Artificial Intelligence That Predicts Sensitizing Potential of Cosmetic Ingredients with Accuracy Comparable to Animal and In Vitro Tests—How Does the Infotechnomics Compare to Other “Omics” in the Cosmetics Safety Assessment?
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
- eOR (estimated odds ratio) is the estimated odds ratio specifying the extent to which the presence or absence of feature A (here: presence of ACD) is associated with the presence or absence of feature B (here: positive patch test) in a given population.eOR = MeACD/MegenMeACD—median of reported sensitization rates among patients with ACD.Megen—median of reported sensitization rates in the general population.
- eAR (estimated attributable risk) is the difference between the frequency of sensitization to a given hapten among patients with ACD and the general population, which could be interpreted as indication how many ACD cases are due to an allergy to the hapten.eAR = MeACD − MegenMeACD—median of the percentage of sensitization among patients with ACD.Megen—median of the percentage of sensitization in the general population.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hafner, M.D.F.S.; Rodrigues, A.C.; Lazzarini, R. Allergic contact dermatitis to cosmetics: Retrospective analysis of a population subjected to patch tests between 2004 and 2017. An. Bras. Dermatol. 2020, 95, 696–701. [Google Scholar] [CrossRef]
- Horton, E.; Uter, W.; Geier, J.; Ballmer-Weber, B.; Bauer, A.; Bircher, A.; Dickel, H.; Giménez-Arnau, A.; Gonçalo, M.; John, S.M.; et al. Developing a cosmetic series: Results from the ESSCA network, 2009–2018. Contact Dermat. 2021, 84, 82–94. [Google Scholar] [CrossRef]
- Barbaud, A.; Lafforgue, C. Risks associated with cosmetic ingredients. Ann. Dermatol. Venereol. 2021, 148, 77–93. [Google Scholar] [CrossRef] [PubMed]
- The European Parliament and the Council of the European Union. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Off. J. Eur. Union 2009, L 342, 59. Available online: https://health.ec.europa.eu/system/files/2016-11/cosmetic_1223_2009_regulation_en_0.pdf (accessed on 27 March 2023).
- Reeder, M.J.; Warshaw, E.; Aravamuthan, S.; Belsito, D.V.; Geier, J.; Wilkinson, M.; Atwater, A.R.; White, I.R.; Silverberg, J.I.; Taylor, J.S.; et al. Trends in the Prevalence of Methylchloroisothiazolinone/Methylisothiazolinone Contact Allergy in North America and Europe. JAMA Dermatol. 2023, 159, 267–274. [Google Scholar] [CrossRef]
- Jairoun, A.A.; Al-Hemyari, S.S.; Shahwan, M.; Zyoud, S.H. An Investigation into Incidences of Microbial Contamination in Cosmeceuticals in the UAE: Imbalances between Preservation and Microbial Contamination. Cosmetics 2020, 7, 92. [Google Scholar] [CrossRef]
- Jairoun, A.A.; Al-Hemyari, S.S.; Shahwan, M.; Zyoud, S.H.; Ashames, A. Hidden Formaldehyde Content in Cosmeceuticals Containing Preservatives that Release Formaldehyde and Their Compliance Behaviors: Bridging the Gap between Compliance and Local Regulation. Cosmetics 2020, 7, 93. [Google Scholar] [CrossRef]
- OECD. Test No. 406: Skin Sensitisation. In OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 1992. [Google Scholar]
- Frankild, S.; Vølund, A.; Wahlberg, J.E.; Andersen, K.E. Comparison of the Sensitivities of the Buehler Test and the Guinea Pig Maximization Test for Predictive Testing of Contact Allergy. Acta Derm. Venereol. 2000, 80, 256–262. [Google Scholar] [CrossRef] [Green Version]
- Maurer, T. Guinea pigs in hypersensitivity testing. Methods 2007, 41, 48–53. [Google Scholar] [CrossRef]
- OECD. Test No. 429: Skin Sensitisation: Local Lymph Node Assay. In OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2010. [Google Scholar]
- Lidén, C.; Yazar, K.; Johansen, J.D.; Karlberg, A.-T.; Uter, W.; White, I.R. Comparative sensitizing potencies of fragrances, preservatives, and hair dyes. Contact Dermat. 2016, 75, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Basketter, D.A.; Andersen, K.E.; Lidén, C.; Van Loveren, H.; Boman, A.; Kimber, I.; Alanko, K.; Berggren, E. Evaluation of the skin sensitizing potency of chemicals by using the existing methods and considerations of relevance for elicitation. Contact Dermat. 2005, 52, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Höper, T.; Mussotter, F.; Haase, A.; Luch, A.; Tralau, T. Application of proteomics in the elucidation of chemical-mediated allergic contact dermatitis. Toxicol. Res. 2017, 6, 595–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD. Test No. 442C: In Chemico Skin Sensitization: Assays addressing the Adverse Outcome Pathway key event on covalent binding to proteins. In OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2020. [Google Scholar]
- Urbisch, D.; Mehling, A.; Guth, K.; Ramirez, T.; Honarvar, N.; Kolle, S.; Landsiedel, R.; Jaworska, J.; Kern, P.S.; Gerberick, F.; et al. Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul. Toxicol. Pharmacol. 2015, 71, 337–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxwell, G. Skin sensitisation: The Colipa strategy for developing and evaluating non-animal test methods for risk assessment. Altex 2011, 28, 50–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reisinger, K.; Hoffmann, S.; Alépée, N.; Ashikaga, T.; Barroso, J.; Elcombe, C.; Gellatly, N.; Galbiati, V.; Gibbs, S.; Groux, H.; et al. Systematic evaluation of non-animal test methods for skin sensitisation safety assessment. Toxicol. Vitr. 2015, 29, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Andreas, N.; Caroline, B.; Leslie, F.; Frank, G.; Kimberly, N.; Allison, H.; Heather, I.; Robert, L.; Stefan, O.; Hendrik, R.; et al. The intra- and inter-laboratory reproducibility and predictivity of the KeratinoSens assay to predict skin sensitizers in vitro: Results of a ring-study in five laboratories. Toxicol. Vitr. 2011, 25, 733–744. [Google Scholar] [CrossRef]
- Ramirez, T.; Mehling, A.; Kolle, S.N.; Wruck, C.J.; Teubner, W.; Eltze, T.; Aumann, A.; Urbisch, D.; van Ravenzwaay, B.; Landsiedel, R. LuSens: A keratinocyte based ARE reporter gene assay for use in integrated testing strategies for skin sensitization hazard identification. Toxicol. Vitr. 2014, 28, 1482–1497. [Google Scholar] [CrossRef] [Green Version]
- Fortino, V.; Wisgrill, L.; Werner, P.; Suomela, S.; Linder, N.; Jalonen, E.; Suomalainen, A.; Marwah, V.; Kero, M.; Pesonen, M.; et al. Machine-learning–driven biomarker discovery for the discrimination between allergic and irritant contact dermatitis. Proc. Natl. Acad. Sci. USA 2020, 117, 33474–33485. [Google Scholar] [CrossRef]
- Bauch, C.; Kolle, S.N.; Fabian, E.; Pachel, C.; Ramirez, T.; Wiench, B.; Wruck, C.J.; van Ravenzwaay, B.; Landsiedel, R. Intralaboratory validation of four in vitro assays for the prediction of the skin sensitizing potential of chemicals. Toxicol. Vitr. 2011, 25, 1162–1168. [Google Scholar] [CrossRef]
- Osborne, R.; Hakozaki, T.; Laughlin, T.; Finlay, D. Application of genomics to breakthroughs in the cosmetic treatment of skin ageing and discoloration. Br. J. Dermatol. 2012, 166 (Suppl. 2), 16–19. [Google Scholar] [CrossRef] [PubMed]
- Jairoun, A.A.; Al-Hemyari, S.S.; Shahwan, M.; El-Dahiyat, F.; Zyoud, S.H.; Jairoun, O.; Al Shayeb, M. Development and Validation of an Instrument to Appraise the Tolerability, Safety of Use, and Pleasantness of a Cosmetic Product. Cosmetics 2023, 10, 15. [Google Scholar] [CrossRef]
- Tachapuripunya, V.; Roytrakul, S.; Chumnanpuen, P.; E-kobon, T. Unveiling Putative Functions of Mucus Proteins and Their Tryptic Peptides in Seven Gastropod Species Using Comparative Proteomics and Machine Learning-Based Bioinformatics Predictions. Molecules 2021, 26, 3475. [Google Scholar] [CrossRef] [PubMed]
- Radrezza, S.; Baron, G.; Nukala, S.B.; Depta, G.; Aldini, G.; Carini, M.; D’Amato, A. Advanced quantitative proteomics to evaluate molecular effects of low-molecular-weight hyaluronic acid in human dermal fibroblasts. J. Pharm. Biomed. Anal. 2020, 185, 113199. [Google Scholar] [CrossRef]
- Dhingra, N.; Shemer, A.; da Rosa, J.C.; Rozenblit, M.; Fuentes-Duculan, J.; Gittler, J.K.; Finney, R.; Czarnowicki, T.; Zheng, X.; Xu, H.; et al. Molecular profiling of contact dermatitis skin identifies allergen-dependent differences in immune response. J. Allergy Clin. Immunol. 2014, 134, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Kalicińska, J.; Wiśniowska, B.; Śpiewak, R. Irritant patch test reactions to cosmetic ingredients. Alergol. Polska Pol. J. Allergol. 2022, 9, 55–61. [Google Scholar] [CrossRef]
- Written, I.H.; Frank, E. Data Mining: Practical Machine Learning Tools and Techniques, 2nd ed.; Morgan Kaufmann: San Francisco, CA, USA, 2005. [Google Scholar]
- Weka 3: Machine Learning Software in Java. Available online: http://www.cs.waikato.ac.nz/~ml/weka/index.html (accessed on 25 April 2019).
- Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011, 32, 1466–1474. [Google Scholar] [CrossRef]
- Uyesugi, B.A.; Sheehan, M.P. Patch Testing Pearls. Clin. Rev. Allergy Immunol. 2019, 56, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, S.M.; Gonçalo, M.; Aerts, O.; Badulici, S.; Dickel, H.; Gallo, R.; Garcia-Abujeta, J.L.; Giménez-Arnau, A.M.; Hamman, C.; Hervella, M.; et al. The European baseline series and recommended additions: 2023. Contact Dermat. 2023, 88, 87–92. [Google Scholar] [CrossRef]
- Bruze, M.; Conde-Salazar, L.; Goossens, A.; Kanerva, L.; White, I.R. Thoughts on sensitizers in a standard patch test series. Contact Dermat. 1999, 41, 241–250. [Google Scholar] [CrossRef]
- Johansen, J.D.; Aalto-Korte, K.; Agner, T.; Andersen, K.E.; Bircher, A.; Bruze, M.; Cannavó, A.; Giménez-Arnau, A.; Gonçalo, M.; Goossens, A.; et al. European Society of Contact Dermatitis guideline for diagnostic patch testing—Recommendations on best practice. Contact Dermat. 2015, 73, 195–221. [Google Scholar] [CrossRef]
- Natsch, A.; Ryan, C.A.; Foertsch, L.; Emter, R.; Jaworska, J.; Gerberick, F.; Kern, P. A dataset on 145 chemicals tested in alternative assays for skin sensitization undergoing prevalidation. J. Appl. Toxicol. 2013, 33, 1337–1352. [Google Scholar] [CrossRef]
- Piroird, C.; Ovigne, J.-M.; Rousset, F.; Martinozzi-Teissier, S.; Gomes, C.; Cotovio, J.; Alépée, N. The Myeloid U937 Skin Sensitization Test (U-SENS) addresses the activation of dendritic cell event in the adverse outcome pathway for skin sensitization. Toxicol. Vitr. 2015, 29, 901–916. [Google Scholar] [CrossRef] [PubMed]
- An, S.; Lee, A.-Y.; Lee, C.H.; Kim, W.; Hahm, J.H.; Kim, K.-J.; Moon, K.-C.; Won, Y.H.; Ro, Y.-S.; Eun, H.C. Fragrance contact dermatitis in Korea: A joint study. Contact Dermat. 2005, 53, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Heisterberg, M.V.; Menné, T.; Johansen, J.D. Contact allergy to the 26 specific fragrance ingredients to be declared on cosmetic products in accordance with the EU cosmetics directive. Contact Dermat. 2011, 65, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Vejanurug, P.; Tresukosol, P.; Sajjachareonpong, P.; Puangpet, P. Fragrance allergy could be missed without patch testing with 26 individual fragrance allergens. Contact Dermat. 2016, 74, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Wetter, D.A.; Yiannias, J.A.; Prakash, A.V.; Davis, M.D.; Farmer, S.A.; El-Azhary, R.A. Results of patch testing to personal care product allergens in a standard series and a supplemental cosmetic series: An analysis of 945 patients from the Mayo Clinic Contact Dermatitis Group, 2000-2007. J. Am. Acad. Dermatol. 2010, 63, 789–798. [Google Scholar] [CrossRef]
- Diepgen, T.L.; Ofenloch, R.F.; Bruze, M.; Bertuccio, P.; Cazzaniga, S.; Coenraads, P.-J.; Elsner, P.; Goncalo, M.; Svensson, Å.; Naldi, L. Prevalence of contact allergy in the general population in different European regions. Br. J. Dermatol. 2016, 174, 319–329. [Google Scholar] [CrossRef]
- Boyvat, A.; Akyol, A.; Gürgey, E. Contact sensitivity to preservatives in Turkey. Contact Dermat. 2005, 52, 329–332. [Google Scholar] [CrossRef]
- Larsen, W.; Nakayama, H.; Fischer, T.; Elsner, P.; Frosch, P.; Burrows, D.; Jordan, W.; Shaw, S.; Wilkinson, J.; Marks, J.; et al. Fragrance contact dermatitis: A worldwide multicenter investigation (Part II). Contact Dermat. 2001, 44, 344–346. [Google Scholar] [CrossRef]
- Nardelli, A.; Carbonez, A.; Drieghe, J.; Goossens, A. Results of patch testing with fragrance mix 1, fragrance mix 2, and their ingredients, andMyroxylon pereiraeand colophonium, over a 21-year period. Contact Dermat. 2013, 68, 307–313. [Google Scholar] [CrossRef]
- Kieć-Swierczyńska, M.; Krecisz, B.; Swierczyńska-Machura, D. Contact allergy to fragrances. Med. Pr. 2006, 57, 431–437. [Google Scholar]
- Dinkloh, A.; Worm, M.; Geier, J.; Schnuch, A.; Wollenberg, A. Contact sensitization in patients with suspected cosmetic intolerance: Results of the IVDK 2006-2011. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1071–1081. [Google Scholar] [CrossRef]
- Schnuch, A.; Uter, W.; Geier, J.; Lessmann, H.; Frosch, P.J. Sensitization to 26 fragrances to be labelled according to current European regulation. Results of the IVDK and review of the literature. Contact Dermat. 2007, 57, 1–10. [Google Scholar] [CrossRef]
- Uter, W.; Geier, J.; Frosch, P.; Schnuch, A. Contact allergy to fragrances: Current patch test results (2005-2008) from the Information Network of Departments of Dermatology*. Contact Dermat. 2010, 63, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Larsen, W.; Nakayama, H.; Lindberg, M.; Fischer, T.; Elsner, P.; Burrows, D.; Jordan, W.; Shaw, S.; Wilkinson, J.; Marks, J., Jr.; et al. Fragrance contact dermatitis: A worldwide multicenter investigation (Part I). Am. J. Contact Dermat. 1996, 7, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Krecisz, B.; Chomiczewska-Skóra, D.; Kieć-Świerczyńska, M. Preservatives as important etiologic factors of allergic contact dermatitis. Med. Pr. 2015, 66, 327–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dastychová, E.; Necas, M.; Vasku, V. Contact hypersensitivity to selected excipients of dermatological topical preparations and cosmetics in patients with chronic eczema. Acta Dermatovenerol. Alp. Pannonica Adriat. 2008, 17, 61–68. [Google Scholar]
- Fairhurst, D.; Shah, M. Comparison of patch test results among white Europeans and patients from the Indian subcontinent living within the same community. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 1227–1231. [Google Scholar] [CrossRef]
- Schnuch, A.; Geier, J.; Uter, W.; Frosch, P.J. Patch testing with preservatives, antimicrobials and industrial biocides. Results from a multicentre study. Br. J. Dermatol. 1998, 138, 467–476. [Google Scholar] [CrossRef]
- Herbst, R.A.; Uter, W.; Pirker, C.; Geier, J.; Frosch, P.J. Allergic and non-allergic periorbital dermatitis: Patch test results of the Information Network of the Departments of Dermatology during a 5-year period. Contact Dermat. 2004, 51, 13–19. [Google Scholar] [CrossRef]
- Davis, M.D.P.; Scalf, L.A.; Yiannias, J.A.; Cheng, J.F.; El-Azhary, R.A.; Rohlinger, A.L.; Farmer, S.A.; Fett, D.D.; Johnson, J.S.; Linehan, D.L.N.; et al. Changing Trends and Allergens in the Patch Test Standard Series: A mayo clinic 5-year retrospective review. Arch. Dermatol. 2008, 144, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Perrenoud, D.; Bircher, A.; Hunziker, T.; Sutter, H.; Bruckner-Tuderman, L.; Stäger, J.; Thürlimann, W.; Schmid, P.; Suard, A.; Swiss Contact Dermatitis Research Group. Frequency of sensitization to 13 common preservatives in Switzerland. Contact Dermat. 1994, 30, 276–279. [Google Scholar] [CrossRef] [PubMed]
- O'Gorman, S.M.; Torgerson, R.R. Contact allergy in cheilitis. Int. J. Dermatol. 2015, 55, e386–e391. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Hong, D.K.; Jeong, N.J.; Lee, J.H.; Choi, Y.; Lee, A.-Y.; Lee, C.-H.; Kim, K.J.; Park, H.Y.; Yang, J.; et al. Multicenter study of preservative sensitivity in patients with suspected cosmetic contact dermatitis in Korea. J. Dermatol. 2012, 39, 677–681. [Google Scholar] [CrossRef]
- Rodrigues, D.F.; Goulart, E.M.A. Patch test results in children and adolescents. Study from the Santa Casa de Belo Horizonte Dermatology Clinic, Brazil, from 2003 to 2010. An. Bras. Dermatol. 2015, 90, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Schwensen, J.F.; Johansen, J.D.; Veien, N.K.; Funding, A.T.; Avnstorp, C.; Østerballe, M.; Andersen, K.E.; Paulsen, E.; Mortz, C.G.; Sommerlund, M.; et al. Occupational contact dermatitis in hairdressers: An analysis of patch test data from the Danish Contact Dermatitis Group, 2002–2011. Contact Dermat. 2013, 70, 233–237. [Google Scholar] [CrossRef]
- Schwensen, J.F.; Menné, T.; Veien, N.K.; Funding, A.T.; Avnstorp, C.; Østerballe, M.; Andersen, K.E.; Paulsen, E.; Mortz, C.G.; Sommerlund, M.; et al. Occupational contact dermatitis in blue-collar workers: Results from a multicentre study from the Danish Contact Dermatitis Group (2003–2012). Contact Dermat. 2014, 71, 348–355. [Google Scholar] [CrossRef]
- Sharma, V.K.; Chakrabarti, A. Common contact sensitizers in Chandigarh, India. A study of 200 patients with the European standard series. Contact Dermat. 1998, 38, 127–131. [Google Scholar] [CrossRef]
- Yin, R.; Huang, X.Y.; Zhou, X.F.; Hao, F. A retrospective study of patch tests in Chongqing, China from 2004 to 2009. Contact Dermat. 2011, 65, 28–33. [Google Scholar] [CrossRef]
- Schnuch, A.; Lessmann, H.; Geier, J.; Uter, W. Contact allergy to preservatives. Analysis of IVDK data 1996–2009. Br. J. Dermatol. 2011, 164, 1316–1325. [Google Scholar] [CrossRef]
- Chow, E.T.; Avolio, A.M.; Lee, A.; Nixon, R. Frequency of positive patch test reactions to preservatives: The Australian experience. Australas. J. Dermatol. 2012, 54, 31–35. [Google Scholar] [CrossRef]
- Uter, W.; Gefeller, O.; John, S.M.; Schnuch, A.; Geier, J. Contact allergy to ingredients of hair cosmetics—A comparison of female hairdressers and clients based on IVDK 2007–2012 data. Contact Dermat. 2014, 71, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, L.; Silvestre, J.F.; Toledo, F.; Lucas, A.; Ballester, I.; Pérez-Crespo, M.; Ballester, I. Fragrance contact allergy: A 4-year retrospective study. Contact Dermat. 2010, 63, 77–84. [Google Scholar] [CrossRef]
- Fall, S.; Bruze, M.; Isaksson, M.; Lidén, C.; Matura, M.; Stenberg, B.; Lindberg, M. Contact allergy trends in Sweden—A retrospective comparison of patch test data from 1992, 2000, and 2009. Contact Dermat. 2015, 72, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Lestringant, G.G.; Bener, A.; Sawaya, M.; Galadari, I.H.; Frossard, P.M. Allergic contact dermatitis in the United Arab Emirates. Int. J. Dermatol. 1999, 38, 181–186. [Google Scholar] [CrossRef]
- Li, L.-F. Contact sensitization to European baseline series of allergens in university students in Beijing. Contact Dermat. 2010, 62, 371–372. [Google Scholar] [CrossRef] [PubMed]
- Schwensen, J.; Menné, T.; Sommerlund, M.; Andersen, K.; Mortz, C.; Zachariae, C.; Johansen, J. Contact Allergy in Danish Healthcare Workers: A Retrospective Matched Case-control Study. Acta Derm. Venereol. 2016, 96, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Frosch, P.J.; Pirker, C.; Rastogi, S.C.; Andersen, K.E.; Bruze, M.; Svedman, C.; Goossens, A.; White, I.R.; Uter, W.; Arnau, E.G.; et al. Patch testing with a new fragrance mix detects additional patients sensitive to perfumes and missed by the current fragrance mix. Contact Dermat. 2005, 52, 207–215. [Google Scholar] [CrossRef]
- Molin, S.; Bauer, A.; Schnuch, A.; Geier, J. Occupational contact allergy in nurses: Results from the Information Network of Departments of Dermatology 2003–2012. Contact Dermat. 2014, 72, 164–171. [Google Scholar] [CrossRef]
- Thyssen, J.P.; Engkilde, K.; Lundov, M.D.; Carlsen, B.C.; Menné, T.; Johansen, J.D. Temporal trends of preservative allergy in Denmark (1985–2008). Contact Dermat. 2010, 62, 102–108. [Google Scholar] [CrossRef]
- Britton, J.; Wilkinson, S.; English, J.; Gawkrodger, D.; Ormerod, A.; Sansom, J.; Shaw, S.; Statham, B. The British standard series of contact dermatitis allergens: Validation in clinical practice and value for clinical governance. Br. J. Dermatol. 2003, 148, 259–264. [Google Scholar] [CrossRef]
- Ford, G.P.; Beck, M.H. Reactions to Quaternium 15, Bronopol and Germall 115 in a standard series. Contact Dermat. 1986, 14, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Jong, C.T.; Statham, B.N.; Green, C.M.; King, C.M.; Gawkrodger, D.J.; Sansom, J.E.; English, J.S.C.; Wilkinson, S.M.; Ormerod, A.D.; Chowdhury, M. Contact sensitivity to preservatives in the UK, 2004?2005: Results of multicentre study. Contact Dermat. 2007, 57, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Shaughnessy, C.N.; Malajian, D.; Belsito, D.V. Cutaneous delayed-type hypersensitivity in patients with atopic dermatitis: Reactivity to topical preservatives. J. Am. Acad. Dermatol. 2014, 70, 102–107. [Google Scholar] [CrossRef]
- Katsarma, G.; Gawkrodger, D.J. Suspected fragrance allergy requires extended patch testing to individual fragrance allergens. Contact Dermat. 1999, 41, 193–197. [Google Scholar] [CrossRef]
- Larsen, W.; Nakayama, H.; Fischer, T.; Elsner, P.; Frosch, P.; Burrows, D.; Jordan, W.; Shaw, S.; Wilkinson, J.; Marks, J.; et al. Fragrance contact dermatitis—A worldwide multicenter investigation (Part III). Contact Dermat. 2002, 46, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Tomar, J.; Jain, V.K.; Aggarwal, K.; Dayal, S.; Gupta, S. Contact Allergies to Cosmetics: Testing with 52 Cosmetic Ingredients and Personal Products. J. Dermatol. 2005, 32, 951–955. [Google Scholar] [CrossRef]
- Spiewak, R.; Samochocki, Z.; Grubska-Suchanek, E.; Czarnobilska, E.; Pasnicki, M.; Czarnecka-Operacz, M.; Bukiel, M.; Cisowska, A.; Jedrzejewska-Jurga, K.; Krakowski, A.; et al. Gallates. as well as hydroperoxides of limonene and linalol are more frequent and relevant sensitizers than any cosmetic ingredient included in the European Baseline Series. Contact Dermat. 2016, 75, 87. [Google Scholar]
- Ochi, H.; Cheng, S.W.N.; Leow, Y.H.; Goon, A.T.J. Contact allergy trends in Singapore—A retrospective study of patch test data from 2009 to 2013. Contact Dermat. 2016, 76, 49–50. [Google Scholar] [CrossRef]
- Frosch, P.J.; Rastogi, S.C.; Pirker, C.; Brinkmeier, T.; Andersen, K.E.; Bruze, M.; Svedman, C.; Goossens, A.; White, I.R.; Uter, W.; et al. Patch testing with a new fragrance mix—Reactivity to the individual constituents and chemical detection in relevant cosmetic products. Contact Dermat. 2005, 52, 216–225. [Google Scholar] [CrossRef]
- Isaksson, M.; Inerot, A.; Lidén, C.; Lindberg, M.; Matura, M.; Möller, H.; Stenberg, B.; Bruze, M. Multicentre patch testing with fragrance mix II and hydroxyisohexyl 3-cyclohexene carboxaldehyde by the Swedish Contact Dermatitis Research Group. Contact Dermat. 2014, 70, 187–189. [Google Scholar] [CrossRef]
- Krautheim, A.; Uter, W.; Frosch, P.; Schnuch, A.; Geier, J. Patch testing with fragrance mix II: Results of the IVDK 2005–2008. Contact Dermat. 2010, 63, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Nishioka, K.; Kanto, H.; Yagami, A.; Yamada, S.; Sugiura, M.; Yasunaga, C.; Yoshii, K.; Kobayashi, H.; Adachi, A.; et al. A multi-institutional joint study of contact dermatitis related to hair colouring and perming agents in Japan. Contact Dermat. 2017, 77, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Thyssen, J.; Linneberg, A.; Menné, T.; Nielsen, N.; Johansen, J. Contact allergy to allergens of the TRUE-test (panels 1 and 2) has decreased modestly in the general population. Br. J. Dermatol. 2009, 161, 1124–1129. [Google Scholar] [CrossRef]
- Dotterud, L.K.; Smith-Sivertsen, T. Allergic contact sensitization in the general adult population: A population-based study from Northern Norway. Contact Dermat. 2007, 56, 10–15. [Google Scholar] [CrossRef]
- Nielsen, N.H.; Menné, T. Allergic contact sensitization in an unselected Danish population. The Glostrup Allergy Study, Denmark. Acta Derm. Venereol. 1992, 72, 456–460. [Google Scholar] [PubMed]
- Nielsen, N.H.; Linneberg, A.; Menné, T.; Madsen, F.; Frølund, L.; Dirksen, A.; Jørgensen, T. Allergic Contact Sensitization in an Adult Danish Population: Two Cross-sectional Surveys Eight Years Apart (The Copenhagen Allergy Study). Acta Derm. Venereol. 2001, 81, 31–34. [Google Scholar] [CrossRef]
- Schäfer, T.; Böhler, E.; Ruhdorfer, S.; Weigl, L.; Wessner, D.; Filipiak, B.; Wichmann, H.E.; Ring, J. Epidemiology of contact allergy in adults. Allergy 2001, 56, 1192–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Li, L.-F. Contact sensitization to cosmetic series of allergens in a general population in Beijing. J. Cosmet. Dermatol. 2014, 13, 68–71. [Google Scholar] [CrossRef]
- White, J.M.L.; Gilmour, N.J.; Jeffries, D.; Duangdeeden, I.; Kullavanijaya, P.; Basketter, D.A.; McFadden, J.P. A general population from Thailand: Incidence of common allergens with emphasis on para-phenylenediamine. Clin. Exp. Allergy 2007, 37, 1848–1853. [Google Scholar] [CrossRef]
Before 2004 | 2004 | 2009 | 2013 | |
---|---|---|---|---|
Testing of finished cosmetic products on animals, where alternative methods are available | ||||
Testing of finished cosmetic products on animals, if there are no alternative methods | ||||
Testing of cosmetic ingredients on animals, where alternative methods are available | ||||
Testing of cosmetics ingredients on animals, if there are no alternative methods | ||||
Sale of cosmetic products tested on animals, where alternative methods are available | ||||
Sale of cosmetic products tested on animals for repeated dose toxicity, reproductive toxicity and toxicokinetics, for which there are no alternative methods yet | ||||
Placing on the market substances tested on animals, if there are no alternative methods |
Mean of Cysteine and Lysine % Depletion † | Reactivity Class | Prediction |
---|---|---|
0% < mean % depletion < 6.38% | Minimal reactivity | Non-sensitizer |
6.38% < mean % depletion < 22.62% | Low reactivity | Sensitizer |
22.62% < mean % depletion < 42.47% | Moderate reactivity | Sensitizer |
42.47% < mean % depletion < 100% | High reactivity | Sensitizer |
No. | Substance (Hapten or Hapten Mixes) | MeACD [%] | Megen [%] | eOR | 0/1 Classification † | In Silico Utilization |
---|---|---|---|---|---|---|
1. | Benzocaine | 0.50 | 1.00 | 0.50 | 0 | included |
2. | Hydroxyisohexyl 3-cyclohexene carboxaldehyde (HICC)—Lyral | 2.35 | 2.00 | 1.17 | 0 | included |
3. | Sorbitan sesquioleate | 0.60 | 0.50 | 1.20 | 0 | included |
4. | Iodopropynyl butylcarbamate | 0.85 | 0.60 | 1.42 | 0 | included |
5. | Benzyl salicylate | 0.75 | 0.50 | 1.50 | 0 | included |
6. | Cocamidopropyl betaine | 3.20 | 2.00 | 1.60 | 0 | included |
7. | Cobalt (di)chloride | 4.90 | 2.80 | 1.75 | 0 | excluded |
8. | Methyldibromo Glutaronitrile (MDBGN) | 2.80 | 1.60 | 1.75 | 0 | included |
9. | Lanolin | 1.70 | 0.95 | 1.79 | 0 | included |
10. | Evernia prunastri extract | 1.55 | 0.75 | 2.06 | 0 | included |
11. | Epoxy resin | 1.25 | 0.60 | 2.08 | 0 | included |
12. | Imidazolidynyl urea | 1.30 | 0.50 | 2.60 | 0 | included |
13. | Farnesol | 1.05 | 0.40 | 2.62 | 0 | included |
14. | Mercapto mix | 0.80 | 0.30 | 2.67 | 0 | included |
15. | Methylisothiazolinone (MI) | 3.90 | 1.45 | 2.69 | 0 | included |
16. | Quinoline mix | 1.10 | 0.40 | 2.75 | 0 | included |
17. | Diazolidynyl urea | 1.50 | 0.50 | 3.00 | 1 | included |
18. | Ammylcinnamyl alcohol | 0.30 | 0.10 | 3.00 | 1 | included |
19. | Mercaptobenzothiazole | 0.60 | 0.20 | 3.00 | 1 | included |
20. | Thimerosal | 10.20 | 3.40 | 3.00 | 1 | included |
21. | Formaldehyde | 2.60 | 0.80 | 3.25 | 1 | included |
22. | Paraben mix | 1.00 | 0.30 | 3.33 | 1 | excluded |
23. | Colophonium | 3.90 | 1.10 | 3.55 | 1 | included |
24. | Fragrance Mix I (FM I) | 9.40 | 2.45 | 3.87 | 1 | excluded |
25. | Black rubber mix | 0.85 | 0.20 | 4.25 | 1 | excluded |
26. | Quaternium 15 | 1.85 | 0.40 | 4.63 | 1 | included |
27. | p-Phenylenediamine (PPD) | 4.80 | 1.00 | 4.80 | 1 | included |
28. | Thiuram mix | 2.70 | 0.50 | 5.40 | 1 | excluded |
29. | Fragrance Mix II (FM II) | 4.90 | 0.90 | 5.44 | 1 | excluded |
30. | Methylchloroisothiazolinone/Methylisothiazolinone (MCI/MI) | 2.80 | 0.50 | 5.60 | 1 | excluded |
31. | Myroxylon pereirae resin | 6.50 | 1.10 | 5.90 | 1 | included |
32. | Citral | 1.20 | 0.20 | 6.00 | 1 | included |
33. | Cinnamal | 5.15 | 0.80 | 6.44 | 1 | included |
34. | Potassium dichromate | 5.40 | 0.80 | 6.75 | 1 | excluded |
35. | Hydroxycitronellal | 4.05 | 0.50 | 8.10 | 1 | included |
36. | Carba mix | 4.60 | 0.50 | 9.20 | 1 | excluded |
37. | Ethylenediamine (dichloride) | 2.40 | 0.25 | 9.60 | 1 | excluded |
38. | Geraniol | 4.25 | 0.40 | 10.62 | 1 | included |
39. | Wool alcohols | 2.40 | 0.20 | 12.00 | 1 | excluded |
40. | Neomycin sulfate | 5.05 | 0.40 | 12.63 | 1 | included |
41. | Caine mix | 1.30 | 0.10 | 13.00 | 1 | excluded |
42. | Methylchloroisothiazolinone (MCI) | 4.00 | 0.20 | 20.00 | 1 | included |
43. | Cinnamic alcohol | 8.30 | 0.30 | 27.77 | 1 | included |
44. | Isopropyl myristate | 0.20 | 0.00 | NC | 1 | included |
45. | Benzyl alcohol | 0.30 | 0.00 | NC | 1 | included |
46. | Propyl gallate | 0.70 | 0.00 | NC | 1 | included |
47. | Triethanolamine | 0.80 | 0.00 | NC | 1 | included |
48. | Bronopol | 1.20 | 0.00 | NC | 1 | included |
49. | DMDM Hydantoin | 1.35 | 0.00 | NC | 1 | included |
50. | Butylhydroxyanisole (BHA) | 1.40 | 0.00 | NC | 1 | included |
No. | Substance (Hapten or Hapten Mixes) | MeACD [%] | Megen [%] | eAR [%] | 0/1 Classification † | In Silico Utilization |
---|---|---|---|---|---|---|
1. | Benzocaine | 0.50 | 1.00 | −0.50 | 0 | included |
2. | Sorbitan sesquioleate | 0.60 | 0.50 | 0.10 | 0 | included |
3. | Ammylcinnamyl alcohol | 0.30 | 0.10 | 0.20 | 0 | included |
4. | Isopropyl myristate | 0.20 | 0.00 | 0.20 | 0 | included |
5. | Benzyl salicylate | 0.75 | 0.50 | 0.25 | 0 | included |
6. | Iodopropynyl butylcarbamate | 0.85 | 0.30 | 0.25 | 0 | included |
7. | Benzyl alcohol | 0.30 | 0.00 | 0.30 | 0 | included |
8. | Hydroxyisohexyl 3-cyclohexene carboxaldehyde (HICC, Lyral) | 2.35 | 2.00 | 0.35 | 0 | included |
9. | Citral | 0.60 | 0.20 | 0.40 | 0 | included |
10. | Mercaptobenzothiazole | 0.60 | 0.20 | 0.40 | 0 | included |
11. | Mercapto mix | 0.80 | 0.30 | 0.50 | 0 | included |
12. | Farnesol | 1.05 | 0.40 | 0.65 | 0 | included |
13. | Black rubber mix | 0.85 | 0.20 | 0.65 | 0 | included |
14. | Epoxy resin | 1.25 | 0.60 | 0.65 | 0 | included |
15. | Paraben mix | 1.00 | 0.30 | 0.70 | 0 | included |
16. | Propyl gallate | 0.70 | 0.00 | 0.70 | 0 | included |
17. | Quinoline mix | 1.10 | 0.40 | 0.70 | 0 | included |
18. | Evernia prunastri extract | 1.55 | 0.75 | 0.75 | 0 | included |
19. | Lanolin | 1.70 | 0.95 | 0.75 | 0 | included |
20. | Imidazolidynyl urea | 1.30 | 0.50 | 0.80 | 0 | included |
21. | Triethanolamine | 0.80 | 0.00 | 0.80 | 0 | included |
22. | Diazolidynyl urea | 1.50 | 0.50 | 1.00 | 1 | included |
23. | Bronopol | 1.20 | 0.00 | 1.20 | 1 | included |
24. | Cocamidopropyl betaine | 3.20 | 2.00 | 1.20 | 1 | included |
25. | Methyldibromo Glutaronitrile (MDBGN) | 2.80 | 1.60 | 1.20 | 1 | included |
26. | Caine mix | 1.30 | 0.10 | 1.20 | 1 | excluded |
27. | DMDM Hydantoin | 1.35 | 0.00 | 1.35 | 1 | included |
28. | Butylhydroxyanisole (BHA) | 1.40 | 0.00 | 1.40 | 1 | included |
29. | Quaternium 15 | 1.85 | 0.40 | 1.45 | 1 | included |
30. | Formaldehyde | 2.60 | 0.80 | 1.80 | 1 | included |
31. | Cobalt (di)chloride | 4.90 | 2.80 | 2.10 | 1 | excluded |
32. | Ethylenediamine (dichloride) | 2.40 | 0.25 | 2.15 | 1 | excluded |
33. | Colophonium | 3.40 | 1.20 | 2.20 | 1 | included |
34. | Wool alcohols | 2.40 | 0.20 | 2.20 | 1 | excluded |
35. | Thiuram mix | 2.70 | 0.50 | 2.20 | 1 | excluded |
36. | Methylchloroisothiazolinone/Methylisothiazolinone (MCI/MI) | 2.80 | 0.50 | 2.30 | 1 | excluded |
37. | Methylisothiazolinone (MI) | 3.90 | 1.45 | 2.45 | 1 | included |
38. | Hydroxycitronellal | 4.05 | 0.50 | 3.55 | 1 | included |
39. | Methylchloroisothiazolinone (MCI) | 4.00 | 0.20 | 3.80 | 1 | included |
40. | p-Phenylenediamine (PPD) | 4.80 | 1.00 | 3.80 | 1 | included |
41. | Geraniol | 4.25 | 0.40 | 3.85 | 1 | included |
42. | Fragrance Mix II (FM II) | 4.90 | 0.90 | 4.00 | 1 | excluded |
43. | Carba mix | 4.60 | 0.50 | 4.10 | 1 | excluded |
44. | Cinnamal | 5.15 | 0.80 | 4.35 | 1 | included |
45. | Potassium dichromate | 5.40 | 0.80 | 4.60 | 1 | excluded |
46. | Neomycin sulfate | 5.05 | 0.40 | 4.65 | 1 | included |
47. | Myroxylon pereirae resin | 6.50 | 1.10 | 5.40 | 1 | included |
48. | Thimerosal | 10.20 | 3.40 | 6.80 | 1 | included |
49. | Fragrance Mix I (FM I) | 9.40 | 2.45 | 6.95 | 1 | excluded |
50. | Cinnamic alcohol | 8.30 | 0.30 | 8.00 | 1 | included |
No. | Substance | Hapten | eAR | eOR |
---|---|---|---|---|
1. | Ammylcinnamyl alcohol | Ammylcinnamyl alcohol | 0 | 1 |
2. | Benzocaine | Benzocaine | 0 | 0 |
3. | Benzyl alcohol | Benzyl alcohol | 0 | 1 |
4. | Benzyl salicylate | Benzyl salicylate | 0 | 0 |
5. | Black rubber mix | N-isopropyl-N-phenyl parapheylenediamine | 0 | 1 † |
N-cyclohexyl-N-phenyl paraphenylenediamine | 0 | |||
N-biphenyl paraphenylenediamine | 0 | |||
6. | Butylhydroxyanisole (BHA) | Butylhydroxyanisole | 1 | 1 |
7. | Bronopol | Bronopol | 1 | 1 |
8. | Cinnamal | Cinnamal | 1 | 1 |
9. | Cinnamic alcohol | Cinnamic alcohol | 1 | 1 |
10. | Citral | Citral | 0 | 1 |
11. | Cocamidopropyl betaine | Cocamidopropyl betaine | 1 | 0 |
12. | Colophonium | Colophonium | 1 | 1 |
13. | Diazolidynyl urea | Diazolidynyl Urea | 1 | 1 |
14. | DMDM Hydantoin | DMDM Hydantoin | 1 | 1 |
15. | Epoxy resin | Epichlorohydrin | 0 | 0 |
4,4′-Isopropylidenediphenol | 0 | 0 | ||
16. | Evernia prunastri extract | Evernia prunastri extract | 0 | 0 |
17. | Farnesol | Farnesol | 0 | 0 |
18. | Formaldehyde | Formaldehyde | 1 | 1 |
19. | Geraniol | Geraniol | 1 | 1 |
20. | Hydroxycitronellal | Hydroxycitronellal | 1 | 1 |
21. | Imidazolidynyl urea | Imidazolidynyl urea | 0 | 0 |
22. | Iodopropynyl butylcarbamate | Iodopropynyl butylcarbamate | 0 | 0 |
23. | Isopropyl myristate | Isopropyl myristate | 0 | 1 |
24. | Lanolin | Lanolin | 0 | 0 |
25. | Hydroxyisohexyl 3-cyclohexene carboxaldehyde (HICC, Lyral) | Hydroxyisohexyl 3-cyclohexene carboxaldehyde | 0 | 0 |
26. | Mercapto mix | 2,’2-Benzothiazyl_disulfide | 0 | 0 |
4-Morpholinyl-2-benzothiazyl disulfide | 0 | 0 | ||
3_N-Cyclohexyl-2-benzothiazolesulfenamide | 0 | 0 | ||
27. | Mercaptobenzothiazole | Mercaptobenzothiazole | 0 | 1 |
28. | Methylchloroisothiazolinone (MCI) | Methylchloroisothiazolinone | 1 | 1 |
29. | Methyldibromo Glutaronitrile (MDBGN) | Methyldibromo glutaronitrile | 1 | 0 |
30. | Methylisothiazolinone (MI) | Methylisothiazolinone | 1 | 0 |
31. | Myroxylon pereirae resin | Myroxylon pereirae resin | 1 | 1 |
32. | Neomycin sulfate | Neomycin sulfate | 1 | 1 |
33. | Paraben mix | Methylparaben | 0 | 1 † |
Bythylparaben | 0 | |||
Ethylparaben | 0 | |||
Propylparaben | 0 | |||
34. | p-Phenylenediamine (PPD) | p-Phenylenediamine | 1 | 1 |
35. | Propyl gallate | Propyl gallate | 0 | 1 |
36. | Quaternium 15 | Quaternium 15 | 1 | 1 |
37. | Quinoline mix | Quinoline | 0 | 0 |
Chlorquinadol | 0 | 0 | ||
38. | Sorbitan sesquilate | Sorbitol | 0 | 0 |
Oleic acid | 0 | 0 | ||
39. | Thimerosal | Thimerosal | 1 | 1 |
40. | Triethanolamine | Triethanolamine | 0 | 1 |
Total numer of haptens usable in the in silico model | 50 | 43 |
eAR n = 24 | In Silico (NaiveBayes) | LLNA [15,21,22] | In Vitro [15,21,22] |
---|---|---|---|
Accuracy | 0.83 | 0.58 | 0.50 |
Sensitivity | 0.82 | 0.91 | 0.82 |
Specificity | 0.85 | 0.31 | 0.23 |
False Positive | 0.15 | 0.20 | 0.40 |
False Negative | 0.18 | 0.47 | 0.53 |
eOR n = 22 | In Silico (RandomComitee) | LLNA [15,21,22] | In Vitro [15,21,22] |
---|---|---|---|
Accuracy | 0.73 | 0.68 | 0.59 |
Sensitivity | 0.71 | 0.93 | 0.79 |
Specificity | 0.75 | 0.25 | 0.25 |
False Positive | 0.40 | 0.33 | 0.60 |
False Negative | 0.17 | 0.32 | 0.35 |
eAR | eOR | ||||
---|---|---|---|---|---|
Hapten | Real Class † | Predicted Class ‡ | Haptens | Real Class † | Predicted Class ‡ |
Ammylcinnamyl alcohol | 0 | 1 | Benzocaine | 0 | 1 |
Citral | 0 | 1 | Benzyl salicylate | 0 | 1 |
Geraniol | 1 | 0 | Bronopol | 1 | 0 |
Hydroxyisohexyl 3-cyclohexene carboxaldehyde (HICC, Lyral) | 0 | 1 | Diazolidynyl urea | 1 | 0 |
Neomycin | 1 | 0 | DMDM Hydantoin | 1 | 0 |
p-Phenylenediamine | 1 | 0 | Hydroxycitronellal | 1 | 0 |
Thimerosal | 1 | 0 | Isopropyl myristate | 1 | 0 |
Methylchloroisothiazolinone | 1 | 0 | |||
Myroxylon pereirae resin | 1 | 0 | |||
Sorbitol | 0 | 1 |
Hapten | IUPAC Name | CAS RN | Predicted |
---|---|---|---|
Acetophenone azine | (E)-1-phenyl-N-[(E)-1-phenylethylideneamino]ethanimine | 729-43-1 | 0 |
Cyclamen aldehyde | 2-methyl-3-(4-propan-2-ylphenyl)propanal | 103-95-7 | 1 |
Dibucaine | 2-butoxy-N-[2-(diethylamino)ethyl]quinoline-4-carboxamide | 85-79-0 | 0 |
N,N-Dimethylacrylamide | N,N-dimethylprop-2-enamide | 2680-03-7 | 1 |
Dimethylthiocarbamyl benzothiazole sulphide | N,N-dimethylthiocarbamylbenzothiazole sulfide | 3432-25-5 | 1 |
Disperse Blue 106 | 2-(Ethyl(3-methyl-4-((5-nitrothiazol-2-yl)diazenyl)phenyl)amino)ethanol | 68516-81-4 | 0 |
Disperse Blue 124 | 2-[N-ethyl-3-methyl-4-[(5-nitro-1,3-thiazol-2-yl)diazenyl]anilino]ethyl acetate | 15141-18-1 | 0 |
Geraniol hydroperoxide | (2Z)-1-hydroperoxy-3,7-dimethylocta-2,6-dien-1-ol | n/a | 1 |
Hexyl salicylate | hexyl 2-hydroxybenzoate | 6259-76-3 | 0 |
Isobornyl acrylate | [(1R,2R,4R)-1,7,7-trimethyl-2-bicyclo[2.2.1]heptanyl] prop-2-enoate | 5888-33-5 | 1 |
Lidocaine | 2-(diethylamino)-N-(2,6-dimethylphenyl)acetamide | 137-58-6 | 0 |
Neral | (2Z)-3,7-dimethylocta-2,6-dienal | 106-26-3 | 1 |
Prenyl caffeate | 3-methylbut-2-enyl (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate | 118971-61-2 | 1 |
Tetracaine | 2-(dimethylamino)ethyl 4-(butylamino)benzoate | 94-24-6 | 0 |
2-(thiocyanomethylthio) benzothiazole | 1,3-benzothiazol-2-ylsulfanylmethyl thiocyanate | 21564-17-0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalicińska, J.; Wiśniowska, B.; Polak, S.; Spiewak, R. Artificial Intelligence That Predicts Sensitizing Potential of Cosmetic Ingredients with Accuracy Comparable to Animal and In Vitro Tests—How Does the Infotechnomics Compare to Other “Omics” in the Cosmetics Safety Assessment? Int. J. Mol. Sci. 2023, 24, 6801. https://doi.org/10.3390/ijms24076801
Kalicińska J, Wiśniowska B, Polak S, Spiewak R. Artificial Intelligence That Predicts Sensitizing Potential of Cosmetic Ingredients with Accuracy Comparable to Animal and In Vitro Tests—How Does the Infotechnomics Compare to Other “Omics” in the Cosmetics Safety Assessment? International Journal of Molecular Sciences. 2023; 24(7):6801. https://doi.org/10.3390/ijms24076801
Chicago/Turabian StyleKalicińska, Jadwiga, Barbara Wiśniowska, Sebastian Polak, and Radoslaw Spiewak. 2023. "Artificial Intelligence That Predicts Sensitizing Potential of Cosmetic Ingredients with Accuracy Comparable to Animal and In Vitro Tests—How Does the Infotechnomics Compare to Other “Omics” in the Cosmetics Safety Assessment?" International Journal of Molecular Sciences 24, no. 7: 6801. https://doi.org/10.3390/ijms24076801
APA StyleKalicińska, J., Wiśniowska, B., Polak, S., & Spiewak, R. (2023). Artificial Intelligence That Predicts Sensitizing Potential of Cosmetic Ingredients with Accuracy Comparable to Animal and In Vitro Tests—How Does the Infotechnomics Compare to Other “Omics” in the Cosmetics Safety Assessment? International Journal of Molecular Sciences, 24(7), 6801. https://doi.org/10.3390/ijms24076801