Advancing Renal Amyloidosis Care: The Role of Modern Diagnostic Techniques with the Potential of Enhancing Patient Outcomes
Abstract
1. Characterizing Proteomic Variations in Amyloidosis
2. Diagnostic Techniques
2.1. Current Challenges in Diagnosis and Treatment
2.2. Recent Advancements in Diagnostic Techniques
3. Diverse Forms of Amyloidosis: Classification and Characteristics
3.1. AL Amyloidosis
3.2. Serum Amyloid a Amyloidosis (AA)
3.3. Transthyretin Amyloidosis (ATTR)
3.4. Leukocyte Cell-Derived Chemotaxin-2 Amyloidosis (ALECT2)
3.5. Fibrinogen a α-Chain Amyloidosis (AFib)
3.6. Lysozyme Amyloidosis (ALys)
3.7. Gelsolin Amyloidosis (AGel)
3.8. Apolipoprotein A-I Amyloidosis (AApoAI)
3.9. Apolipoprotein A-II Amyloidosis (AApoAII)
3.10. Apolipoprotein C-II (AApoCII) Amyloidosis
3.11. Apolipoprotein C-III (AApoCIII) Amyloidosis
3.12. Amyloid-ApoAIV Medullary Amyloidosis
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dember, L.M. Amyloidosis-Associated Kidney Disease. J. Am. Soc. Nephrol. 2006, 17, 3458–3471. [Google Scholar] [CrossRef] [PubMed]
- Merlini, G.; Bellotti, V. Molecular Mechanisms of Amyloidosis. N. Engl. J. Med. 2003, 349, 583–596. [Google Scholar] [CrossRef] [PubMed]
- Benson, M.D.; Buxbaum, J.N.; Eisenberg, D.S.; Merlini, G.; Saraiva, M.J.M.; Sekijima, Y.; Sipe, J.D.; Westermark, P. Amyloid Nomenclature 2018: Recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 2018, 25, 215–219. [Google Scholar] [CrossRef]
- Geller, H.I.; Singh, A.; Mirto, T.M.; Padera, R.; Mitchell, R.; Laubach, J.P.; Falk, R.H. Prevalence of Monoclonal Gammopathy in Wild-Type Transthyretin Amyloidosis. Mayo Clin. Proc. 2017, 92, 1800–1805. [Google Scholar] [CrossRef] [PubMed]
- Lachmann, H.J.; Booth, D.R.; Booth, S.E.; Bybee, A.; Gilbertson, J.A.; Gillmore, J.D.; Pepys, M.B.; Hawkins, P.N. Misdiagnosis of Hereditary Amyloidosis as AL (Primary) Amyloidosis. N. Engl. J. Med. 2002, 346, 1786–1791. [Google Scholar] [CrossRef] [PubMed]
- Sidiqi, M.H.; Dasari, S.; McPhail, E.D.; Buadi, F.K.; Warsame, R.; Lacy, M.Q.; Dingli, D.; Gonsalves, W.I.; Kapoor, P.; Kourelis, T.; et al. Monoclonal Gammopathy plus Positive Amyloid Biopsy Does Not Always Equal AL Amyloidosis. Am. J. Hematol. 2019, 94, E141–E143. [Google Scholar] [CrossRef] [PubMed]
- Leung, N.; Nasr, S.H. 2024 Update on Classification, Etiology, and Typing of Renal Amyloidosis. Am. J. Kidney Dis. 2024, published. [Google Scholar] [CrossRef] [PubMed]
- Buxbaum, J.N.; Dispenzieri, A.; Eisenberg, D.S.; Fändrich, M.; Merlini, G.; Saraiva, M.J.M.; Sekijima, Y.; Westermark, P. Amyloid Nomenclature 2022: Update, Novel Proteins, and Recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 2022, 29, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Valleix, S.; Gillmore, J.D.; Bridoux, F.; Mangione, P.P.; Dogan, A.; Nedelec, B.; Boimard, M.; Touchard, G.; Goujon, J.-M.; Lacombe, C.; et al. Hereditary Systemic Amyloidosis Due to Asp76Asn Variant Β2-Microglobulin. N. Engl. J. Med. 2012, 366, 2276–2283. [Google Scholar] [CrossRef] [PubMed]
- Muchtar, E.; Dispenzieri, A.; Magen, H.; Grogan, M.; Mauermann, M.; McPhail, E.D.; Kurtin, P.J.; Leung, N.; Buadi, F.K.; Dingli, D.; et al. Systemic Amyloidosis from A (AA) to T (ATTR): A Review. J. Intern. Med. 2021, 289, 268–292. [Google Scholar] [CrossRef]
- Poon, S.; Easterbrook-Smith, S.B.; Rybchyn, M.S.; Carver, J.A.; Wilson, M.R. Clusterin Is an ATP−Independent Chaperone with Very Broad Substrate Specificity That Stabilizes Stressed Proteins in a Folding-Competent State. Biochemistry 2000, 39, 15953–15960. [Google Scholar] [CrossRef]
- Charalampous, C.; Dasari, S.; McPhail, E.; Theis, J.D.; Vrana, J.A.; Dispenzieri, A.; Leung, N.; Muchtar, E.; Gertz, M.; Ramirez-Alvarado, M.; et al. A Proteomic Atlas of Kidney Amyloidosis Provides Insights into Disease Pathogenesis. Kidney Int. 2024, 105, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Kourelis, T.V.; Dasari, S.S.; Dispenzieri, A.; Maleszewski, J.J.; Redfield, M.M.; Fayyaz, A.U.; Grogan, M.; Ramirez-Alvarado, M.; Abou Ezzeddine, O.F.; McPhail, E.D. A Proteomic Atlas of Cardiac Amyloid Plaques. JACC Cardio Oncol. 2020, 2, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Park, C.-W.; Jung, B.-K.; Ryu, K.-Y. Reduced Free Ubiquitin Levels and Proteasome Activity in Cultured Neurons and Brain Tissues Treated with Amyloid Beta Aggregates. Mol. Brain 2020, 13, 89. [Google Scholar] [CrossRef]
- Balana, A.T.; Levine, P.M.; Craven, T.W.; Mukherjee, S.; Pedowitz, N.J.; Moon, S.P.; Takahashi, T.T.; Becker, C.F.W.; Baker, D.; Pratt, M.R. O-GlcNAc Modification of Small Heat Shock Proteins Enhances Their Anti-Amyloid Chaperone Activity. Nat. Chem. 2021, 13, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Kukushkin, Y.; Gupta, R.; Chen, T.; Konagai, A.; Hipp, M.S.; Hayer-Hartl, M.; Hartl, F.U. PolyQ Proteins Interfere with Nuclear Degradation of Cytosolic Proteins by Sequestering the Sis1p Chaperone. Cell 2013, 154, 134–145. [Google Scholar] [CrossRef]
- Eisele, F.; Eisele-Bürger, A.M.; Hao, X.; Berglund, L.L.; Höög, J.L.; Liu, B.; Nyström, T. An Hsp90 Co-Chaperone Links Protein Folding and Degradation and Is Part of a Conserved Protein Quality Control. Cell Rep. 2021, 35, 109328. [Google Scholar] [CrossRef]
- Boronat, S.; Cabrera, M.; Hidalgo, E. Spatial Sequestration of Misfolded Proteins as an Active Chaperone-Mediated Process during Heat Stress. Curr. Genet. 2021, 67, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Aghazadeh, Y.; Papadopoulos, V. The Role of the 14-3-3 Protein Family in Health, Disease, and Drug Development. Drug Discov. Today 2016, 21, 278–287. [Google Scholar] [CrossRef]
- Herod, S.G.; Dyatel, A.; Hodapp, S.; Jovanovic, M.; Berchowitz, L.E. Clearance of an Amyloid-like Translational Repressor Is Governed by 14-3-3 Proteins. Cell Rep. 2022, 39, 110753. [Google Scholar] [CrossRef]
- Williams, D.M.; Thorn, D.C.; Dobson, C.M.; Meehan, S.; Jackson, S.E.; Woodcock, J.M.; Carver, J.A. The Amyloid Fibril-Forming β-Sheet Regions of Amyloid β and α-Synuclein Preferentially Interact with the Molecular Chaperone 14-3-3ζ. Molecules 2021, 26, 6120. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Urushido, M.; Ide, H.; Ishihara, M.; Hamada-Ode, K.; Shimamura, Y.; Ogata, K.; Inoue, K.; Taniguchi, Y.; Taguchi, T.; et al. Small Heat Shock Protein Beta-1 (HSPB1) Is Upregulated and Regulates Autophagy and Apoptosis of Renal Tubular Cells in Acute Kidney Injury. PLoS ONE 2015, 10, e0126229. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-W.; Rifai, A.; Ka, S.-M.; Shui, H.-A.; Lin, Y.-F.; Lee, W.-H.; Chen, A. Calcium-Binding Proteins Annexin A2 and S100A6 Are Sensors of Tubular Injury and Recovery in Acute Renal Failure. Kidney Int. 2005, 68, 2694–2703. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.-Y.; Wang, C.-Y.; Wang, T.; Li, Y.-C.; Wang, Z.-Y. Glial S100A6 Degrades β-Amyloid Aggregation through Targeting Competition with Zinc Ions. Aging Dis. 2019, 10, 756. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.; Concannon, C.G.; Ward, M.W.; Walsh, C.M.; Tirniceriu, A.L.; Tribl, F.; Kögel, D.; Prehn, J.H.M.; Egensperger, R. Modulation of Gene Expression and Cytoskeletal Dynamics by the Amyloid Precursor Protein Intracellular Domain (AICD). Mol. Biol. Cell 2007, 18, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Pasten, C.; Herrera-Luna, Y.; Lozano, M.; Rocco, J.; Alvarado, C.; Liberona, J.; Michea, L.; Irarrázabal, C.E. Glutathione S-Transferase and Clusterin, New Players in the Ischemic Preconditioning Renal Protection in a Murine Model of Ischemia and Reperfusion. Cell Physiol. Biochem. 2021, 55, 635–650. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, S.E.; Tyurina, Y.Y.; Zhao, J.; Croix, C.M.S.; Dar, H.H.; Mao, G.; Tyurin, V.A.; Anthonymuthu, T.S.; Kapralov, A.A.; Amoscato, A.A.; et al. PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell 2017, 171, 628–641.e26. [Google Scholar] [CrossRef] [PubMed]
- Fernández de Larrea, C.; Verga, L.; Morbini, P.; Klersy, C.; Lavatelli, F.; Foli, A.; Obici, L.; Milani, P.; Capello, G.L.; Paulli, M.; et al. A Practical Approach to the Diagnosis of Systemic Amyloidoses. Blood 2015, 125, 2239–2244. [Google Scholar] [CrossRef] [PubMed]
- van Gameren, I.I.; Hazenberg, B.P.C.; Bijzet, J.; van Rijswijk, M.H. Diagnostic Accuracy of Subcutaneous Abdominal Fat Tissue Aspiration for Detecting Systemic Amyloidosis and Its Utility in Clinical Practice. Arthritis Rheum. 2006, 54, 2015–2021. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Theis, J.D.; Leung, N.; Dispenzieri, A.; Nasr, S.H.; Fidler, M.E.; Cornell, L.D.; Gamez, J.D.; Vrana, J.A.; Dogan, A. Mass Spectrometry-Based Proteomic Diagnosis of Renal Immunoglobulin Heavy Chain Amyloidosis. Clin. J. Am. Soc. Nephrol. 2010, 5, 2180–2187. [Google Scholar] [CrossRef] [PubMed]
- Dispenzieri, A.; Buadi, F.; Kumar, S.K.; Reeder, C.B.; Sher, T.; Lacy, M.Q.; Kyle, R.A.; Mikhael, J.R.; Roy, V.; Leung, N.; et al. Treatment of Immunoglobulin Light Chain Amyloidosis: Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) Consensus Statement. Mayo Clin. Proc. 2015, 90, 1054–1081. [Google Scholar] [CrossRef] [PubMed]
- Said, S.M.; Sethi, S.; Valeri, A.M.; Leung, N.; Cornell, L.D.; Fidler, M.E.; Herrera Hernandez, L.; Vrana, J.A.; Theis, J.D.; Quint, P.S.; et al. Renal Amyloidosis: Origin and Clinicopathologic Correlations of 474 Recent Cases. Clin. J. Am. Soc. Nephrol. 2013, 8, 1515–1523. [Google Scholar] [CrossRef] [PubMed]
- Leung, N.; Nasr, S.H.; Sethi, S. How I Treat Amyloidosis: The Importance of Accurate Diagnosis and Amyloid Typing. Blood 2012, 120, 3206–3213. [Google Scholar] [CrossRef] [PubMed]
- Nasr, S.H.; Said, S.M.; Valeri, A.M.; Sethi, S.; Fidler, M.E.; Cornell, L.D.; Gertz, M.A.; Dispenzieri, A.; Buadi, F.K.; Vrana, J.A.; et al. The Diagnosis and Characteristics of Renal Heavy-Chain and Heavy/Light-Chain Amyloidosis and Their Comparison with Renal Light-Chain Amyloidosis. Kidney Int. 2013, 83, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Suarez, M.L.; Zhang, P.; Nasr, S.H.; Sathick, I.J.; Kittanamongkolchai, W.; Kurtin, P.J.; Alexander, M.P.; Cornell, L.D.; Fidler, M.E.; Grande, J.P.; et al. The Sensitivity and Specificity of the Routine Kidney Biopsy Immunofluorescence Panel Are Inferior to Diagnosing Renal Immunoglobulin-Derived Amyloidosis by Mass Spectrometry. Kidney Int. 2019, 96, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Novak, L.; Cook, W.J.; Herrera, G.A.; Sanders, P.W. AL-Amyloidosis Is Underdiagnosed in Renal Biopsies. Nephrol. Dial. Transpl. 2004, 19, 3050–3053. [Google Scholar] [CrossRef] [PubMed]
- Kebbel, A.; Röcken, C. Immunohistochemical Classification of Amyloid in Surgical Pathology Revisited. Am. J. Surg. Pathol. 2006, 30, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Picken, M.M.; Herrera, G.A. The Burden of “Sticky” Amyloid: Typing Challenges. Arch. Pathol. Lab. Med. 2007, 131, 850–851. [Google Scholar] [CrossRef] [PubMed]
- Schönland, S.O.; Hegenbart, U.; Bochtler, T.; Mangatter, A.; Hansberg, M.; Ho, A.D.; Lohse, P.; Röcken, C. Immunohistochemistry in the Classification of Systemic Forms of Amyloidosis: A Systematic Investigation of 117 Patients. Blood 2012, 119, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Vrana, J.A.; Gamez, J.D.; Madden, B.J.; Theis, J.D.; Bergen, H.R.; Dogan, A. Classification of Amyloidosis by Laser Microdissection and Mass Spectrometry-Based Proteomic Analysis in Clinical Biopsy Specimens. Blood 2009, 114, 4957–4959. [Google Scholar] [CrossRef]
- Krainer, J.; Siebenhandl, S.; Weinhäusel, A. Systemic Autoinflammatory Diseases. J. Autoimmun. 2020, 109, 102421. [Google Scholar] [CrossRef]
- Dasari, S.; Amin, M.S.; Kurtin, P.J.; Vrana, J.A.; Theis, J.D.; Grogg, K.L.; Alexander, M.P.; Nasr, S.H.; Fervenza, F.C.; Leung, N.; et al. Clinical, Biopsy, and Mass Spectrometry Characteristics of Renal Apolipoprotein A-IV Amyloidosis. Kidney Int. 2016, 90, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, G.; Kumar, S. Systemic Amyloidosis Due to Clonal Plasma Cell Diseases. Hematol. Oncol. Clin. N. Am. 2020, 34, 1009–1026. [Google Scholar] [CrossRef] [PubMed]
- Desport, E.; Bridoux, F.; Sirac, C.; Delbes, S.; Bender, S.; Fernandez, B.; Quellard, N.; Lacombe, C.; Goujon, J.-M.; Lavergne, D.; et al. Al Amyloidosis. Orphanet J. Rare Dis. 2012, 7, 54. [Google Scholar] [CrossRef] [PubMed]
- Merlini, G.; Dispenzieri, A.; Sanchorawala, V.; Schönland, S.O.; Palladini, G.; Hawkins, P.N.; Gertz, M.A. Systemic Immunoglobulin Light Chain Amyloidosis. Nat. Rev. Dis. Primers 2018, 4, 38. [Google Scholar] [CrossRef] [PubMed]
- Lobato, L. Portuguese-Type Amyloidosis (Transthyretin Amyloidosis, ATTR V30M). J. Nephrol. 2003, 16, 438–442. [Google Scholar] [PubMed]
- Lobato, L.; Rocha, A. Transthyretin Amyloidosis and the Kidney. Clin. J. Am. Soc. Nephrol. 2012, 7, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.M.; LoRusso, S.; Dispenzieri, A.; Kristen, A.V.; Maurer, M.S.; Rapezzi, C.; Lairez, O.; Drachman, B.; Garcia-Pavia, P.; Grogan, M.; et al. Sex Differences in Wild-Type Transthyretin Amyloidosis: An Analysis from the Transthyretin Amyloidosis Outcomes Survey (THAOS). Cardiol. Ther. 2022, 11, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Benson, M.D.; James, S.; Scott, K.; Liepnieks, J.J.; Kluve-Beckerman, B. Leukocyte Chemotactic Factor 2: A Novel Renal Amyloid Protein. Kidney Int. 2008, 74, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Larsen, C.P.; Kossmann, R.J.; Beggs, M.L.; Solomon, A.; Walker, P.D. Clinical, Morphologic, and Genetic Features of Renal Leukocyte Chemotactic Factor 2 Amyloidosis. Kidney Int. 2014, 86, 378–382. [Google Scholar] [CrossRef] [PubMed]
- de la Cruz Jasso, M.A.; Mejía-Vilet, J.M.; Del Toro-Cisneros, N.; Aguilar-León, D.E.; Morales-Buenrostro, L.E.; Herrera, G.; Uribe-Uribe, N.O. Leukocyte Chemotactic Factor 2 Amyloidosis (ALECT2) Distribution in a Mexican Population. Am. J. Clin. Pathol. 2023, 159, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Larsen, C.P.; Beggs, M.L.; Wilson, J.D.; Lathrop, S.L. Prevalence and Organ Distribution of Leukocyte Chemotactic Factor 2 Amyloidosis (ALECT2) among Decedents in New Mexico. Amyloid 2016, 23, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Tougaard, B.G.; Pedersen, K.V.; Krag, S.R.; Gilbertson, J.A.; Rowczenio, D.; Gillmore, J.D.; Birn, H. A Case Report of Hereditary Apolipoprotein A-I Amyloidosis Associated with a Novel APOA1 Mutation and Variable Phenotype. Eur. J. Med. Genet. 2016, 59, 474–477. [Google Scholar] [CrossRef]
- Cohen, O.C.; Blakeney, I.J.; Law, S.; Ravichandran, S.; Gilbertson, J.; Rowczenio, D.; Mahmood, S.; Sachchithanantham, S.; Wisniowski, B.; Lachmann, H.J.; et al. The Experience of Hereditary Apolipoprotein A-I Amyloidosis at the UK National Amyloidosis Centre. Amyloid 2022, 29, 237–244. [Google Scholar] [CrossRef]
- Urieli-Shoval, S.; Linke, R.P.; Matzner, Y. Expression and Function of Serum Amyloid A, a Major Acute-Phase Protein, in Normal and Disease States. Curr. Opin. Hematol. 2000, 7, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J.D.; Lachmann, H.J.; Rowczenio, D.; Gilbertson, J.A.; Zeng, C.-H.; Liu, Z.-H.; Li, L.-S.; Wechalekar, A.; Hawkins, P.N. Diagnosis, Pathogenesis, Treatment, and Prognosis of Hereditary Fibrinogen A Alpha-Chain Amyloidosis. J. Am. Soc. Nephrol. 2009, 20, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Rowczenio, D.; Stensland, M.; de Souza, G.A.; Strøm, E.H.; Gilbertson, J.A.; Taylor, G.; Rendell, N.; Minogue, S.; Efebera, Y.A.; Lachmann, H.J.; et al. Renal Amyloidosis Associated With 5 Novel Variants in the Fibrinogen A Alpha Chain Protein. Kidney Int. Rep. 2017, 2, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Solomon, J.P.; Page, L.J.; Balch, W.E.; Kelly, J.W. Gelsolin Amyloidosis: Genetics, Biochemistry, Pathology and Possible Strategies for Therapeutic Intervention. Crit. Rev. Biochem. Mol. Biol. 2012, 47, 282–296. [Google Scholar] [CrossRef]
- Atula, S.; Nikoskinen, T.; Saastamoinen, A.; Strbian, D.; Schmidt, E.-K.; Kiuru-Enari, S. Gender Differences in the Clinical Course of Finnish Gelsolin Amyloidosis. Amyloid 2016, 23, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Prokaeva, T.; Akar, H.; Spencer, B.; Havasi, A.; Cui, H.; O’Hara, C.J.; Gursky, O.; Leszyk, J.; Steffen, M.; Browning, S.; et al. Hereditary Renal Amyloidosis Associated With a Novel Apolipoprotein A-II Variant. Kidney Int. Rep. 2017, 2, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Dasari, S.; Plaisier, E.; Ronco, P.; Nasr, S.H.; Brocheriou, I.; Theis, J.D.; Vrana, J.A.; Zimmermann, M.T.; Quint, P.S.; et al. Apolipoprotein CII Amyloidosis Associated With p.Lys41Thr Mutation. Kidney Int. Rep. 2018, 3, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Liapis, K.; Panagopoulou, P.; Charitaki, E.; Rowczenio, D.; Gilbertson, J.; Papathoma, A.; Kostopoulou, M.; Dimopoulos, M.A.; Gillmore, J.D.; Kastritis, E. Hereditary Systemic Amyloidosis Caused by K19T Apolipoprotein C-II Variant. Amyloid 2019, 26, 52–53. [Google Scholar] [CrossRef] [PubMed]
- Nasr, S.H.; Dasari, S.; Hasadsri, L.; Theis, J.D.; Vrana, J.A.; Gertz, M.A.; Muppa, P.; Zimmermann, M.T.; Grogg, K.L.; Dispenzieri, A.; et al. Novel Type of Renal Amyloidosis Derived from Apolipoprotein-CII. J. Am. Soc. Nephrol. 2017, 28, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Theis, J.D.; Shiller, S.M.; Nast, C.C.; Harrison, D.; Rennke, H.G.; Vrana, J.A.; Dogan, A. Medullary Amyloidosis Associated with Apolipoprotein A-IV Deposition. Kidney Int. 2012, 81, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Muchtar, E.; Gertz, M.A.; Kyle, R.A.; Lacy, M.Q.; Dingli, D.; Leung, N.; Buadi, F.K.; Hayman, S.R.; Kapoor, P.; Hwa, Y.L.; et al. A Modern Primer on Light Chain Amyloidosis in 592 Patients With Mass Spectrometry-Verified Typing. Mayo Clin. Proc. 2019, 94, 472–483. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Lopez, E.; McPhail, E.D.; Salas-Anton, C.; Dominguez, F.; Gertz, M.A.; Dispenzieri, A.; Dasari, S.; Milani, P.; Verga, L.; Grogan, M.; et al. Histological Typing in Patients With Cardiac Amyloidosis. J. Am. Coll. Cardiol. 2024, 83, 1085–1099. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.; Hinderhofer, K.; Baur, J.; Haupt, C.; Röcken, C.; Beimler, J.; Zeier, M.; Weiler, M.; Wühl, E.; Kimmich, C.; et al. Lysozyme Amyloidosis-a Report on a Large German Cohort and the Characterisation of a Novel Amyloidogenic Lysozyme Gene Variant. Amyloid 2022, 29, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Granel, B.; Valleix, S.; Serratrice, J.; Chérin, P.; Texeira, A.; Disdier, P.; Weiller, P.-J.; Grateau, G. Lysozyme Amyloidosis: Report of 4 Cases and a Review of the Literature. Medicine 2006, 85, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Loss, M.; Ng, W.S.; Karim, R.Z.; Strasser, S.I.; Koorey, D.J.; Gallagher, P.J.; Verran, D.J.; McCaughan, G.W. Hereditary Lysozyme Amyloidosis: Spontaneous Hepatic Rupture (15 Years Apart) in Mother and Daughter. Role of Emergency Liver Transplantation. Liver Transpl. 2006, 12, 1152–1155. [Google Scholar] [CrossRef] [PubMed]
- Sattianayagam, P.T.; Gibbs, S.D.J.; Rowczenio, D.; Pinney, J.H.; Wechalekar, A.D.; Gilbertson, J.A.; Hawkins, P.N.; Lachmann, H.J.; Gillmore, J.D. Hereditary Lysozyme Amyloidosis—Phenotypic Heterogeneity and the Role of Solid Organ Transplantation. J. Intern. Med. 2012, 272, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Gurung, R.; Li, T. Renal Amyloidosis: Presentation, Diagnosis, and Management. Am. J. Med. 2022, 135 (Suppl. 1), S38–S43. [Google Scholar] [CrossRef] [PubMed]
- Oubari, S.; Naser, E.; Papathanasiou, M.; Luedike, P.; Hagenacker, T.; Thimm, A.; Rischpler, C.; Kessler, L.; Kimmich, C.; Hegenbart, U.; et al. Impact of Time to Diagnosis on Mayo Stages, Treatment Outcome, and Survival in Patients with AL Amyloidosis and Cardiac Involvement. Eur. J. Haematol. 2021, 107, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Shafqat, A.; Elmaleh, H.; Mushtaq, A.; Firdous, Z.; Ashruf, O.; Mukhopadhyay, D.; Ahmad, M.; Ahmad, M.; Raza, S.; Anwer, F. Renal AL Amyloidosis: Updates on Diagnosis, Staging, and Management. J. Clin. Med. 2024, 13, 1744. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Hegenbart, U.; Milani, P.; Kimmich, C.; Foli, A.; Ho, A.D.; Vidus Rosin, M.; Albertini, R.; Moratti, R.; Merlini, G.; et al. A Staging System for Renal Outcome and Early Markers of Renal Response to Chemotherapy in AL Amyloidosis. Blood 2014, 124, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, E.; Gavriatopoulou, M.; Roussou, M.; Migkou, M.; Fotiou, D.; Ziogas, D.C.; Kanellias, N.; Eleutherakis-Papaiakovou, E.; Panagiotidis, I.; Giannouli, S.; et al. Renal Outcomes in Patients with AL Amyloidosis: Prognostic Factors, Renal Response and the Impact of Therapy. Am. J. Hematol. 2017, 92, 632–639. [Google Scholar] [CrossRef] [PubMed]
- Basset, M.; Milani, P.; Ferretti, V.V.; Nuvolone, M.; Foli, A.; Benigna, F.; Nanci, M.; Bozzola, M.; Ripepi, J.; Sesta, M.; et al. Prospective Urinary Albumin/Creatinine Ratio for Diagnosis, Staging, and Organ Response Assessment in Renal AL Amyloidosis: Results from a Large Cohort of Patients. Clin. Chem. Lab. Med. CCLM 2022, 60, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Ugurlu, S.; Ergezen, B.; Egeli, B.H.; Selvi, O.; Ozdogan, H. Safety and Efficacy of Anti-Interleukin-1 Treatment in 40 Patients, Followed in a Single Centre, with AA Amyloidosis Secondary to Familial Mediterranean Fever. Rheumatology 2020, 59, 3892–3899. [Google Scholar] [CrossRef] [PubMed]
- Iijima, T.; Hoshino, J.; Suwabe, T.; Sumida, K.; Mise, K.; Kawada, M.; Ueno, T.; Hamanoue, S.; Hayami, N.; Hiramatsu, R.; et al. Tocilizumab for AA Amyloidosis after Treatment of Multicentric Castleman Disease with Steroids, Chemotherapy and Rituximab for Over 20 Years. Intern. Med. 2015, 54, 3215–3219. [Google Scholar] [CrossRef] [PubMed]
- Liz, M.A.; Coelho, T.; Bellotti, V.; Fernandez-Arias, M.I.; Mallaina, P.; Obici, L. A Narrative Review of the Role of Transthyretin in Health and Disease. Neurol. Ther. 2020, 9, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Sekijima, Y. Transthyretin (ATTR) Amyloidosis: Clinical Spectrum, Molecular Pathogenesis and Disease-Modifying Treatments. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1036–1043. [Google Scholar] [CrossRef]
- Solignac, J.; Delmont, E.; Fortanier, E.; Attarian, S.; Mancini, J.; Daniel, L.; Ion, I.; Ricci, J.-E.; Robert, T.; Habib, G.; et al. Kidney Involvement in Hereditary Transthyretin Amyloidosis: A Cohort Study of 103 Patients. Clin. Kidney J. 2022, 15, 1747–1754. [Google Scholar] [CrossRef] [PubMed]
- Benson, M.D.; Waddington-Cruz, M.; Berk, J.L.; Polydefkis, M.; Dyck, P.J.; Wang, A.K.; Planté-Bordeneuve, V.; Barroso, F.A.; Merlini, G.; Obici, L.; et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N. Engl. J. Med. 2018, 379, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Kristen, A.V.; Ajroud-Driss, S.; Conceição, I.; Gorevic, P.; Kyriakides, T.; Obici, L. Patisiran, an RNAi Therapeutic for the Treatment of Hereditary Transthyretin-Mediated Amyloidosis. Neurodegener. Dis. Manag. 2019, 9, 5–23. [Google Scholar] [CrossRef]
- Plumadore, E.; Lombardo, L.; Cabral, K.P. Pharmacotherapy Review: Emerging Treatment Modalities in Transthyretin Cardiac Amyloidosis. Am. J. Health Syst. Pharm. 2022, 79, 52–62. [Google Scholar] [CrossRef]
- Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’Connell, D.; Walsh, K.R.; Wood, K.; et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N. Engl. J. Med. 2021, 385, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Leung, N. How the Amyloid Fibril Has Unraveled: Lessons for Nephrology. Kidney Int. 2022, 101, 663–665. [Google Scholar] [CrossRef] [PubMed]
- Said, S.M.; Sethi, S.; Valeri, A.M.; Chang, A.; Nast, C.C.; Krahl, L.; Molloy, P.; Barry, M.; Fidler, M.E.; Cornell, L.D.; et al. Characterization and Outcomes of Renal Leukocyte Chemotactic Factor 2-Associated Amyloidosis. Kidney Int. 2014, 86, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Rezk, T.; Gilbertson, J.A.; Rowczenio, D.; Bass, P.; Lachmann, H.J.; Wechalekar, A.D.; Fontana, M.; Mahmood, S.; Sachchithanantham, S.; Whelan, C.J.; et al. Diagnosis, Pathogenesis and Outcome in Leucocyte Chemotactic Factor 2 (ALECT2) Amyloidosis. Nephrol. Dial. Transpl. 2018, 33, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Benson, M.D.; Buxbaum, J.N.; Eisenberg, D.S.; Merlini, G.; Saraiva, M.J.M.; Sekijima, Y.; Sipe, J.D.; Westermark, P. Amyloid Nomenclature 2020: Update and Recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 2020, 27, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J.D.; Lachmann, H.J.; Wechalekar, A.; Hawkins, P.N. Hereditary Fibrinogen A Alpha-Chain Amyloidosis: Clinical Phenotype and Role of Liver Transplantation. Blood 2010, 115, 4313, author reply 4314–4315. [Google Scholar] [CrossRef] [PubMed]
- Stangou, A.J.; Banner, N.R.; Hendry, B.M.; Rela, M.; Portmann, B.; Wendon, J.; Monaghan, M.; Maccarthy, P.; Buxton-Thomas, M.; Mathias, C.J.; et al. Hereditary Fibrinogen A Alpha-Chain Amyloidosis: Phenotypic Characterization of a Systemic Disease and the Role of Liver Transplantation. Blood 2010, 115, 2998–3007. [Google Scholar] [CrossRef] [PubMed]
- Fix, O.K.; Stock, P.G.; Lee, B.K.; Benson, M.D. Liver Transplant Alone without Kidney Transplant for Fibrinogen Aα-Chain (AFib) Renal Amyloidosis. Amyloid 2016, 23, 132–133. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.F.; Hawkins, P.N.; Roche, W.R.; MacMahon, R.F.; Hubscher, S.G.; Buckels, J.A. “Fragile” Liver and Massive Hepatic Haemorrhage Due to Hereditary Amyloidosis. Gut 1996, 38, 151–152. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.-K.; Kiuru-Enari, S.; Atula, S.; Tanskanen, M. Amyloid in Parenchymal Organs in Gelsolin (AGel) Amyloidosis. Amyloid 2019, 26, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Meretoja, J. Familial Systemic Paramyloidosis with Lattice Dystrophy of the Cornea, Progressive Cranial Neuropathy, Skin Changes and Various Internal Symptoms. A Previously Unrecognized Heritable Syndrome. Ann. Clin. Res. 1969, 1, 314–324. [Google Scholar] [PubMed]
- Schmidt, E.-K.; Atula, S.; Tanskanen, M.; Nikoskinen, T.; Notkola, I.-L.; Kiuru-Enari, S. Causes of Death and Life Span in Finnish Gelsolin Amyloidosis. Ann. Med. 2016, 48, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Gregorini, G.; Izzi, C.; Obici, L.; Tardanico, R.; Röcken, C.; Viola, B.F.; Capistrano, M.; Donadei, S.; Biasi, L.; Scalvini, T.; et al. Renal Apolipoprotein A-I Amyloidosis: A Rare and Usually Ignored Cause of Hereditary Tubulointerstitial Nephritis. J. Am. Soc. Nephrol. 2005, 16, 3680–3686. [Google Scholar] [CrossRef]
- Gillmore, J.D.; Stangou, A.J.; Lachmann, H.J.; Goodman, H.J.; Wechalekar, A.D.; Acheson, J.; Tennent, G.A.; Bybee, A.; Gilbertson, J.; Rowczenio, D.; et al. Organ Transplantation in Hereditary Apolipoprotein AI Amyloidosis. Am. J. Transpl. 2006, 6, 2342–2347. [Google Scholar] [CrossRef] [PubMed]
- Colombat, M.; Aldigier, J.-C.; Rothschild, P.-R.; Javaugue, V.; Desport, E.; Frouget, T.; Goujon, J.-M.; Rioux-Leclercq, N.; Quellard, N.; Rerolle, J.P.; et al. New Clinical Forms of Hereditary apoA-I Amyloidosis Entail Both Glomerular and Retinal Amyloidosis. Kidney Int. 2020, 98, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Sagawa, T.; Kogiso, T.; Ito, T.; Yasuda, H.; Katoh, N.; Yoshinaga, T.; Yazaki, M.; Kato, T.; Omori, A.; Kotera, Y.; et al. Hereditary Apolipoprotein A-1 Amyloidosis With Glu34Lys Mutation Treated by Liver Transplantation: A Case Report. Transpl. Proc. 2021, 53, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Yazaki, M.; Liepnieks, J.J.; Barats, M.S.; Cohen, A.H.; Benson, M.D. Hereditary Systemic Amyloidosis Associated with a New Apolipoprotein AII Stop Codon Mutation Stop78Arg. Kidney Int. 2003, 64, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Elshourbagy, N.A.; Walker, D.W.; Paik, Y.K.; Boguski, M.S.; Freeman, M.; Gordon, J.I.; Taylor, J.M. Structure and Expression of the Human Apolipoprotein A-IV Gene. J. Biol. Chem. 1987, 262, 7973–7981. [Google Scholar] [CrossRef] [PubMed]
- Kalogeris, T.J.; Rodriguez, M.D.; Tso, P. Control of Synthesis and Secretion of Intestinal Apolipoprotein A-IV by Lipid. J. Nutr. 1997, 127, 537S–543S. [Google Scholar] [CrossRef] [PubMed]
- Kohan, A.B.; Wang, F.; Li, X.; Bradshaw, S.; Yang, Q.; Caldwell, J.L.; Bullock, T.M.; Tso, P. Apolipoprotein A-IV Regulates Chylomicron Metabolism-Mechanism and Function. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G628–G636. [Google Scholar] [CrossRef]
- Gregorini, G.; Izzi, C.; Ravani, P.; Obici, L.; Dallera, N.; Del Barba, A.; Negrinelli, A.; Tardanico, R.; Nardi, M.; Biasi, L.; et al. Tubulointerstitial Nephritis Is a Dominant Feature of Hereditary Apolipoprotein A–I Amyloidosis. Kidney Int. 2015, 87, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Vrana, J.A.; Theis, J.D.; Leung, N.; Sethi, A.; Nasr, S.H.; Fervenza, F.C.; Cornell, L.D.; Fidler, M.E.; Dogan, A. Laser Microdissection and Mass Spectrometry-Based Proteomics Aids the Diagnosis and Typing of Renal Amyloidosis. Kidney Int. 2012, 82, 226–234. [Google Scholar] [CrossRef] [PubMed]
Diagnostic Method | Description | Advantages | Limitations | Refs. |
---|---|---|---|---|
IF | Uses antibodies to detect specific proteins in kidney tissue | Direct and quick; effective for AL amyloidosis | Lower sensitivity for other types; can have false positives Need for fresh frozen tissue | [32,33,34] |
IHC | Uses immunoperoxidase technique with antibodies against amyloid proteins | Good for detecting various amyloid proteins | High background staining; less effective than IF for some types | [32,35,36,37,38] |
MS-based proteomics | Analyzes proteins by mass and sequence to identify and quantify amyloid deposits | Gold standard; highly accurate for all types | Requires specialized equipment and expertise | [28,39,40] |
NGS | Sequences large segments of DNA or entire genomes to identify genetic variants | Provides detailed genetic insights, useful for identifying hereditary forms | Can be complex and costly; interpretation requires extensive expertise | [5,41] |
Protein Type | Variant | Common in Populations | Organ Involvement | Refs. |
---|---|---|---|---|
AL | Not specified | Associated with plasma cell disorders | Various organs, including kidneys and heart | [44,45] |
ATTR | V30M, V122I, T60A | Portuguese, Japanese, African Americans, Irish | Heart, nerves, occasionally kidneys | [46,47,48] |
ALECT2 | Not specified | Hispanic, Middle Eastern, South Asian | Kidneys, liver | [49,50,51,52] |
ApoAI | Several variants | Not specified | Kidneys, heart, liver, nerves | [53,54] |
AA | Not specified | Associated with inflammatory diseases | Kidneys, liver, spleen | [55] |
AFib | Several variants | Not specified | Kidneys, occasionally heart | [56,57] |
AGel | 654G>A, 654G>T | Finnish, European, Asian, African American, Hispanic, Danish, former Czechoslovakia, France, Brazil | Eyes, skin, nerves, kidneys | [58,59] |
AApoAII | Several pathogenic variants | Not specified | Kidneys, adrenals, liver, spleen, skin, rectum, bone marrow, heart | [60] |
AApoCII | E69V, K19T | Not specified | Kidneys | [61,62,63] |
AApoCIII | D25V | French | Kidneys, spleen, salivary glands, heart, rectum, bronchial tubes | [9] |
AApoAIV | Not specified | Not specified | Kidneys (medulla), occasionally small intestine and heart | [42,64] |
Protein Type | Diagnostic Tools Used | Key Features Identified | Diagnostic Accuracy | Utility | Relative Frequency | Refs. |
---|---|---|---|---|---|---|
ATTR | MS, genetic testing | Specific mutations; fibril type | High | Identifies precise variant, critical for targeted treatment | Common in elderly, especially men | [46,47,48,66] |
AA | Serum amyloid A testing, biopsy | Amyloid deposits related to inflammation | Moderate to high | Effective in linking amyloidosis to inflammatory diseases | Common in patients with chronic inflammatory diseases | [55] |
AL | Immunofixation, free light chain assay, biopsy | Monoclonal light chains; amyloid type | Very high | Essential for differentiating AL from other types, guides chemotherapy | Most common form of systemic amyloidosis | [44,45] |
ALECT2 | Mass spectrometry, biopsy | Specific non-AL protein deposits | High | Critical for distinguishing from AL amyloidosis, often misdiagnosed | More common in certain ethnic groups (Hispanic, Middle Eastern, and South Asian) | [49,50,51,52] |
ApoAI | Genetic testing, MS | Specific gene mutations; protein deposits | High | Identifies familial patterns, informs prognosis and treatment | Rare, familial | [53,54] |
AGel | Genetic testing, biopsy | Mutation specific to Finnish descent, tissue deposits | High | Vital for confirming diagnosis in symptomatic patients | Rare, familial (mainly Finnish and European descent) | [58,59] |
AApoCIII | MS, biopsy | D25V variant, widespread organ deposits | Moderate to high | Helps in diagnosing and understanding systemic involvement | Very rare | [9] |
AFib | Genetic testing, MS | Mutation specifics, kidney-focused deposits | High | Determines risk of familial transmission and renal involvement | Rare, familial | [56,57] |
AApoAII | MS, biopsy | Various pathogenic variants, widespread organ deposits | High | Helps in diagnosing and understanding systemic involvement | Very rare | [60] |
AApoCII | MS, biopsy | Nodular pattern in glomeruli | Moderate to high | Aids in differentiating from other amyloidosis types | Very rare | [61,62,63] |
AApoAIV | MS, biopsy | Specific medullary deposits | High | Critical for distinguishing medullary deposits | Rare, familial | [64] |
ALys | MS, genetic testing | Pathogenic variants in β domain | High | Identifies specific variants, informs treatment | Rare, often age-related | [67,68,69,70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delrue, C.; Dendooven, A.; Vandendriessche, A.; Speeckaert, R.; De Bruyne, S.; Speeckaert, M.M. Advancing Renal Amyloidosis Care: The Role of Modern Diagnostic Techniques with the Potential of Enhancing Patient Outcomes. Int. J. Mol. Sci. 2024, 25, 5875. https://doi.org/10.3390/ijms25115875
Delrue C, Dendooven A, Vandendriessche A, Speeckaert R, De Bruyne S, Speeckaert MM. Advancing Renal Amyloidosis Care: The Role of Modern Diagnostic Techniques with the Potential of Enhancing Patient Outcomes. International Journal of Molecular Sciences. 2024; 25(11):5875. https://doi.org/10.3390/ijms25115875
Chicago/Turabian StyleDelrue, Charlotte, Amélie Dendooven, Annelore Vandendriessche, Reinhart Speeckaert, Sander De Bruyne, and Marijn M. Speeckaert. 2024. "Advancing Renal Amyloidosis Care: The Role of Modern Diagnostic Techniques with the Potential of Enhancing Patient Outcomes" International Journal of Molecular Sciences 25, no. 11: 5875. https://doi.org/10.3390/ijms25115875
APA StyleDelrue, C., Dendooven, A., Vandendriessche, A., Speeckaert, R., De Bruyne, S., & Speeckaert, M. M. (2024). Advancing Renal Amyloidosis Care: The Role of Modern Diagnostic Techniques with the Potential of Enhancing Patient Outcomes. International Journal of Molecular Sciences, 25(11), 5875. https://doi.org/10.3390/ijms25115875