Intestinal Behcet’s Disease: A Review of the Immune Mechanism and Present and Potential Biological Agents
Abstract
1. Introduction
2. Immunity Mechanism
2.1. Immunogens
2.2. Cellular Immunity in Adaptive Immunity
2.3. Humoral Immunity in Adaptive Immunity
2.4. Innate Immunity
3. Present and Potential Biological Agents
3.1. Anti-TNF-α Agents
3.2. IFN-α
3.3. IL-1 Antagonist
3.4. IL-6 Antagonist
3.5. IL-17 Antagonist
3.6. IL-12/IL-23 Antagonist
3.7. Small Molecule Targeted Agents
3.8. Other Biological Agents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hatemi, G.; Seyahi, E.; Fresko, I.; Talarico, R.; Ucar, D.; Hamuryudan, V. Behcet’s syndrome: One year in review 2022. Clin. Exp. Rheumatol. 2022, 40, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Yazici, H.; Seyahi, E.; Hatemi, G.; Yazici, Y. Behcet syndrome: A contemporary view. Nat. Rev. Rheumatol. 2018, 14, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Guan, J. New Concept of Behcet’s Disease; Fudan University Press: Shanghai, China, 2021; pp. 55–91. [Google Scholar]
- Bettiol, A.; Hatemi, G.; Vannozzi, L.; Barilaro, A.; Prisco, D.; Emmi, G. Treating the Different Phenotypes of Behcet’s Syndrome. Front. Immunol. 2019, 10, 2830. [Google Scholar] [CrossRef] [PubMed]
- Hatemi, G.; Christensen, R.; Bang, D.; Bodaghi, B.; Celik, A.F.; Fortune, F.; Gaudric, J.; Gul, A.; Kotter, I.; Leccese, P.; et al. 2018 update of the EULAR recommendations for the management of Behcet’s syndrome. Ann. Rheum. Dis. 2018, 77, 808–818. [Google Scholar] [CrossRef] [PubMed]
- Hatemi, I.; Hatemi, G.; Celik, A.F. Gastrointestinal Involvement in Behcet Disease. Rheum. Dis. Clin. N. Am. 2018, 44, 45–64. [Google Scholar] [CrossRef] [PubMed]
- Skef, W.; Hamilton, M.J.; Arayssi, T. Gastrointestinal Behcet’s disease: A review. World J. Gastroenterol. 2015, 21, 3801–3812. [Google Scholar] [CrossRef]
- Soejima, Y.; Kirino, Y.; Takeno, M.; Kurosawa, M.; Takeuchi, M.; Yoshimi, R.; Sugiyama, Y.; Ohno, S.; Asami, Y.; Sekiguchi, A.; et al. Changes in the proportion of clinical clusters contribute to the phenotypic evolution of Behçet’s disease in Japan. Arthritis Res. Ther. 2021, 23, 49. [Google Scholar] [CrossRef]
- Kim, D.H.; Cheon, J.H. Intestinal Behcet’s Disease: A True Inflammatory Bowel Disease or Merely an Intestinal Complication of Systemic Vasculitis? Yonsei Med. J. 2016, 57, 22–32. [Google Scholar] [CrossRef]
- He, K.; Wu, D. Clinical characteristics, diagnosis and evaluation of intestinal Behcet′s disease. Chin. J. Gen. Pract. 2022, 21, 1101–1106. [Google Scholar] [CrossRef]
- Salmaninejad, A.; Zamani, M.R.; Shabgah, A.G.; Hosseini, S.; Mollaei, F.; Hosseini, N.; Sahebkar, A. Behcet’s disease: An immunogenetic perspective. J. Cell. Physiol. 2019, 234, 8055–8074. [Google Scholar] [CrossRef]
- Gong, L.; Zhang, Y.L.; Sun, L.X.; Chen, G.R.; Wu, D. Mucosal healing in intestinal Behcet’s disease: A systematic review and meta-analysis. J. Dig. Dis. 2021, 22, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.; Upadhyay, S.; Javaid, M.A.; Qureshi, A.M.; Haseeb, S.; Javed, N.; Cormier, C.; Farooq, A.; Sheikh, A.B. Behcet’s Disease: An In-Depth Review about Pathogenesis, Gastrointestinal Manifestations, and Management. Inflamm. Intest. Dis. 2021, 6, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Alibaz-Oner, F.; Direskeneli, H. Biologic treatments in Behcet’s disease. Eur. J. Rheumatol. 2021, 8, 217–222. [Google Scholar] [CrossRef]
- Bozkurt, T.; Karabacak, M.; Karatas, H.; KutlugAgackiran, S.; Ergun, T.; Direskeneli, H.; Alibaz-Oner, F. Earlier and more aggressive treatment with biologics may prevent relapses and further new organ involvement in Behcet’s disease. Clin. Immunol. 2023, 248, 109263. [Google Scholar] [CrossRef]
- Watanabe, K.; Tanida, S.; Inoue, N.; Kunisaki, R.; Kobayashi, K.; Nagahori, M.; Arai, K.; Uchino, M.; Koganei, K.; Kobayashi, T.; et al. Evidence-based diagnosis and clinical practice guidelines for intestinal Behcet’s disease 2020 edited by Intractable Diseases, the Health and Labour Sciences Research Grants. J. Gastroenterol. 2020, 55, 679–700. [Google Scholar] [CrossRef]
- Tong, B.; Liu, X.; Xiao, J.; Su, G. Immunopathogenesis of Behcet’s Disease. Front. Immunol. 2019, 10, 665. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Iris, M.; Ozcikmak, E.; Aksoy, A.; Alibaz-Oner, F.; Inanc, N.; Ergun, T.; Direskeneli, H.; Mumcu, G. The assessment of contributing factors to oral ulcer presence in Behcet’s disease: Dietary and non-dietary factors. Eur. J. Rheumatol. 2018, 5, 240–243. [Google Scholar] [CrossRef]
- Mumcu, G.; Direskeneli, H. Triggering agents and microbiome as environmental factors on Behcet’s syndrome. Intern. Emerg. Med. 2019, 14, 653–660. [Google Scholar] [CrossRef]
- Yan, X.; Wu, D. Research progress on the pathogenesis of intestinal Behcet’s syndrome. Chin. J. Alergy Clin. Immunol. 2022, 16, 501–505. (In Chinese) [Google Scholar] [CrossRef]
- Park, U.C.; Kim, T.W.; Yu, H.G. Immunopathogenesis of ocular Behcet’s disease. J. Immunol. Res. 2014, 2014, 653539. [Google Scholar] [CrossRef]
- Pineton de Chambrun, M.; Wechsler, B.; Geri, G.; Cacoub, P.; Saadoun, D. New insights into the pathogenesis of Behçet’s disease. Autoimmun. Rev. 2012, 11, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Direskeneli, H.; Saruhan-Direskeneli, G. The role of heat shock proteins in Behet’s disease. Clin. Exp. Rheumatol. 2003, 21 (Suppl. S30), S44–S48. [Google Scholar] [PubMed]
- Birtas-Atesoglu, E.; Inanc, N.; Yavuz, S.; Ergun, T.; Direskeneli, H. Serum levels of free heat shock protein 70 and anti-HSP70 are elevated in Behçet’s disease. Clin. Exp. Rheumatol. 2008, 26 (Suppl. S50), S96–S98. [Google Scholar] [PubMed]
- Mahesh, S.P.; Li, Z.; Buggage, R.; Mor, F.; Cohen, I.R.; Chew, E.Y.; Nussenblatt, R.B. Alpha tropomyosin as a self-antigen in patients with Behçet’s disease. Clin. Exp. Immunol. 2005, 140, 368–375. [Google Scholar] [CrossRef]
- Consolandi, C.; Turroni, S.; Emmi, G.; Severgnini, M.; Fiori, J.; Peano, C.; Biagi, E.; Grassi, A.; Rampelli, S.; Silvestri, E.; et al. Behçet’s syndrome patients exhibit specific microbiome signature. Autoimmun. Rev. 2015, 14, 269–276. [Google Scholar] [CrossRef][Green Version]
- Shimizu, J.; Kubota, T.; Takada, E.; Takai, K.; Fujiwara, N.; Arimitsu, N.; Ueda, Y.; Wakisaka, S.; Suzuki, T.; Suzuki, N. Relative abundance of Megamonas hypermegale and Butyrivibrio species decreased in the intestine and its possible association with the T cell aberration by metabolite alteration in patients with Behcet’s disease (210 characters). Clin. Rheumatol. 2019, 38, 1437–1445. [Google Scholar] [CrossRef]
- Shimizu, J.; Kubota, T.; Takada, E.; Takai, K.; Fujiwara, N.; Arimitsu, N.; Ueda, Y.; Wakisaka, S.; Suzuki, T.; Suzuki, N. Bifidobacteria Abundance-Featured Gut Microbiota Compositional Change in Patients with Behcet’s Disease. PLoS ONE 2016, 11, e0153746. [Google Scholar] [CrossRef][Green Version]
- Yasar Bilge, N.S.; Perez Brocal, V.; Kasifoglu, T.; Bilge, U.; Kasifoglu, N.; Moya, A.; Dinleyici, E.C. Intestinal microbiota composition of patients with Behcet’s disease: Differences between eye, mucocutaneous and vascular involvement. The Rheuma-BIOTA study. Clin. Exp. Rheumatol. 2020, 38 (Suppl. S127), 60–68. [Google Scholar]
- Ferrante, A.; Ciccia, F.; Principato, A.; Giardina, A.R.; Impastato, R.; Peralta, S.; Triolo, G. A Th1 but not a Th17 response is present in the gastrointestinal involvement of Behcet’s disease. Clin. Exp. Rheumatol. 2010, 28 (Suppl. S60), S27–S30. [Google Scholar]
- Emmi, G.; Silvestri, E.; Bella, C.D.; Grassi, A.; Benagiano, M.; Cianchi, F.; Squatrito, D.; Cantarini, L.; Emmi, L.; Selmi, C.; et al. Cytotoxic Th1 and Th17 cells infiltrate the intestinal mucosa of Behcet patients and exhibit high levels of TNF-alpha in early phases of the disease. Medicine 2016, 95, e5516. [Google Scholar] [CrossRef]
- Aridogan, B.C.; Yildirim, M.; Baysal, V.; Inaloz, H.S.; Baz, K.; Kaya, S. Serum Levels of IL-4, IL-10, IL-12, IL-13 and IFN-gamma in Behcet’s disease. J. Dermatol. 2003, 30, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.K.; Yu, H.G.; Chung, H.; Park, Y.G. Intraocular cytokine environment in active Behcet uveitis. Am. J. Ophthalmol. 2006, 142, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Horai, R.; Caspi, R.R. Cytokines in autoimmune uveitis. J. Interferon Cytokine Res. 2011, 31, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Imamura, Y.; Kurokawa, M.S.; Yoshikawa, H.; Nara, K.; Takada, E.; Masuda, C.; Tsukikawa, S.; Ozaki, S.; Matsuda, T.; Suzuki, N. Involvement of Th1 cells and heat shock protein 60 in the pathogenesis of intestinal Behcet’s disease. Clin. Exp. Immunol. 2005, 139, 371–378. [Google Scholar] [CrossRef]
- Chi, W.; Zhu, X.; Yang, P.; Liu, X.; Lin, X.; Zhou, H.; Huang, X.; Kijlstra, A. Upregulated IL-23 and IL-17 in Behcet patients with active uveitis. Invest. Ophthalmol. Vis. Sci. 2008, 49, 3058–3064. [Google Scholar] [CrossRef] [PubMed]
- Nanke, Y.; Yago, T.; Kotake, S. The Role of Th17 Cells in the Pathogenesis of Behcet’s Disease. J. Clin. Med. 2017, 6, 74. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hamzaoui, K.; Bouali, E.; Ghorbel, I.; Khanfir, M.; Houman, H.; Hamzaoui, A. Expression of Th-17 and RORgammat mRNA in Behcet’s Disease. Med. Sci. Monit. 2011, 17, CR227–CR234. [Google Scholar] [CrossRef][Green Version]
- Campbell, D.J.; Koch, M.A. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat. Rev. Immunol. 2011, 11, 119–130. [Google Scholar] [CrossRef][Green Version]
- Sakaguchi, S.; Miyara, M.; Costantino, C.M.; Hafler, D.A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 2010, 10, 490–500. [Google Scholar] [CrossRef]
- Geri, G.; Terrier, B.; Rosenzwajg, M.; Wechsler, B.; Touzot, M.; Seilhean, D.; Tran, T.A.; Bodaghi, B.; Musset, L.; Soumelis, V.; et al. Critical role of IL-21 in modulating TH17 and regulatory T cells in Behcet disease. J. Allergy Clin. Immunol. 2011, 128, 655–664. [Google Scholar] [CrossRef]
- Hamzaoui, K.; Borhani Haghighi, A.; Ghorbel, I.B.; Houman, H. RORC and Foxp3 axis in cerebrospinal fluid of patients with neuro-Behcet’s disease. J. Neuroimmunol. 2011, 233, 249–253. [Google Scholar] [CrossRef]
- Duhen, T.; Geiger, R.; Jarrossay, D.; Lanzavecchia, A.; Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 2009, 10, 857–863. [Google Scholar] [CrossRef]
- Aktas Cetin, E.; Cosan, F.; Cefle, A.; Deniz, G. IL-22-secreting Th22 and IFN-γ-secreting Th17 cells in Behçet’s disease. Mod. Rheumatol. 2014, 24, 802–807. [Google Scholar] [CrossRef] [PubMed]
- Yanaba, K.; Bouaziz, J.D.; Matsushita, T.; Magro, C.M.; St Clair, E.W.; Tedder, T.F. B-lymphocyte contributions to human autoimmune disease. Immunol. Rev. 2008, 223, 284–299. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Sakane, T.; Ueda, Y.; Tsunematsu, T. Abnormal B cell function in patients with Behcet’s disease. Arthritis Rheum. 1986, 29, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Eksioglu-Demiralp, E.; Kibaroglu, A.; Direskeneli, H.; Yavuz, S.; Karsli, F.; Yurdakul, S.; Yazici, H.; Akoglu, T. Phenotypic characteristics of B cells in Behcet’s disease: Increased activity in B cell subsets. J. Rheumatol. 1999, 26, 826–832. [Google Scholar]
- Beutler, B. Innate immunity: An overview. Mol. Immunol. 2004, 40, 845–859. [Google Scholar] [CrossRef]
- Nathan, C. Neutrophils and immunity: Challenges and opportunities. Nat. Rev. Immunol. 2006, 6, 173–182. [Google Scholar] [CrossRef]
- Neves, F.S.; Spiller, F. Possible mechanisms of neutrophil activation in Behcet’s disease. Int. Immunopharmacol. 2013, 17, 1206–1210. [Google Scholar] [CrossRef]
- Keller, M.; Spanou, Z.; Schaerli, P.; Britschgi, M.; Yawalkar, N.; Seitz, M.; Villiger, P.M.; Pichler, W.J. T cell-regulated neutrophilic inflammation in autoinflammatory diseases. J. Immunol. 2005, 175, 7678–7686. [Google Scholar] [CrossRef][Green Version]
- Kobayashi, M.; Ito, M.; Nakagawa, A.; Matsushita, M.; Nishikimi, N.; Sakurai, T.; Nimura, Y. Neutrophil and endothelial cell activation in the vasa vasorum in vasculo-Behcet disease. Histopathology 2000, 36, 362–371. [Google Scholar] [CrossRef]
- Becatti, M.; Emmi, G.; Silvestri, E.; Bruschi, G.; Ciucciarelli, L.; Squatrito, D.; Vaglio, A.; Taddei, N.; Abbate, R.; Emmi, L.; et al. Neutrophil Activation Promotes Fibrinogen Oxidation and Thrombus Formation in Behcet Disease. Circulation 2016, 133, 302–311. [Google Scholar] [CrossRef]
- Kucuksezer, U.C.; Aktas Cetin, E.; Esen, F.; Tahrali, I.; Akdeniz, N.; Gelmez, M.Y.; Deniz, G. The Role of Natural Killer Cells in Autoimmune Diseases. Front. Immunol. 2021, 12, 622306. [Google Scholar] [CrossRef]
- Cooper, M.A.; Fehniger, T.A.; Turner, S.C.; Chen, K.S.; Ghaheri, B.A.; Ghayur, T.; Carson, W.E.; Caligiuri, M.A. Human natural killer cells: A unique innate immunoregulatory role for the CD56(bright) subset. Blood 2001, 97, 3146–3151. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Moretta, A.; Marcenaro, E.; Parolini, S.; Ferlazzo, G.; Moretta, L. NK cells at the interface between innate and adaptive immunity. Cell. Death Differ. 2008, 15, 226–233. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hasan, M.S.; Ryan, P.L.; Bergmeier, L.A.; Fortune, F. Circulating NK cells and their subsets in Behcet’s disease. Clin. Exp. Immunol. 2017, 188, 311–322. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Eberl, M.; Moser, B. Monocytes and gammadelta T cells: Close encounters in microbial infection. Trends Immunol. 2009, 30, 562–568. [Google Scholar] [CrossRef]
- Sutton, C.E.; Lalor, S.J.; Sweeney, C.M.; Brereton, C.F.; Lavelle, E.C.; Mills, K.H. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 2009, 31, 331–341. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Parlakgul, G.; Guney, E.; Erer, B.; Kilicaslan, Z.; Direskeneli, H.; Gul, A.; Saruhan-Direskeneli, G. Expression of regulatory receptors on gammadelta T cells and their cytokine production in Behcet’s disease. Arthritis Res. Ther. 2013, 15, R15. [Google Scholar] [CrossRef][Green Version]
- Ahn, J.K.; Cha, H.S.; Bae, E.K.; Lee, J.; Koh, E.M. Extracellular high-mobility group box 1 is increased in patients with Behcet’s disease with intestinal involvement. J. Korean Med. Sci. 2011, 26, 697–700. [Google Scholar] [CrossRef][Green Version]
- Kirino, Y.; Takeno, M.; Watanabe, R.; Murakami, S.; Kobayashi, M.; Ideguchi, H.; Ihata, A.; Ohno, S.; Ueda, A.; Mizuki, N.; et al. Association of reduced heme oxygenase-1 with excessive Toll-like receptor 4 expression in peripheral blood mononuclear cells in Behcet’s disease. Arthritis Res. Ther. 2008, 10, R16. [Google Scholar] [CrossRef] [PubMed][Green Version]
- He, K.; Wu, D. The treatment principles and targets for intestinal Behcet’s disease. Therap. Adv. Gastroenterol. 2023, 16, 17562848231167283. [Google Scholar] [CrossRef] [PubMed]
- Corominas, M.; Gastaminza, G.; Lobera, T. Hypersensitivity reactions to biological drugs. J. Investig. Allergol. Clin. Immunol. 2014, 24, 212–225. [Google Scholar]
- Purcell, R.T.; Lockey, R.F. Immunologic responses to therapeutic biologic agents. J. Investig. Allergol. Clin. Immunol. 2008, 18, 335–342. [Google Scholar]
- Vitale, A.; Emmi, G.; Lopalco, G.; Fabiani, C.; Gentileschi, S.; Silvestri, E.; Gerardo, D.S.; Iannone, F.; Frediani, B.; Galeazzi, M.; et al. Long-term efficacy and safety of golimumab in the treatment of multirefractory Behcet’s disease. Clin. Rheumatol. 2017, 36, 2063–2069. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, C.; Sota, J.; Rigante, D.; Vitale, A.; Emmi, G.; Vannozzi, L.; Franceschini, R.; Bacherini, D.; Frediani, B.; Galeazzi, M.; et al. Rapid and Sustained Efficacy of Golimumab in the Treatment of Multirefractory Uveitis Associated with Behcet’s Disease. Ocul. Immunol. Inflamm. 2019, 27, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Mesquida, M.; Victoria Hernandez, M.; Llorenc, V.; Pelegrin, L.; Espinosa, G.; Dick, A.D.; Adan, A. Behcet disease-associated uveitis successfully treated with golimumab. Ocul. Immunol. Inflamm. 2013, 21, 160–162. [Google Scholar] [CrossRef]
- Yao, M.; Gao, C.; Zhang, C.; Di, X.; Liang, W.; Sun, W.; Wang, Q.; Zheng, Z. Behcet’s disease with peripheral nervous system involvement successfully treated with golimumab: A case report and review of the literature. Rheumatol. Int. 2021, 41, 197–203. [Google Scholar] [CrossRef]
- Kon, T.; Hasui, K.; Suzuki, C.; Nishijima, H.; Tomiyama, M. Isolated myelitis in a patient with Behcet’s disease during golimumab therapy. J. Neuroimmunol. 2021, 354, 577533. [Google Scholar] [CrossRef]
- Melikoglu, M.; Fresko, I.; Mat, C.; Ozyazgan, Y.; Gogus, F.; Yurdakul, S.; Hamuryudan, V.; Yazici, H. Short-term trial of etanercept in Behcet’s disease: A double blind, placebo controlled study. J. Rheumatol. 2005, 32, 98–105. [Google Scholar]
- Monastirli, A.; Chroni, E.; Georgiou, S.; Ellul, J.; Pasmatzi, E.; Papathanasopoulos, P.; Tsambaos, D. Interferon-alpha treatment for acute myelitis and intestinal involvement in severe Behcet’s disease. QJM 2010, 103, 787–790. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Grimbacher, B.; Wenger, B.; Deibert, P.; Ness, T.; Koetter, I.; Peter, H.H. Loss of vision and diarrhoea. Lancet 1997, 350, 1818. [Google Scholar] [CrossRef] [PubMed]
- Kotter, I.; Vonthein, R.; Zierhut, M.; Eckstein, A.K.; Ness, T.; Gunaydin, I.; Grimbacher, B.; Blaschke, S.; Peter, H.H.; Stubiger, N. Differential efficacy of human recombinant interferon-alpha2a on ocular and extraocular manifestations of Behcet disease: Results of an open 4-center trial. Semin. Arthritis Rheum. 2004, 33, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Cantarini, L.; Vitale, A.; Scalini, P.; Dinarello, C.A.; Rigante, D.; Franceschini, R.; Simonini, G.; Borsari, G.; Caso, F.; Lucherini, O.M.; et al. Anakinra treatment in drug-resistant Behcet’s disease: A case series. Clin. Rheumatol. 2015, 34, 1293–1301. [Google Scholar] [CrossRef]
- Vitale, A.; Rigante, D.; Caso, F.; Brizi, M.G.; Galeazzi, M.; Costa, L.; Franceschini, R.; Lucherini, O.M.; Cantarini, L. Inhibition of interleukin-1 by canakinumab as a successful mono-drug strategy for the treatment of refractory Behcet’s disease: A case series. Dermatology 2014, 228, 211–214. [Google Scholar] [CrossRef]
- Ugurlu, S.; Ucar, D.; Seyahi, E.; Hatemi, G.; Yurdakul, S. Canakinumab in a patient with juvenile Behcet’s syndrome with refractory eye disease. Ann. Rheum. Dis. 2012, 71, 1589–1591. [Google Scholar] [CrossRef]
- Cantarini, L.; Vitale, A.; Borri, M.; Galeazzi, M.; Franceschini, R. Successful use of canakinumab in a patient with resistant Behcet’s disease. Clin. Exp. Rheumatol. 2012, 30 (Suppl. S72), S115. [Google Scholar]
- Botsios, C.; Sfriso, P.; Furlan, A.; Punzi, L.; Dinarello, C.A. Resistant Behcet disease responsive to anakinra. Ann. Intern. Med. 2008, 149, 284–286. [Google Scholar] [CrossRef]
- Tugal-Tutkun, I.M.; Kadayifcilar, S.M.; Khairallah, M.M.; Lee, S.C.M.P.; Ozdal, P.; Ozyazgan, Y.; Song, J.H.M.; Yu, H.G.M.P.; Lehner, V.P.; de Cordoue, A.M.; et al. Safety and Efficacy of Gevokizumab in Patients with Behcet’s Disease Uveitis: Results of an Exploratory Phase 2 Study. Ocul. Immunol. Inflamm. 2017, 25, 62–70. [Google Scholar] [CrossRef][Green Version]
- Tugal-Tutkun, I.; Pavesio, C.; De Cordoue, A.; Bernard-Poenaru, O.; Gul, A. Use of Gevokizumab in Patients with Behcet’s Disease Uveitis: An International, Randomized, Double-Masked, Placebo-Controlled Study and Open-Label Extension Study. Ocul. Immunol. Inflamm. 2018, 26, 1023–1033. [Google Scholar] [CrossRef]
- Gul, A.; Tugal-Tutkun, I.; Dinarello, C.A.; Reznikov, L.; Esen, B.A.; Mirza, A.; Scannon, P.; Solinger, A. Interleukin-1beta-regulating antibody XOMA 052 (gevokizumab) in the treatment of acute exacerbations of resistant uveitis of Behcet’s disease: An open-label pilot study. Ann. Rheum. Dis. 2012, 71, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Atienza-Mateo, B.; Calvo-Río, V.; Beltrán, E.; Martínez-Costa, L.; Valls-Pascual, E.; Hernández-Garfella, M.; Atanes, A.; Cordero-Coma, M.; Miquel Nolla, J.; Carrasco-Cubero, C.; et al. Anti-interleukin 6 receptor tocilizumab in refractory uveitis associated with Behçet’s disease: Multicentre retrospective study. Rheumatology 2018, 57, 856–864. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Deroux, A.; Chiquet, C.; Bouillet, L. Tocilizumab in severe and refractory Behcet’s disease: Four cases and literature review. Semin. Arthritis Rheum. 2016, 45, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, S.; He, J. A case of refractory intestinal Behçet’s disease treated with tocilizumab, a humanised anti-interleukin-6 receptor antibody. Clin. Exp. Rheumatol. 2017, 35, 116–118. [Google Scholar]
- Di Scala, G.; Bettiol, A.; Cojan, R.D.; Finocchi, M.; Silvestri, E.; Emmi, G. Efficacy of the anti-IL 17 secukinumab in refractory Behçet’s syndrome: A preliminary study. J. Autoimmun. 2019, 97, 108–113. [Google Scholar] [CrossRef]
- Fagni, F.; Bettiol, A.; Talarico, R.; Lopalco, G.; Silvestri, E.; Urban, M.L.; Russo, P.A.J.; Di Scala, G.; Emmi, G.; Prisco, D. Long-term effectiveness and safety of secukinumab for treatment of refractory mucosal and articular Behçet’s phenotype: A multicentre study. Ann. Rheum. Dis. 2020, 79, 1098–1104. [Google Scholar] [CrossRef]
- Dick, A.D.; Tugal-Tutkun, I.; Foster, S.; Zierhut, M.; Melissa Liew, S.H.; Bezlyak, V.; Androudi, S. Secukinumab in the treatment of noninfectious uveitis: Results of three randomized, controlled clinical trials. Ophthalmology 2013, 120, 777–787. [Google Scholar] [CrossRef]
- Singh, S.; Murad, M.H.; Fumery, M.; Sedano, R.; Jairath, V.; Panaccione, R.; Sandborn, W.J.; Ma, C. Comparative efficacy and safety of biologic therapies for moderate-to-severe Crohn’s disease: A systematic review and network meta-analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 1002–1014. [Google Scholar] [CrossRef]
- Feagan, B.G.; Sandborn, W.J.; Gasink, C.; Jacobstein, D.; Lang, Y.; Friedman, J.R.; Blank, M.A.; Johanns, J.; Gao, L.L.; Miao, Y.; et al. Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease. N. Engl. J. Med. 2016, 375, 1946–1960. [Google Scholar] [CrossRef]
- Lopalco, G.; Fabiani, C.; Venerito, V.; Lapadula, G.; Iannone, F.; Cantarini, L. Ustekinumab efficacy and safety in mucocutaneous multi-refractory Behçet’s disease. Clin. Exp. Rheumatol. 2017, 35, 130–131. [Google Scholar]
- Baerveldt, E.M.; Kappen, J.H.; Thio, H.B.; van Laar, J.A.; van Hagen, P.M.; Prens, E.P. Successful long-term triple disease control by ustekinumab in a patient with Behcet’s disease, psoriasis and hidradenitis suppurativa. Ann. Rheum. Dis. 2013, 72, 626–627. [Google Scholar] [CrossRef] [PubMed]
- Mirouse, A.; Barete, S.; Desbois, A.C.; Comarmond, C.; Sène, D.; Domont, F.; Bodaghi, B.; Ferfar, Y.; Cacoub, P.; Saadoun, D. Long-Term Outcome of Ustekinumab Therapy for Behçet’s Disease. Arthritis Rheumatol. 2019, 71, 1727–1732. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yu, X.; Wang, Z.; Liu, W.; Liu, X.; Wang, X.; Zhang, M.; Zhao, Y.; Zhang, F.; Yang, H.; et al. Baricitinib for the treatment of intestinal Behcet’s disease: A pilot study. Clin. Immunol. 2023, 247, 109241. [Google Scholar] [CrossRef] [PubMed]
- Atienza-Mateo, B.; Martín-Varillas, J.L.; Graña, J.; Espinosa, G.; Moriano, C.; Pérez-Sandoval, T.; García-Armario, M.D.; Castellví, I.; Román-Ivorra, J.A.; Olivé, A.; et al. Apremilast in refractory orogenital ulcers and other manifestations of Behçet’s disease. A national multicentre study of 51 cases in clinical practice. Clin. Exp. Rheumatol. 2020, 38 (Suppl. S127), 69–75. [Google Scholar]
- Hatemi, G.; Mahr, A.; Ishigatsubo, Y.; Song, Y.W.; Takeno, M.; Kim, D.; Melikoglu, M.; Cheng, S.; McCue, S.; Paris, M.; et al. Trial of Apremilast for Oral Ulcers in Behcet’s Syndrome. N. Engl. J. Med. 2019, 381, 1918–1928. [Google Scholar] [CrossRef]
- Garcia-Estrada, C.; Casallas-Vanegas, A.; Zabala-Angeles, I.; Gomez-Figueroa, E.; Rivas-Alonso, V.; Flores-Rivera, J. Rituximab as an effective therapeutic option in refractory Neuro-Behçet syndrome. J. Neuroimmunol. 2020, 346, 577308. [Google Scholar] [CrossRef]
- Davatchi, F.; Shams, H.; Rezaipoor, M.; Sadeghi-Abdollahi, B.; Shahram, F.; Nadji, A.; Chams-Davatchi, C.; Akhlaghi, M.; Faezi, T.; Naderi, N. Rituximab in intractable ocular lesions of Behcet’s disease; randomized single-blind control study (pilot study). Int. J. Rheum. Dis. 2010, 13, 246–252. [Google Scholar] [CrossRef]
- Maciel, M.L.; Novello, M.; Neves, F.S. Short-term efficacy of abatacept in the treatment of refractory ocular and cutaneous Behçet’s disease. Rheumatol. Adv. Pract. 2017, 1, rkx004. [Google Scholar] [CrossRef][Green Version]
- Mohammad, A.J.; Smith, R.M.; Chow, Y.W.; Chaudhry, A.N.; Jayne, D.R. Alemtuzumab as Remission Induction Therapy in Behçet Disease: A 20-year Experience. J. Rheumatol. 2015, 42, 1906–1913. [Google Scholar] [CrossRef]
- Perez-Pampin, E.; Campos-Franco, J.; Blanco, J.; Mera, A. Remission induction in a case of refractory Behçet disease with alemtuzumab. J. Clin. Rheumatol. 2013, 19, 101–103. [Google Scholar] [CrossRef]
- Arbrile, M.; Radin, M.; Rossi, D.; Menegatti, E.; Baldovino, S.; Sciascia, S.; Roccatello, D. Vedolizumab for the Management of Refractory Behçet’s Disease: From a Case Report to New Pieces of Mosaic in a Complex Disease. Front. Immunol. 2021, 12, 769785. [Google Scholar] [CrossRef] [PubMed]
- Oztas, M.O.; Onder, M.; Gurer, M.A.; Bukan, N.; Sancak, B. Serum interleukin 18 and tumour necrosis factor-alpha levels are increased in Behcet’s disease. Clin. Exp. Dermatol. 2005, 30, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Kone-Paut, I.; Barete, S.; Bodaghi, B.; Deiva, K.; Desbois, A.C.; Galeotti, C.; Gaudric, J.; Kaplanski, G.; Mahr, A.; Noel, N.; et al. French recommendations for the management of Behcet’s disease. Orphanet. J. Rare. Dis. 2021, 16, 352. [Google Scholar] [CrossRef] [PubMed]
- Inflammatory Enteropathy Group, Gastroenterology Branch, Chinese Medical Association. Chinese consensus on diagnosis and treatment of intestinal Behcet′s disease. Chin. J. Dig. 2022, 42, 649–658. (In Chinese) [Google Scholar] [CrossRef]
- Tanida, S.; Inoue, N.; Kobayashi, K.; Naganuma, M.; Hirai, F.; Iizuka, B.; Watanabe, K.; Mitsuyama, K.; Inoue, T.; Ishigatsubo, Y.; et al. Adalimumab for the treatment of Japanese patients with intestinal Behcet’s disease. Clin. Gastroenterol. Hepatol. 2015, 13, 940–948.e943. [Google Scholar] [CrossRef][Green Version]
- Zou, J.; Ji, D.N.; Cai, J.F.; Guan, J.L.; Bao, Z.J. Long-Term Outcomes and Predictors of Sustained Response in Patients with Intestinal Behcet’s Disease Treated with Infliximab. Dig. Dis. Sci. 2017, 62, 441–447. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Liu, T.; Han, W.; Bai, X.; Ruan, G.; Lv, H.; Shu, H.; Li, Y.; Li, J.; et al. The efficacy and safety of anti-tumor necrosis factor agents in the treatment of intestinal Behcet’s disease, a systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2022, 37, 608–619. [Google Scholar] [CrossRef]
- Theofilopoulos, A.N.; Baccala, R.; Beutler, B.; Kono, D.H. Type I interferons (alpha/beta) in immunity and autoimmunity. Annu. Rev. Immunol. 2005, 23, 307–336. [Google Scholar] [CrossRef]
- Tsambaos, D.; Eichelberg, D.; Goos, M. Behcet’s syndrome: Treatment with recombinant leukocyte alpha-interferon. Arch. Dermatol. Res. 1986, 278, 335–336. [Google Scholar] [CrossRef]
- Krause, L.; Altenburg, A.; Pleyer, U.; Kohler, A.K.; Zouboulis, C.C.; Foerster, M.H. Longterm visual prognosis of patients with ocular Adamantiades-Behcet’s disease treated with interferon-alpha-2a. J. Rheumatol. 2008, 35, 896–903. [Google Scholar]
- Gueudry, J.; Wechsler, B.; Terrada, C.; Gendron, G.; Cassoux, N.; Fardeau, C.; Lehoang, P.; Piette, J.C.; Bodaghi, B. Long-term efficacy and safety of low-dose interferon alpha2a therapy in severe uveitis associated with Behcet disease. Am. J. Ophthalmol. 2008, 146, 837–844.e831. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Huang, G.; Du, L.; Ye, Z.; Hu, K.; Wang, C.; Qi, J.; Liang, L.; Wu, L.; Cao, Q.; et al. Long-Term Efficacy and Safety of Interferon Alpha-2a in the Treatment of Chinese Patients with Behcet’s Uveitis Not Responding to Conventional Therapy. Ocul. Immunol. Inflamm. 2019, 27, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Celiker, H.; Kazokoglu, H.; Direskeneli, H. Factors Affecting Relapse and Remission in Behcet’s Uveitis Treated with Interferon Alpha2a. J. Ocul. Pharmacol. Ther. 2019, 35, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Alpsoy, E.; Durusoy, C.; Yilmaz, E.; Ozgurel, Y.; Ermis, O.; Yazar, S.; Basaran, E. Interferon alfa-2a in the treatment of Behcet disease: A randomized placebo-controlled and double-blind study. Arch. Dermatol. 2002, 138, 467–471. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Calguneri, M.; Onat, A.M.; Ozturk, M.A.; Ozcakar, L.; Ureten, K.; Akdogan, A.; Ertenli, I.; Kiraz, S. Transverse myelitis in a patient with Behcet’s disease: Favorable outcome with a combination of interferon-alpha. Clin. Rheumatol. 2005, 24, 64–66. [Google Scholar] [CrossRef]
- Nichols, J.C.; Ince, A.; Akduman, L.; Mann, E.S. Interferon-alpha 2a treatment of neuro-Behcet disease. J. Neuroophthalmol. 2001, 21, 109–111. [Google Scholar] [CrossRef][Green Version]
- Feron, E.J.; Rothova, A.; van Hagen, P.M.; Baarsma, G.S.; Suttorp-Schulten, M.S. Interferon-alpha 2b for refractory ocular Behcet’s disease. Lancet 1994, 343, 1428. [Google Scholar] [CrossRef]
- Lightman, S.; Taylor, S.R.; Bunce, C.; Longhurst, H.; Lynn, W.; Moots, R.; Stanford, M.; Tomkins-Netzer, O.; Yang, D.; Calder, V.L.; et al. Pegylated interferon-alpha-2b reduces corticosteroid requirement in patients with Behcet’s disease with upregulation of circulating regulatory T cells and reduction of Th17. Ann. Rheum. Dis. 2015, 74, 1138–1144. [Google Scholar] [CrossRef]
- Calguneri, M.; Ozturk, M.A.; Ertenli, I.; Kiraz, S.; Apras, S.; Ozbalkan, Z. Effects of interferon alpha treatment on the clinical course of refractory Behcet’s disease: An open study. Ann. Rheum. Dis. 2003, 62, 492–493. [Google Scholar] [CrossRef][Green Version]
- Kötter, I.; Eckstein, A.K.; Stübiger, N.; Zierhut, M. Treatment of ocular symptoms of Behçet’s disease with interferon alpha 2a: A pilot study. Br. J. Ophthalmol. 1998, 82, 488–494. [Google Scholar] [CrossRef][Green Version]
- Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood. 1996, 87, 2095–2147. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pay, S.; Erdem, H.; Pekel, A.; Simsek, I.; Musabak, U.; Sengul, A.; Dinc, A. Synovial proinflammatory cytokines and their correlation with matrix metalloproteinase-3 expression in Behçet’s disease. Does interleukin-1beta play a major role in Behçet’s synovitis? Rheumatol. Int. 2006, 26, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Karasneh, J.; Hajeer, A.H.; Barrett, J.; Ollier, W.E.; Thornhill, M.; Gul, A. Association of specific interleukin 1 gene cluster polymorphisms with increased susceptibility for Behcet’s disease. Rheumatology 2003, 42, 860–864. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Korn, T.; Bettelli, E.; Oukka, M.; Kuchroo, V.K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 2009, 27, 485–517. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.J.; Luo, S.F.; Lai, J.H. Biological effects of interleukin-6: Clinical applications in autoimmune diseases and cancers. Biochem. Pharmacol. 2015, 97, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Lopes, J.E.; Chong, M.M.; Ivanov, I.I.; Min, R.; Victora, G.D.; Shen, Y.; Du, J.; Rubtsov, Y.P.; Rudensky, A.Y.; et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 2008, 453, 236–240. [Google Scholar] [CrossRef][Green Version]
- Yang, L.; Anderson, D.E.; Baecher-Allan, C.; Hastings, W.D.; Bettelli, E.; Oukka, M.; Kuchroo, V.K.; Hafler, D.A. IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 2008, 454, 350–352. [Google Scholar] [CrossRef][Green Version]
- Khanna, D.; Denton, C.P.; Jahreis, A.; van Laar, J.M.; Frech, T.M.; Anderson, M.E.; Baron, M.; Chung, L.; Fierlbeck, G.; Lakshminarayanan, S.; et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (faSScinate): A phase 2, randomised, controlled trial. Lancet 2016, 387, 2630–2640. [Google Scholar] [CrossRef]
- Akiyama, M.; Kaneko, Y.; Takeuchi, T. Effectiveness of tocilizumab in Behcet’s disease: A systematic literature review. Semin. Arthritis Rheum. 2020, 50, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Moseley, T.A.; Haudenschild, D.R.; Rose, L.; Reddi, A.H. Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 2003, 14, 155–174. [Google Scholar] [CrossRef]
- McGonagle, D.G.; McInnes, I.B.; Kirkham, B.W.; Sherlock, J.; Moots, R. The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: Recent advances and controversies. Ann. Rheum. Dis. 2019, 78, 1167–1178. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Barrado-Solís, N.; Rodrigo-Nicolás, B.; De la Morena-Barrio, I.; Pérez-Pastor, G.; Sanchis-Sánchez, C.; Tomás-Cabedo, G.; Valcuende-Cavero, F. Report of two cases of Behçet’s disease developed during treatment with secukinumab. J. Eur. Acad. Dermatol. Venereol. 2020, 34, e587–e589. [Google Scholar] [CrossRef] [PubMed]
- Hueber, W.; Sands, B.E.; Lewitzky, S.; Vandemeulebroecke, M.; Reinisch, W.; Higgins, P.D.; Wehkamp, J.; Feagan, B.G.; Yao, M.D.; Karczewski, M.; et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: Unexpected results of a randomised, double-blind placebo-controlled trial. Gut 2012, 61, 1693–1700. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chyuan, I.T.; Lai, J.H. New insights into the IL-12 and IL-23: From a molecular basis to clinical application in immune-mediated inflammation and cancers. Biochem. Pharmacol. 2020, 175, 113928. [Google Scholar] [CrossRef]
- Benson, J.M.; Sachs, C.W.; Treacy, G.; Zhou, H.; Pendley, C.E.; Brodmerkel, C.M.; Shankar, G.; Mascelli, M.A. Therapeutic targeting of the IL-12/23 pathways: Generation and characterization of ustekinumab. Nat. Biotechnol. 2011, 29, 615–624. [Google Scholar] [CrossRef]
- Trinchieri, G. Interleukin-12 and its role in the generation of TH1 cells. Immunol. Today 1993, 14, 335–338. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Chen, S.L.; Shen, N.; Lu, Y. Cytokines and Behcet’s disease. Autoimmun. Rev. 2012, 11, 699–704. [Google Scholar] [CrossRef]
- Sadeghi, A.; Davatchi, F.; Shahram, F.; Karimimoghadam, A.; Alikhani, M.; Pezeshgi, A.; Mazloomzadeh, S.; Sadeghi-Abdollahi, B.; Asadi-Khiavi, M. Serum Profiles of Cytokines in Behcet’s Disease. J. Clin. Med. 2017, 6, 49. [Google Scholar] [CrossRef]
- Mizuki, N.; Meguro, A.; Ota, M.; Ohno, S.; Shiota, T.; Kawagoe, T.; Ito, N.; Kera, J.; Okada, E.; Yatsu, K.; et al. Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet’s disease susceptibility loci. Nat. Genet. 2010, 42, 703–706. [Google Scholar] [CrossRef]
- Kubo, S.; Nakayamada, S.; Sakata, K.; Kitanaga, Y.; Ma, X.; Lee, S.; Ishii, A.; Yamagata, K.; Nakano, K.; Tanaka, Y. Janus Kinase Inhibitor Baricitinib Modulates Human Innate and Adaptive Immune System. Front. Immunol. 2018, 9, 1510. [Google Scholar] [CrossRef]
- Lon, H.K.; Liu, D.; DuBois, D.C.; Almon, R.R.; Jusko, W.J. Modeling pharmacokinetics/pharmacodynamics of abatacept and disease progression in collagen-induced arthritic rats: A population approach. J. Pharmacokinet. Pharmacodyn. 2013, 40, 701–712. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ruck, T.; Barman, S.; Schulte-Mecklenbeck, A.; Pfeuffer, S.; Steffen, F.; Nelke, C.; Schroeter, C.B.; Willison, A.; Heming, M.; Müntefering, T.; et al. Alemtuzumab-induced immune phenotype and repertoire changes: Implications for secondary autoimmunity. Brain 2022, 145, 1711–1725. [Google Scholar] [CrossRef] [PubMed]
- Vitale, A.; Rigante, D.; Lopalco, G.; Emmi, G.; Bianco, M.T.; Galeazzi, M.; Iannone, F.; Cantarini, L. New therapeutic solutions for Behçet’s syndrome. Expert Opin. Investig. Drugs 2016, 25, 827–840. [Google Scholar] [CrossRef] [PubMed]
Intestinal Behcet’s Disease | Crohn’s Disease | |
---|---|---|
Lesion distribution | Common in ileocecal region, rare in rectum and anus, short segment lesions | Common in ileocecal region, long segment lesions, jumping distribution |
Bowel morphology | Not prone to stenosis | Thickening and stenosis |
Gastrointestinal manifestations | Abdominal pain, diarrhea, hematochezia, with or without abdominal mass sometimes | Abdominal pain, diarrhea, hematochezia, abdominal mass, with or without perianal lesion |
Extra-gastrointestinal manifestations | Oral and vulval ulcers, folliculitis or acne-like skin lesions, systemic manifestations (for example, ocular, vascular, neurological and articular symptoms) | Oral ulcers, nodular erythema, pyoderma, arthritis and so on |
Laboratory tests | Positive in acupuncture test, HLA-B5 and ASCA | Positive in ASCA |
Endoscopic findings | Round or oval ulcers, volcano-like ulcers, single or multiple ulcers ≤ 5, with definite boundary and smooth mucosa around the ulcer | Discontinuous distribution of longitudinal ulcers, paving stone-like pattern, aphthous ulcers |
Pathologic findings | Signs of vasculitis. | Transmural inflammation, fissure-like ulcers, non-caseous granuloma |
Biological Agents | Immune-Related Targets | Structure | Possible Applicable Subtypes in BD |
---|---|---|---|
Infliximab, adalimumab | TNF-α | Monoclonal antibodies against TNF-α | All subtypes of BD * [5] |
Golimumab | Intestinal BD [66]; BD with ocular and neurological involvement [67,68,69,70] | ||
Etanercept | Soluble receptors against TNF-α | Intestinal BD [71]; BD with mucocutaneous and articular involvement * [5] | |
IFN-α | Not clear | Recombinant human IFN-α-2a | Intestinal BD [72,73,74]; BD with mucocutaneous, articular, ocular, and vascular involvement * [5] |
Anakinra | IL-1 | Recombinant human IL-1 receptor antagonist | Intestinal BD [75,76]; BD with mucocutaneous * and ocular involvement [77,78,79] |
Canakinumab | Anti-IL-1β humanized monoclonal antibodies | ||
Gevokizumab | Controversial in intestinal BD [80,81]; BD with ocular involvement [80,82] | ||
Tocilizumab | IL-6 | Human IL-6 receptor monoclonal antibody | Controversial in intestinal BD; BD with ocular, neurological, and vascular involvement [83,84,85] |
Secukinumab | IL-17 | Human IL-17A monoclonal antibody | Unclear in intestinal BD; BD with mucocutaneous and articular involvement [86,87,88] |
Ustekinumab | IL-12/IL-23 | Human IL-12/IL-23p40 monoclonal antibody | Unclear in intestinal BD but effective in CD [89,90]; BD with mucocutaneous and ocular involvement [91,92,93] |
Baricitinib | JAK1/JAK2 | JAK1/JAK2 inhibitor; small molecule drug | Intestinal BD [94] |
Apremilast | Phosphodiesterase 4 | Phosphodiesterase 4 inhibitor; small molecule drug | Intestinal BD [95]; BD with mucocutaneous [95,96] |
Rituximab | CD20 | Chimeric mouse/human monoclonal antibody against CD20 antigen on the B lymphocyte | Unclear in intestinal BD; BD with mucocutaneous, articular, neurological, and ocular involvement [97,98] |
Abatacept | B7 | Selective T-cell costimulation modulator and a protein drug | Unclear in intestinal BD; BD with mucocutaneous and ocular involvement [99] |
Alemtuzumab | CD52 | Humanized monoclonal antibody against CD52 | Unclear in intestinal BD; BD with ocular, vascular, and neurological involvement [100,101] |
Vedolizumab | α4β7 integrin | Humanized anti-α4β7 integrin monoclonal antibody | Intestinal BD [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, K.; Yan, X.; Wu, D. Intestinal Behcet’s Disease: A Review of the Immune Mechanism and Present and Potential Biological Agents. Int. J. Mol. Sci. 2023, 24, 8176. https://doi.org/10.3390/ijms24098176
He K, Yan X, Wu D. Intestinal Behcet’s Disease: A Review of the Immune Mechanism and Present and Potential Biological Agents. International Journal of Molecular Sciences. 2023; 24(9):8176. https://doi.org/10.3390/ijms24098176
Chicago/Turabian StyleHe, Kun, Xiaxiao Yan, and Dong Wu. 2023. "Intestinal Behcet’s Disease: A Review of the Immune Mechanism and Present and Potential Biological Agents" International Journal of Molecular Sciences 24, no. 9: 8176. https://doi.org/10.3390/ijms24098176
APA StyleHe, K., Yan, X., & Wu, D. (2023). Intestinal Behcet’s Disease: A Review of the Immune Mechanism and Present and Potential Biological Agents. International Journal of Molecular Sciences, 24(9), 8176. https://doi.org/10.3390/ijms24098176