su, Y.; Yu, Y.; Liu, C.; Zhang, Y.; Liu, C.; Ge, M.; Li, L.; Lan, M.; Wang, T.; Li, M. Fate decision of satellite cell differentiation and self-renewal by miR-31-IL34 axis. Cell Death Differ. 2020, 27, 949–965. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Deng, W.; Wang, W.; Song, A.; Mukama, O.; Deng, S.; Han, X.; De Dieu Habimana, J.; Peng, K.; Ni, B. MicroRNA-206 down-regulated human umbilical cord mesenchymal stem cells alleviate cognitive decline in D-galactose-induced aging mice. Cell Death Discov. 2022, 8, 304. [Google Scholar] [CrossRef] [PubMed]
- Mas-Bargues, C.; Sanz-Ros, J.; Román-Domínguez, A.; Gimeno-Mallench, L.; Inglés, M.; Viña, J.; Borrás, C. Extracellular vesicles from healthy cells improves cell function and stemness in premature senescent stem cells by miR-302b and HIF-1α activation. Biomolecules 2020, 10, 957. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Pascale, E.; Caiazza, C.; Paladino, M.; Parisi, S.; Passaro, F.; Caiazzo, M. MicroRNA roles in cell reprogramming mechanisms. Cells 2022, 11, 940. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, S.; Saebfar, H.; Gholami, M.H.; Hashemi, F.; Zarrabi, A.; Zabolian, A.; Entezari, M.; Hushmandi, K.; Samarghandian, S.; Aref, A.R. MicroRNAs regulating SOX2 in cancer progression and therapy response. Expert Rev. Mol. Med. 2021, 23, e13. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Yao, J.; Wang, Y.; Ni, B. Exosome-transmitted circVMP1 facilitates the progression and cisplatin resistance of non-small cell lung cancer by targeting miR-524-5p-METTL3/SOX2 axis. Drug Deliv. 2022, 29, 1257–1271. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, T.; Zhu, Y.; Li, Y.; Zhang, Y.; Wang, Y.; Li, X.; Xie, X.; Wang, J.; Huang, M. circPTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma. J. Exp. Clin. Cancer Res. 2019, 38, 398. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Hao, Y.; Chen, X.; Yu, Q.; Wang, B. miR-122/SENP1 axis confers stemness and chemoresistance to liver cancer through Wnt/β-catenin signaling. Oncol. Lett. 2023, 26, 390. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Li, K.; Ma, Y.; Niu, H.; Li, J.; Shao, X.; Li, N.; Sun, Y.; Wang, H. MicroRNA-322-5p targeting Smurf2 regulates the TGF-β/Smad pathway to protect cardiac function and inhibit myocardial infarction. Hum. Cell 2024, 37, 972–985. [Google Scholar] [CrossRef]
- Zhu, B.; V, M.; Finch-Edmondson, M.; Lee, Y.; Wan, Y.; Sudol, M.; DasGupta, R. miR-582-5p is a tumor suppressor microRNA targeting the Hippo-YAP/TAZ signaling pathway in non-small cell lung cancer. Cancers 2021, 13, 756. [Google Scholar] [CrossRef]
- Han, B.; Li, T.; Zheng, S. MicroRNA-133b aggravates atherosclerosis by activating the Notch signaling pathway. Mol. Med. Rep. 2020, 22, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Wang, L.-T.; Liang, G.-P.; Zhang, P.; Deng, X.-J.; Tang, Q.; Zhai, H.-Y.; Chang, C.C.; Su, Y.-W.; Lu, Q.-J. Up-regulation of microRNA-210 induces immune dysfunction via targeting FOXP3 in CD4+ T cells of psoriasis vulgaris. Clin. Immunol. 2014, 150, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, Z.; Chen, S.; Zang, X.; Miao, J. Interleukin-1β/nuclear factor-ĸB signaling promotes osteosarcoma cell growth through the microRNA-181b/phosphatase and tensin homolog axis. J. Cell. Biochem. 2019, 120, 1763–1772. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, S.E.; Abdelfattah, S.N.; Khaliefa, A.K.; Daoud, S.A.; Yahia, E.; Hasona, N.A. Expression of PVT-1 and miR-29a/29b as reliable biomarkers for liver cirrhosis and their correlation with the inflammatory biomarkers profile. Hum. Exp. Toxicol. 2024, 43, 09603271241251451. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Xiao, X.; Wu, H.; Zhou, F.; Fu, C. MicroRNA-582-3p knockdown alleviates non-alcoholic steatohepatitis by altering the gut microbiota composition and moderating TMBIM1. Ir. J. Med. Sci. 2024, 193, 909–916. [Google Scholar] [CrossRef] [PubMed]
- Das, O.; Kundu, J.; Ghosh, A.; Gautam, A.; Ghosh, S.; Chakraborty, M.; Masid, A.; Gauri, S.S.; Mitra, D.; Dutta, M. AUF-1 knockdown in mice undermines gut microbial butyrate-driven hypocholesterolemia through AUF-1–Dicer-1–mir-122 hierarchy. Front. Cell. Infect. Microbiol. 2022, 12, 1011386. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.L.; Huang, Y.H.; Wang, F.S.; Tsai, M.C.; Chen, C.H.; Lian, W.S. MicroRNA-29a Compromises Hepatic Adiposis and Gut Dysbiosis in High Fat Diet-Fed Mice via Downregulating Inflammation. Mol. Nutr. Food Res. 2023, 67, 2200348. [Google Scholar] [CrossRef] [PubMed]
- Jian, G.; Yangli, J.; Chao, Z.; Kun, W.; Xiaomin, Z. MicroRNA-629-3p Promotes Interleukin-13-Induced Bronchial Epithelial Cell Injury and Inflammation by Targeting FOXA2. Cell Biochem. Biophys. 2022, 80, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Bertero, T.; Cottrill, K.A.; Annis, S.; Bhat, B.; Gochuico, B.R.; Osorio, J.C.; Rosas, I.; Haley, K.J.; Corey, K.E.; Chung, R.T. A YAP/TAZ-miR-130/301 molecular circuit exerts systems-level control of fibrosis in a network of human diseases and physiologic conditions. Sci. Rep. 2015, 5, 18277. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, T.; Zhang, Z.; Xu, Y.; Zhu, F. Oxidized low-density lipoprotein promotes vascular endothelial cell dysfunction by stimulating miR-496 expression and inhibiting the Hippo pathway effector YAP. Cell Biol. Int. 2019, 43, 528–538. [Google Scholar] [CrossRef]
- Garo, L.P.; Murugaiyan, G. Contribution of MicroRNAs to autoimmune diseases. Cell. Mol. Life Sci. 2016, 73, 2041–2051. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, G.; Biswas, R. MicroRNA-155: A master regulator of inflammation. J. Interferon Cytokine Res. 2019, 39, 321–330. [Google Scholar] [CrossRef] [PubMed]
- McCoy, C.E. miR-155 dysregulation and therapeutic intervention in multiple sclerosis. Regul. Inflamm. Signal. Health Dis. 2017, 1024, 111–131. [Google Scholar]
- Xu, W.-D.; Feng, S.-Y.; Huang, A.-F. Role of miR-155 in inflammatory autoimmune diseases: A comprehensive review. Inflamm. Res. 2022, 71, 1501–1517. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.Y.; Song, J.N.; Chen, Y.M.; Yuan, H.N.; Xue, W.S.; Sun, Y.; Wang, Y.; Chen, X. IL-6 regulates epithelial ovarian cancer EMT, invasion, and metastasis by modulating Let-7c and miR-200c through the STAT3/HIF-1α pathway. Med. Oncol. 2024, 41, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pei, H.P.; Tan, F.B.; Liu, L.; Yu, N.H.; Zhu, H. IL-1β/NF-kb signaling promotes colorectal cancer cell growth through miR-181a/PTEN axis. Arch. Biochem. Biophys. 2016, 604, 20–26. [Google Scholar]
- Shu, X.; Chen, X.-X.; Kang, X.-D.; Ran, M.; Wang, Y.-L.; Zhao, Z.-K.; Li, C.-X. Identification of potential key molecules and signaling pathways for psoriasis based on weighted gene co-expression network analysis. World J. Clin. Cases 2022, 10, 5965. [Google Scholar] [CrossRef]
- Li, Y.-n.; Shen, J.; Feng, Y.; Zhang, Y.; Wang, Y.; Ren, X. The relationship of peripheral blood lncRNA-PVT1 and miR-146a levels with Th17/Treg cytokines in patients with Hashimoto’s thyroiditis and their clinical significance. Biomol. Biomed. 2024. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Scalavino, V.; Piccinno, E.; Bianco, G.; Schena, N.; Armentano, R.; Giannelli, G.; Serino, G. The increase of miR-195-5p reduces intestinal permeability in ulcerative colitis, modulating tight junctions’ expression. Int. J. Mol. Sci. 2022, 23, 5840. [Google Scholar] [CrossRef]
- Gao, Y.; Sheng, D.; Chen, W. Regulatory mechanism of miR-20a-5p in neuronal damage and inflammation in lipopolysaccharide-induced BV2 cells and MPTP-HCl-induced Parkinson’s disease mice. Psychogeriatrics 2024, 24, 752–764. [Google Scholar] [CrossRef]
- Lin, Z.; Bao, R.; Niu, Y.; Kong, X. KLF5-mediated pyroptosis of airway epithelial cells leads to airway inflammation in asthmatic mice through the miR-182–5p/TLR4 axis. Mol. Immunol. 2024, 170, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wei, Z.; Li, H.; Lv, S.; Fu, Y.; Xiao, L. Paeoniflorin inhibits the inflammation of rheumatoid arthritis fibroblast-like synoviocytes by downregulating hsa_circ_009012. Heliyon 2024, 10, e30555. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Liu, P.; Hu, H.; Li, X.; Li, P. MiR-98-5p plays suppressive effects on IL-1β-induced chondrocyte injury associated with osteoarthritis by targeting CASP3. J. Orthop. Surg. Res. 2024, 19, 239. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, Z.; Lou, H.; Sun, Y.; Li, C.; Gao, X. Effects of miR-129-5p on inflammation and nucleus pulposus cell apoptosis in rats with intervertebral disc degeneration through JNK signaling pathway. Cell. Mol. Biol. 2024, 70, 164–168. [Google Scholar] [PubMed]
- Liechty, C.; Hu, J.; Zhang, L.; Liechty, K.W.; Xu, J. Role of microRNA-21 and its underlying mechanisms in inflammatory responses in diabetic wounds. Int. J. Mol. Sci. 2020, 21, 3328. [Google Scholar] [CrossRef]
- Rawal, S.; Randhawa, V.; Rizvi, S.H.M.; Sachan, M.; Wara, A.K.; Pérez-Cremades, D.; Weisbrod, R.M.; Hamburg, N.M.; Feinberg, M.W. miR-369-3p ameliorates diabetes-associated atherosclerosis by regulating macrophage succinate-GPR91 signaling. Cardiovasc. Res. 2024, cvae102. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Wang, N.; Wang, Y.; Nie, H.; Zhang, Y.; Han, H.; Wang, S.; Liu, W.; Bo, C. Long non-coding RNA MIAT impairs neurological function in ischemic stroke via up-regulating microRNA-874-3p-targeted IL1B. Brain Res. Bull. 2021, 175, 81–89. [Google Scholar] [CrossRef]
- Fardi, F.; Khasraghi, L.B.; Shahbakhti, N.; Naseriyan, A.S.; Najafi, S.; Sanaaee, S.; Alipourfard, I.; Zamany, M.; Karamipour, S.; Jahani, M. An interplay between non-coding RNAs and gut microbiota in human health. Diabetes Res. Clin. Pract. 2023, 201, 110739. [Google Scholar] [CrossRef]
- Nikolaieva, N.; Sevcikova, A.; Omelka, R.; Martiniakova, M.; Mego, M.; Ciernikova, S. Gut microbiota–microRNA interactions in intestinal homeostasis and cancer development. Microorganisms 2022, 11, 107. [Google Scholar] [CrossRef]
- Du, X.; Ley, R.; Buck, A. MicroRNAs and extracellular vesicles in the gut: New host modulators of the microbiome? microLife 2021, 2, uqab010. [Google Scholar] [CrossRef]
- Yan, X.-Y.; Yao, J.-P.; Li, Y.-Q.; Zhang, W.; Xi, M.-H.; Chen, M.; Li, Y. Global trends in research on miRNA–microbiome interaction from 2011 to 2021: A bibliometric analysis. Front. Pharmacol. 2022, 13, 974741. [Google Scholar] [CrossRef] [PubMed]
- Prukpitikul, P.; Sirivarasai, J.; Sutjarit, N. The molecular mechanisms underlying gut microbiota-miRNA interaction in metabolic disorders. Benef. Microbes 2024, 15, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Izdebska, W.M.; Daniluk, J.; Niklinski, J. Microbiome and MicroRNA or Long Non-Coding RNA—Two Modern Approaches to Understanding Pancreatic Ductal Adenocarcinoma. J. Clin. Med. 2023, 12, 5643. [Google Scholar] [CrossRef] [PubMed]
- Dothel, G.; Barbaro, M.R.; Di Vito, A.; Ravegnini, G.; Gorini, F.; Monesmith, S.; Coschina, E.; Benuzzi, E.; Fuschi, D.; Palombo, M. New insights into irritable bowel syndrome pathophysiological mechanisms: Contribution of epigenetics. J. Gastroenterol. 2023, 58, 605–621. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, E.C.S.d.; Quaglio, A.E.V.; Magro, D.O.; Di Stasi, L.C.; Sassaki, L.Y. Intestinal microbiota and miRNA in IBD: A narrative review about discoveries and perspectives for the future. Int. J. Mol. Sci. 2023, 24, 7176. [Google Scholar] [CrossRef] [PubMed]
- Mousa, W.K.; Chehadeh, F.; Husband, S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Front. Immunol. 2022, 13, 906258. [Google Scholar] [CrossRef] [PubMed]
- Kopczyńska, J.; Kowalczyk, M. The potential of short-chain fatty acid epigenetic regulation in chronic low-grade inflammation and obesity. Front. Immunol. 2024, 15, 1380476. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, Q.; Yang, F.; Shen, L.; Guo, K.; Zhou, X. Chlorogenic acid ameliorates intestinal inflammation via miRNA-microbe axis in db/db mice. FASEB J. 2024, 38, e23665. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Hou, C.; Yang, H.; Chen, Q.; Lyu, W.; Wang, Z.; Wang, J.; Xiao, Y. Multi-omics analysis reveals the interaction of gut microbiome and host microRNAs in ulcerative colitis. Ann. Med. 2023, 55, 2261477. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, T.; Li, J.; Shen, J.; Xiao, R.; Ma, W. Gut microbiota regulation of inflammatory cytokines and microRNAs in diabetes-associated cognitive dysfunction. Appl. Microbiol. Biotechnol. 2023, 107, 7251–7267. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, J.; Gao, Z.; Zhang, Y.; Gu, J. Gut microbiota-induced microRNA-206-3p increases anxiety-like behaviors by inhibiting expression of Cited2 and STK39. Microb. Pathog. 2023, 176, 106008. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Ji, L.; Wang, C.; Shao, Y.; Chen, C.; Liu, L.; Feng, M.; Yang, F.; Wu, X.; Li, X. The host genetics affects gut microbiome diversity in Chinese depressed patients. Front. Genet. 2023, 13, 976814. [Google Scholar] [CrossRef] [PubMed]
- Datta, N.; Johnson, C.; Kao, D.; Gurnani, P.; Alexander, C.; Polytarchou, C.; Monaghan, T.M. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis. Pharmacol. Res. 2023, 194, 106870. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-M.; Chung, Y.-C.E.; Chen, H.-C.; Liu, Y.-W.; Chen, I.-M.; Lu, M.-L.; Hsiao, F.S.-H.; Chen, C.-H.; Huang, M.-C.; Shih, W.-L. Exploration of the relationship between gut microbiota and fecal microRNAs in patients with major depressive disorder. Sci. Rep. 2022, 12, 20977. [Google Scholar] [CrossRef] [PubMed]
- Sayed, N.; Huang, Y.; Nguyen, K.; Krejciova-Rajaniemi, Z.; Grawe, A.P.; Gao, T.; Tibshirani, R.; Hastie, T.; Alpert, A.; Cui, L. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging 2021, 1, 598–615. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Freitas, L.S.; Silveira, A.C.; Martins, F.C.; Costa-Hong, V.; Lebkuchen, A.; Cardozo, K.H.; Bernardes, F.M.; Bortolotto, L.A.; Lorenzi-Filho, G.; Oliveira, E.M. Severe obstructive sleep apnea is associated with circulating microRNAs related to heart failure, myocardial ischemia, and cancer proliferation. Sleep Breath. 2020, 24, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Iannone, F.; Crocco, P.; Dato, S.; Passarino, G.; Rose, G. Circulating miR-181a as a novel potential plasma biomarker for multimorbidity burden in the older population. BMC Geriatr. 2022, 22, 772. [Google Scholar] [CrossRef]
- Sorror, M.L.; Gooley, T.A.; Maclean, K.H.; Hubbard, J.; Marcondes, M.A.; Torok-Storb, B.J.; Tewari, M. Pre-transplant expressions of microRNAs, comorbidities, and post-transplant mortality. Bone Marrow Transplant. 2019, 54, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Ermogenous, C.; Green, C.; Jackson, T.; Ferguson, M.; Lord, J.M. Treating age-related multimorbidity: The drug discovery challenge. Drug Discov. Today 2020, 25, 1403–1415. [Google Scholar] [CrossRef]
- Singer, L.; Green, M.; Rowe, F.; Ben-Shlomo, Y.; Kulu, H.; Morrissey, K. Trends in multimorbidity, complex multimorbidity and multiple functional limitations in the ageing population of England, 2002–2015. J. Comorbidity 2019, 9, 2235042X19872030. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.E.; Elliott, J.A.; McIntyre, T.V.; Boyle, E.A.; Gillis, A.E.; Ridgway, P.F. Sarcopenia and obesity among patients with soft tissue sarcoma–Association with clinicopathologic characteristics, complications and oncologic outcome: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2021, 47, 2237–2247. [Google Scholar] [CrossRef]
- Saliminejad, K.; Khorram Khorshid, H.R.; Ghaffari, S.H. Why have microRNA biomarkers not been translated from bench to clinic? Future Oncol. 2019, 15, 801–803. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.G.; Davies, M.; Lowery, A.J.; Miller, N.; Kerin, M.J. The role of microRNA as clinical biomarkers for breast cancer surgery and treatment. Int. J. Mol. Sci. 2021, 22, 8290. [Google Scholar] [CrossRef]
- Mohr, A.M.; Mott, J.L. Overview of microRNA biology. Semin. Liver Dis. 2015, 35, 003–011. [Google Scholar] [CrossRef]
- Austad, S.N. The geroscience hypothesis: Is it possible to change the rate of aging? In Advances in Geroscience; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–36. [Google Scholar]
- Ding, X.; Ma, X.; Meng, P.; Yue, J.; Li, L.; Xu, L. Potential Effects of Traditional Chinese Medicine in Anti-Aging and Aging-Related Diseases: Current Evidence and Perspectives. Clin. Interv. Aging 2024, 19, 681–693. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butler, T.; Davey, M.G.; Kerin, M.J. Molecular Morbidity Score–Can MicroRNAs Assess the Burden of Disease? Int. J. Mol. Sci. 2024, 25, 8042. https://doi.org/10.3390/ijms25158042
Butler T, Davey MG, Kerin MJ. Molecular Morbidity Score–Can MicroRNAs Assess the Burden of Disease? International Journal of Molecular Sciences. 2024; 25(15):8042. https://doi.org/10.3390/ijms25158042
Chicago/Turabian StyleButler, Thomas, Matthew G. Davey, and Michael J. Kerin. 2024. "Molecular Morbidity Score–Can MicroRNAs Assess the Burden of Disease?" International Journal of Molecular Sciences 25, no. 15: 8042. https://doi.org/10.3390/ijms25158042
APA StyleButler, T., Davey, M. G., & Kerin, M. J. (2024). Molecular Morbidity Score–Can MicroRNAs Assess the Burden of Disease? International Journal of Molecular Sciences, 25(15), 8042. https://doi.org/10.3390/ijms25158042