Long-Term Exposure to Supraphysiological Levels of Testosterone Impacts Rat Submandibular Gland Proteome
Abstract
:1. Introduction
2. Results
2.1. Impact of Testosterone Exposure on Anthropometric and Systemic Biochemical Parameters
2.2. Effect of Testosterone Exposure on Submandibular Gland Histology
2.3. Impact of Testosterone Exposure on the Levels of Androgen Receptor and Estrogen Receptor Alpha in Submandibular Glands
2.4. Proteomic Characterization of Submandibular Glands
3. Discussion
4. Materials and Methods
4.1. Animal Experimentation
4.2. Biochemical Analysis in Serum Samples
4.3. Histological Analysis of Submandibular Glands
4.4. Preparation of Submandibular Gland Extracts
4.5. SDS-PAGE-LC-MS/MS Analysis of Submandibular Gland Extracts
4.6. Western Blot Analysis
4.7. Gelatin Zymography Analysis
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toan, N.K.; Ahn, S.G. Aging-Related Metabolic Dysfunction in the Salivary Gland: A Review of the Literature. Int. J. Mol. Sci. 2021, 22, 5835. [Google Scholar] [CrossRef]
- Chrétien, M. Action of Testosterone on the Differentiation and Secretory Activity of a Target Organ: The Submaxillary Gland of the Mouse. Int. Rev. Cytol. 1977, 50, 333–396. [Google Scholar] [CrossRef] [PubMed]
- Davey, R.A.; Grossmann, M. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin. Biochem. Rev. 2016, 37, 3–15. [Google Scholar] [PubMed]
- Chan, L.; O’Malley, B.W. Mechanism of Action of the Sex Steroid Hormones (First of Three Parts). N. Engl. J. Med. 1976, 294, 1322–1328. [Google Scholar] [CrossRef] [PubMed]
- Treister, N.S.; Richards, S.M.; Suzuki, T.; Jensen, R.V.; Sullivan, D.A. Influence of Androgens on Gene Expression in the BALB/c Mouse Submandibular Gland. J. Dent. Res. 2005, 84, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Laine, M.; Bläuer, M.; Ylikomi, T.; Tuohimaa, P.; Aitasalo, K.; Happonen, R.P.; Tenovuo, J. Immunohistochemical Demonstration of Androgen Receptors in Human Salivary Glands. Arch. Oral Biol. 1993, 38, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Minetti, C.A.S.A.; Valle, L.B.S.; Oliveira-Filho, R.M.; Fava-De-Moraes, F. Effects of Testosterone and Its Metabolites in Relation to Androgen-Binding Activity in Murine Submandibular Salivary Glands. Arch. Oral Biol. 1985, 30, 615–619. [Google Scholar] [CrossRef]
- Mooradian, A.D.; Morley, J.E.; Korenman, S.G. Biological Actions of Androgens. Endocr. Rev. 1987, 8, 1–28. [Google Scholar] [CrossRef]
- Amano, O.; Mizobe, K.; Bando, Y.; Sakiyama, K. Anatomy and Histology of Rodent and Human Major Salivary Glands—Overview of the Japan Salivary Gland Society-Sponsored Workshop. Acta Histochem. Cytochem. 2012, 45, 241–250. [Google Scholar] [CrossRef]
- Maruyama, C.L.; Monroe, M.; Hunt, J.; Buchmann, L.; Baker, O. Comparing Human and Mouse Salivary Glands: A Practice Guide for Salivary Researchers. Oral Diseases 2019, 25, 403–415. [Google Scholar] [CrossRef]
- Dalin, M.G.; Watson, P.A.; Ho, A.L.; Morris, L.G.T. Androgen Receptor Signaling in Salivary Gland Cancer. Cancers 2017, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Heemers, H.; Sharifi, N. Androgen Signaling in Prostate Cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a030452. [Google Scholar] [CrossRef] [PubMed]
- Baillargeon, J.; Urban, R.J.; Ottenbacher, K.J.; Pierson, K.S.; Goodwin, J.S. Trends in androgen prescribing in the United States, 2001 to 2011. JAMA Intern. Med. 2013, 173, 1465–1466. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.M.; Jones, T.H. Testosterone: A metabolic hormone in health and disease. J. Endocrinol. 2013, 217, R25–R45. [Google Scholar] [CrossRef] [PubMed]
- Barbonetti, A.; D’Andrea, S.; Francavilla, S. Testosterone replacement therapy. Andrology 2020, 8, 1551–1566. [Google Scholar] [CrossRef] [PubMed]
- Jhawar, N.; Chirila, R. A review of testosterone supplementation and cardiovascular risk. Rom. J. Intern. Med. 2023, 61, 35–40. [Google Scholar] [CrossRef]
- Rodriguez, K.M.; Pastuszak, A.W.; Khera, M. The Role of Testosterone Therapy in the Setting of Prostate Cancer. Curr. Urol. Rep. 2018, 19, 67. [Google Scholar] [CrossRef]
- Zirkin, B.R.; Tenover, J.L. Aging and Declining Testosterone: Past, Present, and Hopes for the Future. J. Androl. 2012, 33, 1111–1118. [Google Scholar] [CrossRef]
- Decaroli, M.C.; Vincentis, S.; Rochira, V. Aging and Sex Hormones in Males. Vitam. Horm. 2021, 115, 333–366. [Google Scholar] [CrossRef]
- Proctor, G.B.; Shaalan, A.M. Disease-Induced Changes in Salivary Gland Function and the Composition of Saliva. J. Dent. Res. 2021, 100, 1201–1209. [Google Scholar] [CrossRef]
- Ekström, J.; Khosravani, N.; Castagnola, M.; Messana, I. Saliva and the Control of Its Secretion. In Dysphagia; Springer: Berlin/Heidelberg, Germany, 2012; pp. 19–47. [Google Scholar] [CrossRef]
- Gupta, A.; Epstein, J.B.; Sroussi, H. Hyposalivation in Elderly Patients. J. Can. Dent. Assoc. 2006, 72, 841–846. [Google Scholar] [PubMed]
- Yeap, B.B. Testosterone and Ill-Health in Aging Men. Nat. Clin. Pract. Endocrinol. Metab. 2009, 5, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Baum, B.J. Salivary Gland Fluid Secretion During Aging. J. Am. Geriatr. Soc. 1989, 37, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Allen, E.D. Structural and Functional Changes in Salivary Glands During Aging. Microsc. Res. Tech. 1994, 28, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P. The Laboratory Rat: Relating Its Age with Human’s. Int. J. Prev. Med. 2013, 4, 624–630. [Google Scholar] [PubMed]
- Humphrey, S.P.; Williamson, R.T. A Review of Saliva: Normal Composition, Flow, and Function. J. Prosthet. Dent. 2001, 85, 162–169. [Google Scholar] [CrossRef]
- Chicharro, J.L.; Lucía, A.; Pérez, M.; Vaquero, A.F.; Ureña, R. Saliva Composition and Exercise. Sports Med. 1998, 26, 17–27. [Google Scholar] [CrossRef]
- Tan, R.S.; Cook, K.R.; Reilly, W.G. High Estrogen in Men After Injectable Testosterone Therapy: The Low T Experience. Am. J. Mens. Health 2015, 9, 229–234. [Google Scholar] [CrossRef]
- Han, X.; Xia, X.; Zhuo, Y.; Hua, L.; Yu, G.; Bu, G.; Cao, X.; Du, X.; Liang, Q.; Zeng, X.; et al. RNA-seq coupling two different methods of castration reveals new insights into androgen deficiency-caused degeneration of submaxillary gland in male Sprague Dawley rats. BMC Genom. 2022, 23, 279. [Google Scholar] [CrossRef]
- Koistinen, H.; Künnapuu, J.; Jeltsch, M. Klk3 in the Regulation of Angiogenesis—Tumorigenic or Not? Int. J. Mol. Sci. 2021, 22, 13545. [Google Scholar] [CrossRef]
- Nauroy, P.; Nyström, A. Kallikreins: Essential Epidermal Messengers for Regulation of the Skin Microenvironment During Homeostasis, Repair and Disease. Matrix Biol. Plus 2019, 6, 100019. [Google Scholar] [CrossRef] [PubMed]
- Zani, M.B.; Sant’Ana, A.M.; Tognato, R.C.; Chagas, J.R.; Puzer, L. Human Tissue Kallikreins-Related Peptidases Are Targets for the Treatment of Skin Desquamation Diseases. Front. Med. 2022, 8, 777619. [Google Scholar] [CrossRef] [PubMed]
- Stefanini, A.C.B.; Cunha, B.R.; Henrique, T.; Tajara, E.H. Involvement of Kallikrein-Related Peptidases in Normal and Pathologic Processes. Dis. Markers 2015, 2015, 946572. [Google Scholar] [CrossRef] [PubMed]
- Gagliano-Jucá, T.; Basaria, S. Testosterone Replacement Therapy and Cardiovascular Risk. Nat. Rev. Cardiol. 2019, 16, 555–574. [Google Scholar] [CrossRef]
- Bassil, N.; Alkaade, S.; Morley, J.E. The Benefits and Risks of Testosterone Replacement Therapy: A Review. Ther. Clin. Risk Manag. 2009, 5, 427–448. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.L.; Hu, J.C.; Morgentaler, A.; Mulhall, J.P.; Schulman, C.C.; Montorsi, F. Testosterone Therapy in Men with Prostate Cancer. Eur. Urol. 2016, 69, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Swerdloff, R.S. Testosterone Replacement Therapy in Hypogonadal Men. Endocrinol. Metab. Clin. N. Am. 2022, 51, 77–98. [Google Scholar] [CrossRef]
- Botts, S.; Leininger, J. Salivary Glands. In Boorman’s Pathology of the Rat: Reference and Atlas, 2nd ed.; Suttie, A.W., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 23–34. [Google Scholar] [CrossRef]
- Kunath, A.; Weiner, J.; Krause, K.; Rehders, M.; Pejkovska, A.; Gericke, M.; Biniossek, M.L.; Dommel, S.; Kern, M.; Ribas-Latre, A.; et al. Role of Kallikrein 7 in Body Weight and Fat Mass Regulation. Biomedicines 2021, 9, 131. [Google Scholar] [CrossRef]
- Zieger, K.; Weiner, J.; Kunath, A.; Gericke, M.; Krause, K.; Kern, M.; Stumvoll, M.; Klöting, N.; Blüher, M.; Heiker, J.T. Ablation of kallikrein 7 (KLK7) in adipose tissue ameliorates metabolic consequences of high fat diet-induced obesity by counteracting adipose tissue inflammation in vivo. Cell. Mol. Life Sci. 2018, 75, 727–742. [Google Scholar] [CrossRef]
- Xiang, F.; Wang, Y.; Cao, C.; Li, Q.; Deng, H.; Zheng, J.; Liu, X.; Tan, X. The Role of Kallikrein 7 in Tumorigenesis. Curr. Med. Chem. 2022, 29, 2617–2631. [Google Scholar] [CrossRef]
- Zhu, S.; Shi, J.; Zhang, S.; Li, Z. KLK6 Promotes Growth, Migration, and Invasion of Gastric Cancer Cells. J. Gastric Cancer 2018, 18, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; He, Y.; Li, H.; Huang, W. KLK6 mediates stemness and metabolism of gastric carcinoma cells via the PI3K/AKT/mTOR signaling pathway. Oncol. Lett. 2021, 22, 824. [Google Scholar] [CrossRef] [PubMed]
- Darling, M.R.; Jackson-Boeters, L.; Daley, T.D.; Diamandis, E.P. Human Kallikrein 6 Expression in Salivary Gland Tumors. J. Histochem. Cytochem. 2006, 54, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Borgoño, C.A.; Diamandis, E.P. The Emerging Roles of Human Tissue Kallikreins in Cancer. Nat. Rev. Cancer 2004, 4, 876–890. [Google Scholar] [CrossRef] [PubMed]
- Pampalakis, G.; Sotiropoulou, G. Tissue Kallikrein Proteolytic Cascade Pathways in Normal Physiology and Cancer. Biochim. Biophys. Acta 2007, 1776, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Prassas, I.; Diamandis, E.P. Putative Kallikrein Substrates and Their (Patho)Biological Functions. Biol. Chem. 2014, 395, 931–943. [Google Scholar] [CrossRef]
- Paliouras, M.; Borgono, C.; Diamandis, E.P. Human Tissue Kallikreins: The Cancer Biomarker Family. Cancer Lett. 2007, 249, 61–79. [Google Scholar] [CrossRef]
- Penschow, J.D.; Coghlan, J.P. Secretion of Glandular Kallikrein and Renin from the Basolateral Pole of Mouse Submandibular Duct Cells: An Immunocytochemical Study. J. Histochem. Cytochem. 1993, 41, 95–103. [Google Scholar] [CrossRef]
- Thorek, D.L.J.; Evans, M.J.; Carlsson, S.V.; Ulmert, D.; Lilja, H. Prostate-Specific Kallikrein-Related Peptidases and Their Relation to Prostate Cancer Biology and Detection; Established Relevance and Emerging Roles. Thromb. Haemost. 2013, 110, 484–492. [Google Scholar] [CrossRef]
- Darling, M.R.; Tsai, S.; Jackson-Boeters, L.; Daley, T.D.; Diamandis, E.P. Human Kallikrein 3 (Prostate Specific Antigen) and Human Kallikrein 5 Expression in Salivary Gland Tumors. Int. J. Biol. Markers 2006, 21, 201–205. [Google Scholar] [CrossRef]
- Olsson, A.Y.; Bjartell, A.; Lilja, H.; Lundwall, Å. Expression of Prostate-Specific Antigen (PSA) and Human Glandular Kallikrein 2 (hK2) in Ileum and Other Extraprostatic Tissues. Int. J. Cancer 2005, 113, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, T.R.; Chughtai, B.; Kaplan, S.A. Testosterone and benign prostatic hyperplasia. Asian J. Androl. 2015, 17, 212–216. [Google Scholar] [CrossRef]
- Osterberg, E.C.; Bernie, A.M.; Ramasamy, R. Risks of testosterone replacement therapy in men. Indian J. Urol. 2014, 30, 2–7. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Lai, J.; Clements, J.A. Kallikreins on Steroids: Structure, Function, and Hormonal Regulation of Prostate-Specific Antigen and the Extended Kallikrein Locus. Endocr. Rev. 2010, 31, 407–446. [Google Scholar] [CrossRef] [PubMed]
- Vignozzi, L.; Rastrelli, G.; Corona, G.; Gacci, M.; Forti, G.; Maggi, M. Benign prostatic hyperplasia: A new metabolic disease? J. Endocrinol. Investig. 2014, 37, 313–322. [Google Scholar] [CrossRef]
- Vickman, R.E.; Franco, O.E.; Moline, D.C.; Griend, D.J.V.; Thumbikat, P.; Hayward, S.W. The role of the androgen receptor in prostate development and benign prostatic hyperplasia: A review. Asian J. Urol. 2020, 7, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Rey, R.A. The Role of Androgen Signaling in Male Sexual Development at Puberty. Endocrinology 2021, 162, bqaa215. [Google Scholar] [CrossRef]
- Messner, E.A.; Steele, T.M.; Tsamouri, M.M.; Hejazi, N.; Gao, A.C.; Mudryj, M.; Ghosh, P.M. The Androgen Receptor in Prostate Cancer: Effect of Structure, Ligands and Spliced Variants on Therapy. Biomedicines 2020, 8, 422. [Google Scholar] [CrossRef]
- Cooke, P.S.; Nanjappa, M.K.; Ko, C.; Prins, G.S.; Hess, R.A. Estrogens in Male Physiology. Physiol. Rev. 2017, 97, 995–1043. [Google Scholar] [CrossRef]
- Belluti, S.; Imbriano, C.; Casarini, L. Nuclear Estrogen Receptors in Prostate Cancer: From Genes to Function. Cancers 2023, 15, 4653. [Google Scholar] [CrossRef]
- Chen, P.; Li, B.; Ou-Yang, L. Role of estrogen receptors in health and disease. Front. Endocrinol. 2022, 13, 839005. [Google Scholar] [CrossRef] [PubMed]
- Panet-Raymond, V.; Gottlieb, B.; Beitel, L.K.; Pinsky, L.; Trifiro, M.A. Interactions between androgen and estrogen receptors and the effects on their transactivational properties. Mol. Cell. Endocrinol. 2000, 167, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.A.; Arora, V.K.; Sawyers, C.L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 2015, 15, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Nonomura, N. Role of Androgen Receptor in Prostate Cancer: A Review. World J. Men’s Health 2019, 37, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Mitani, Y.; Rao, P.H.; Maity, S.N.; Lee, Y.C.; Ferrarotto, R.; Post, J.C.; Licitra, L.; Lippman, S.M.; Kies, M.S.; Weber, R.S.; et al. Alterations Associated with Androgen Receptor Gene Activation in Salivary Duct Carcinoma of Both Sexes: Potential Therapeutic Ramifications. Clin. Cancer Res. 2014, 20, 6570–6581. [Google Scholar] [CrossRef] [PubMed]
- Visakorpi, T.; Hyytinen, E.; Koivisto, P.; Tanner, M.; Keinänen, R.; Palmberg, C.; Palotie, A.; Tammela, T.; Isola, J.; Kallioniemi, O.P. In Vivo Amplification of the Androgen Receptor Gene and Potential Role in Progression of Human Prostate Cancer. Nat. Genet. 1995, 9, 401–405. [Google Scholar] [CrossRef]
- Hara, T.; Kouno, J.; Nakamura, K.; Kusaka, M.; Yamaoka, M. Possible Role of Adaptive Mutation in Resistance to Antiandrogen in Prostate Cancer Cells. Prostate 2005, 65, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.A.; Chen, Y.F.; Balbas, M.D.; Wongvipat, J.; Socci, N.D.; Viale, A.; Kim, K.; Sawyers, C.L. Constitutively Active Androgen Receptor Splice Variants Expressed in Castration-Resistant Prostate Cancer Require Full-Length Androgen Receptor. Proc. Natl. Acad. Sci. USA 2010, 107, 16759–16765. [Google Scholar] [CrossRef]
- Kung, H.J.; Evans, C.P. Oncogenic Activation of Androgen Receptor. Urol. Oncol. 2009, 27, 48–52. [Google Scholar] [CrossRef]
- Jota-Baptista, C.; Faustino-Rocha, A.; Fardilha, M.; Ferreira, R.; Oliveira, P.A.; Regueiro-Purriños, M.; Rodriguez-Altonaga, J.A.; Gonzalo-Orden, J.M.; Ginja, M. Effects of testosterone and exercise training on bone microstructure of rats. Vet. World 2022, 15, 627–633. [Google Scholar] [CrossRef]
- Laemmli, K.U. Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Vitorino, R.; Barros, A.; Caseiro, A.; Domingues, P.; Duarte, J.; Amado, F. Towards Defining the Whole Salivary Peptidome. Proteom. Clin. Appl. 2009, 3, 528–540. [Google Scholar] [CrossRef]
Gene Name | Protein Name | UniProt Accession | Molecular Weight (Da) | Fold Change (TEST vs. CTRL) |
---|---|---|---|---|
Klk1 | Kallikrein-1 | P00758 | 28.852 | (=) 0.9114 |
Klk2 | Kallikrein-2 | P20151 | 28.671 | (=) 0.7263 |
Klk3 | Glandular kallikrein-3, submandibular | P07288 | 28.741 | (+) 4.2170 |
Klk6 | Prostatic glandular kallikrein-6 | P36374 | 29.013 | (−) 0.5583 |
Klk7 | Kallikrein-7 | P36373 | 28.972 | (−) 0.6909 |
Klk9 | Submandibular glandular kallikrein-9 | P07647 | 28.368 | (=) 0.8797 |
Klk10 | Glandular kallikrein-10 | P36375 | 28.981 | (=) 0.9312 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valente-Santos, J.; Vitorino, R.; Sousa-Mendes, C.; Oliveira, P.; Colaço, B.; Faustino-Rocha, A.I.; Neuparth, M.J.; Leite-Moreira, A.; Duarte, J.A.; Ferreira, R.; et al. Long-Term Exposure to Supraphysiological Levels of Testosterone Impacts Rat Submandibular Gland Proteome. Int. J. Mol. Sci. 2024, 25, 550. https://doi.org/10.3390/ijms25010550
Valente-Santos J, Vitorino R, Sousa-Mendes C, Oliveira P, Colaço B, Faustino-Rocha AI, Neuparth MJ, Leite-Moreira A, Duarte JA, Ferreira R, et al. Long-Term Exposure to Supraphysiological Levels of Testosterone Impacts Rat Submandibular Gland Proteome. International Journal of Molecular Sciences. 2024; 25(1):550. https://doi.org/10.3390/ijms25010550
Chicago/Turabian StyleValente-Santos, João, Rui Vitorino, Cláudia Sousa-Mendes, Paula Oliveira, Bruno Colaço, Ana I. Faustino-Rocha, Maria João Neuparth, Adelino Leite-Moreira, José Alberto Duarte, Rita Ferreira, and et al. 2024. "Long-Term Exposure to Supraphysiological Levels of Testosterone Impacts Rat Submandibular Gland Proteome" International Journal of Molecular Sciences 25, no. 1: 550. https://doi.org/10.3390/ijms25010550