Spectroscopic and Spectroelectrochemical Studies of Hexapentyloxytriphenylene—A Model Discotic Molecule
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Discotic Liquid Crystal
3.2. UV-Vis Absorption Measurements
3.3. Cyclic Voltammetry
3.4. UV-Vis Spectroelectrochemical Measurements
3.5. EPR Spectroelectrochemical Measurements
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandrasekhar, S.; Sadashiva, B.K.; Suresh, K.A. Liquid Crystals of Disc-Like Molecules. Pramana 1977, 9, 471–480. [Google Scholar] [CrossRef]
- Wohrle, T.; Wurzbach, I.; Kirres, J.; Kostidou, A.; Kapernaum, N.; Litterscheidt, J.; Haenle, J.C.; Staffeld, P.; Baro, A.; Giesselmann, F.; et al. Discotic Liquid Crystals. Chem. Rev. 2016, 116, 1139–1241. [Google Scholar] [CrossRef] [PubMed]
- Kaafarani, B.R. Discotic Liquid Crystals for Opto-Electronic Applications. Chem. Mater. 2011, 23, 378–396. [Google Scholar] [CrossRef]
- Shimizu, Y. Chapter 17 Liquid Crystals Toward Soft Organic Semiconductors. In Supramolecular Soft Matter: Applications in Materials and Organic Electronics, 1st ed.; Nakanishi, T., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; Section VI; pp. 345–360. [Google Scholar] [CrossRef]
- Heiney, P.A. Chapter 10 Structure and Physical Properties of Columnar Liquid Crystals. In Handbook of Liquid Crystals, 2nd ed.; Goodby, J.W., Collings, P.J., Kato, T., Tschierske, C., Gleeson, H.F., Raynes, P., Eds.; Wiley-VCH: Weinheim, Germany, 2014; Volume 4, pp. 521–568. [Google Scholar] [CrossRef]
- Kumar, M.; Varshney, S.; Kumar, S. Emerging Nanoscience with Discotic Liquid Crystals. Polym. J. 2021, 53, 283–297. [Google Scholar] [CrossRef]
- Pal, S.K.; Setia, S.; Avinash, B.S.; Kumar, S. Triphenylene-Based Discotic Liquid Crystals: Recent Advances. Liq. Cryst. 2013, 40, 1769–1816. [Google Scholar] [CrossRef]
- Bock, H.; Rajaoarivelo, M.; Clavaguera, S.; Grelet, E. An Efficient Route to Stable Room-Temperature Liquid-Crystalline Triphenylenes. Eur. J. Org. Chem. 2006, 2006, 2889–2893. [Google Scholar] [CrossRef]
- Sleczkowski, M.L.; Mabesoone, M.F.J.; Sleczkowski, P.; Palmans, A.R.A.; Meijer, E.W. Competition Between Chiral Solvents and Chiral Monomers in the Helical Bias of Supramolecular Polymers. Nat. Chem. 2021, 13, 200–207. [Google Scholar] [CrossRef]
- Sleczkowski, P.; Dappe, Y.J.; Croset, B.; Shimizu, Y.; Tanaka, D.; Minobe, R.; Uchida, K.; Lacaze, E. Two-Dimensional Self-Assembly Monitored by Hydrogen Bonds for Triphenylene-Based Molecules: New Role for Azobenzenes. J. Phys. Chem. C 2016, 120, 22388–22397. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, H.; Zheng, H.; Li, H.; Guo, F.; Ni, G.; Ma, M.; Shi, C.; Ghadari, R.; Hu, L. Two-Dimensional Triphenylene Cored Hole-Transporting Materials for Efficient Perovskite Solar Cells. Chem. Commun. 2020, 56, 1879–1882. [Google Scholar] [CrossRef]
- Zhang, Y.; Hanifi, D.A.; Fernandez-Liencres, M.P.; Klivansky, L.M.; Ma, B.; Navarro, A.; Liu, Y. Understanding Electron Transport in Disk-Shaped Triphenylene-Tris(naphthaleneimidazole)s through Structural Modification and Theoretical Investigation. ACS Appl. Mater. Interfaces 2017, 9, 20010–20019. [Google Scholar] [CrossRef] [Green Version]
- Markovitsi, D.; Marguet, S.; Bondkowski, J.; Kumar, S. Triplet Excitation Transfer in Triphenylene Columnar Phases. J. Phys. Chem. B 2001, 105, 1299–1306. [Google Scholar] [CrossRef]
- Iino, H.; Hanna, J.-I.; Haarer, D.; Bushby, R.J. Fast Electron Transport in Discotic Columnar Phases of Triphenylene Derivatives. Jpn. J. Appl. Phys. 2006, 45, 430–433. [Google Scholar] [CrossRef]
- Hassheider, T.; Benning, S.A.; Kitzerow, H.S.; Achard, M.F.; Bock, H. Color-Tuned Electroluminescence from Columnar Liquid Crystalline Alkyl Arenecarboxylates. Adv. Mater. 2001, 40, 2060–2062. [Google Scholar] [CrossRef]
- Staffeld, P.; Kaller, M.; Beardsworth, S.J.; Tremel, K.; Ludwigs, S.; Laschat, S.; Giesselmann, F. Design of Conductive Crown Ether Based Columnar Liquid Crystals: Impact of Molecular Flexibility and Geometry. J. Mater. Chem. C 2013, 1, 892–901. [Google Scholar] [CrossRef]
- Bisoyi, H.K.; Li, Q. Chapter 6 Discotic Liquid Crystals for Self-Organizing Photovoltaics. In Nanomaterials for Sustainable Energy; Li, Q., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 215–252. [Google Scholar] [CrossRef]
- Morales, P.; Lagerwall, J.; Vacca, P.; Laschat, S.; Scalia, G. Self-Assembled Ordered Structures in thin films of HAT5 Discotic Liquid Crystal. Beilstein J. Org. Chem. 2010, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Sentker, K.; Zantop, A.W.; Lippmann, M.; Hofmann, T.; Seeck, O.H.; Kityk, A.V.; Yildirim, A.; Schonhals, A.; Mazza, M.G.; Huber, P. Quantized Self-Assembly of Discotic Rings in a Liquid Crystal Confined in Nanopores. Phys. Rev. Lett. 2018, 120, 067801. [Google Scholar] [CrossRef] [Green Version]
- Koshkakaryan, G.; Jiang, P.; Altoe, V.; Cao, D.; Klivansky, L.M.; Zhang, Y.; Chung, S.; Katan, A.; Martin, F.; Salmeron, M.; et al. Multilayered Nanofibers from Stacks of Single-Molecular Thick Nanosheets of Hexakis(alkoxy)triphenylenes. Chem. Commun. 2010, 46, 8579–8581. [Google Scholar] [CrossRef]
- Sleczkowski, P.; Katsonis, N.; Kapitanchuk, O.; Marchenko, A.; Mathevet, F.; Croset, B.; Lacaze, E. Emergence of Chirality in Hexagonally Packed Monolayers of Hexapentyloxytriphenylene on Au(111): A Joint Experimental and Theoretical Study. Langmuir 2014, 30, 13275–13282. [Google Scholar] [CrossRef]
- Grelet, E.; Bock, H. Control of the Orientation of Thin Open Supported Columnar Liquid Crystal Films by the Kinetics of Growth. Europhys. Lett. 2006, 73, 712–718. [Google Scholar] [CrossRef]
- Bisoyi, H.K.; Li, Q. Stimuli Directed Alignment of Self-Organized One-Dimensional Semiconducting Columnar Liquid Crystal Nanostructures for Organic Electronics. Prog. Mater. Sci. 2019, 104, 1–52. [Google Scholar] [CrossRef]
- Chen, Z.; Lohr, A.; Saha-Moller, C.R.; Wurthner, F. Self-assembled π-stacks of Functional Dyes in Solution: Structural and Thermodynamic Features. Chem. Soc. Rev. 2009, 38, 564–584. [Google Scholar] [CrossRef] [PubMed]
- Saeva, F.D.; Reynolds, G.A. Aggregation Behavior of a Thermotropic Discotic Bi-4H-pyran Derivative in Solution. Mol. Cryst. Liq. Cryst. 1986, 132, 29–34. [Google Scholar] [CrossRef]
- Sheu, E.Y.; Liang, K.S.; Chiang, L.Y. Self-association of Disc-like Molecules in Hexadecane. J. Phys. France 1989, 50, 1279–1295. [Google Scholar] [CrossRef] [Green Version]
- Gallivan, J.P.; Schuster, G.B. Aggregates of Hexakis(n-hexyloxy)triphenylene Self-Assemble in Dodecane Solution: Intercalation of (–)-Menthol 3,5-Dinitrobenzoate Induces Formation of Helical Structures. J. Org. Chem. 1995, 60, 2423–2429. [Google Scholar] [CrossRef]
- Markovitsi, D.; Rigaut, F.; Mouallem, M.; Malthete, J. One-Dimensional Energy Migration in Crystalline and Columnar Liquid-Crystalline Phases of 2,3,6,7,10,11-hexa-n-hexyloxytriphenylene. Chem. Phys. Lett. 1987, 135, 236–242. [Google Scholar] [CrossRef]
- Baunsgaard, D.; Larsen, M.; Harrit, N.; Frederiksen, J.; Wilbrandt, R.; Stapelfeldt, H. Photophysical Properties of 2,3,6,7,10,11-hexakis(n-hexylsulfanyl)triphenylene and 2,3,6,7,10,11-hexakis(n-hexylsulfonyl)triphenylene in Solution. J. Chem. Soc., Faraday Trans. 1997, 93, 1893–1901. [Google Scholar] [CrossRef]
- Chen, Z.; Fimmel, B.; Wurthner, F. Solvent and Substituent Effects on Aggregation Constants of Perylene Bisimide π-stacks—A Linear Free Energy Relationship Analysis. Org. Biomol. Chem. 2012, 10, 5845–5855. [Google Scholar] [CrossRef]
- Boden, N.; Bushby, R.J.; Clements, J.; Luo, R. Characterization of the Cationic Species Formed in p-Doped Discotic Liquid Crystals. J. Mater. Chem. 1995, 5, 1741–1748. [Google Scholar] [CrossRef]
- Markovitsi, D.; Lecuyer, I.; Lianos, P.; Malthete, J. One-dimensional Singlet Energy Migration in the Columnar Liquid Crystal of a Triphenylene Derivative. J. Chem. Soc., Faraday Trans. 1991, 87, 1785–1790. [Google Scholar] [CrossRef]
- Markovitsi, D.; Bengs, H.; Ringsdorf, H. Charge-transfer Absorption in Doped Columnar Liquid Crystals. J. Chem. Soc., Faraday Trans. 1992, 88, 1275–1279. [Google Scholar] [CrossRef]
- Markovitsi, D.; Germain, A.; Millie, P.; Lecuyer, P.; Gallos, L.; Argyrakis, P.; Bengs, H.; Ringsdorf, H. Triphenylene Columnar Liquid Crystals: Excited States and Energy Transfer. J. Phys. Chem. 1995, 99, 1005–1017. [Google Scholar] [CrossRef]
- Waldrip, M.; Jurchescu, O.D.; Gundlach, D.J.; Bittle, E.G. Contact Resistance in Organic Field-Effect Transistors: Conquering the Barrier. Adv. Funct. Mater. 2020, 30, 1904576. [Google Scholar] [CrossRef]
- Oehzelt, M.; Akaike, K.; Koch, N.; Heimel, G. Energy-Level Alignment at Organic Heterointerfaces. Sci. Adv. 2015, 1, e1501127. [Google Scholar] [CrossRef] [Green Version]
- Bushby, R.J.; Lozman, O.R.; Mason, L.A.; Taylor, N.; Kumar, S. Cyclic Voltammetry Studies of Discotic Liquid Crystals. Mol. Cryst. Liq. Cryst. 2004, 410, 171–181. [Google Scholar] [CrossRef]
- Haverkate, L.A.; Zbiri, M.; Johnson, M.R.; Carter, E.; Kotlewski, A.; Picken, S.; Mulder, F.M.; Kearley, G.J. Electronic and Vibronic Properties of a Discotic Liquid-Crystal and Its Charge Transfer Complex. J. Chem. Phys. 2014, 140, 014903. [Google Scholar] [CrossRef] [Green Version]
- D’Andrade, B.W.; Datta, S.; Forrest, S.R.; Djurovich, P.; Polikarpov, E.; Thompson, M.E. Relationship Between the Ionization and Oxidation Potentials of Molecular Organic Semiconductors. Org. Electron. 2005, 6, 11–20. [Google Scholar] [CrossRef]
- Mahoney, S.J.; Ahmida, M.M.; Kayal, H.; Fox, N.; Shimizu, Y.; Eichhorn, S.H. Synthesis, Mesomorphism and Electronic Properties of Nonaflate and Cyano-substituted Pentyloxy and 3-methylbutyloxy Triphenylenes. J. Mater. Chem. 2009, 19, 9221–9232. [Google Scholar] [CrossRef]
- Sworakowski, J. How Accurate Are Energies of HOMO and LUMO Levels in Small-Molecule Organic Semiconductors Determined from Cyclic Voltammetry or Optical Spectroscopy? Synth. Met. 2018, 235, 125–130. [Google Scholar] [CrossRef]
- Shida, T. Electronic Absorption Spectra of Radical Ions, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1988; p. 446. [Google Scholar]
- Kruerke, D.; Rudquist, P.; Lagerwall, S.T.; Sawade, H.; Heppke, G. Ferroelectric Switching of Chiral Discotic Lyomesophases. Ferroelectrics 2000, 243, 207–220. [Google Scholar] [CrossRef]
- Palmans, A.R.A.; Vekemans, J.A.J.M.; Hikmet, R.A.; Fischer, H.; Meijer, E.W. Lyotropic Liquid-Crystalline Behavior in Disc-Shaped Compounds Incorporating the 3,3′-Di(acylamino)-2,2′bipyridine Unit. Adv. Mater. 1998, 10, 873–876. [Google Scholar] [CrossRef]
- Duzhko, V.; Shi, H.; Singer, K.D.; Semyonov, A.N.; Twieg, R.J. Controlled Self-Assembly of Triphenylene-Based Molecular Nanostructures. Langmuir 2006, 22, 7947–7951. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, 2nd ed.; VCH: New York, NY, USA, 1988. [Google Scholar]
- Kaim, W.; Fiedler, J. Spectroelectrochemistry: The Best of Two Worlds. Chem. Soc. Rev. 2009, 38, 3373–3382. [Google Scholar] [CrossRef] [PubMed]
- Heinze, J.; Frontana-Uribe, B.A.; Ludwigs, S. Electrochemistry of Conducting Polymers-Persistent Models and New Concepts. Chem. Rev. 2010, 110, 4724–4771. [Google Scholar] [CrossRef]
- Rapta, P.; Faber, R.; Dunsch, L.; Neudeck, A.; Nuyken, O. In Situ EPR and UV-Vis Spectroelectrochemistry of Hole-transporting Organic Substates. Spectrochim. Acta A 2000, 56, 357–362. [Google Scholar] [CrossRef] [PubMed]
E1/2,ox (±0.005) (V) | HOMO (eV) | LUMO (eV) | Eg (eV) |
---|---|---|---|
+1.05 | −5.37 | −1.67 | 3.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ślęczkowski, P. Spectroscopic and Spectroelectrochemical Studies of Hexapentyloxytriphenylene—A Model Discotic Molecule. Int. J. Mol. Sci. 2023, 24, 6924. https://doi.org/10.3390/ijms24086924
Ślęczkowski P. Spectroscopic and Spectroelectrochemical Studies of Hexapentyloxytriphenylene—A Model Discotic Molecule. International Journal of Molecular Sciences. 2023; 24(8):6924. https://doi.org/10.3390/ijms24086924
Chicago/Turabian StyleŚlęczkowski, Piotr. 2023. "Spectroscopic and Spectroelectrochemical Studies of Hexapentyloxytriphenylene—A Model Discotic Molecule" International Journal of Molecular Sciences 24, no. 8: 6924. https://doi.org/10.3390/ijms24086924
APA StyleŚlęczkowski, P. (2023). Spectroscopic and Spectroelectrochemical Studies of Hexapentyloxytriphenylene—A Model Discotic Molecule. International Journal of Molecular Sciences, 24(8), 6924. https://doi.org/10.3390/ijms24086924