A Simultaneous Extraction/Derivatization Strategy for Quantitation of Vitamin D in Dried Blood Spots Using LC–MS/MS: Application to Biomarker Study in Subjects Tested for SARS-CoV-2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chromatographic and Mass Spectrometric Conditions Optimization
2.2. Assay Validation
2.2.1. Sensitivity and Selectivity
2.2.2. Accuracy and Precision
2.2.3. Calibration Curve and Linearity
2.2.4. Carry-Over
2.2.5. Recovery and Matrix Effect
2.3. Discussion
2.4. Clinical Application of the Method for Pharmacokinetic Studies and Significance
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Preparation of Vitamin D-Free Artificial Blood
3.3. Liquid Chromatographic and Mass Spectrometric (LC–MS/MS) Conditions
3.4. Preparation of Stock, Calibration Standards, and Quality Control Samples
3.5. Preparation of Artificial Blood Spiked and DBS Samples
3.5.1. Preparation of Blood and DBS Cards
3.5.2. DBS Sample Extraction
3.6. Method Validation
3.7. Study Design and Blood Collection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nair, R.; Maseeh, A. Vitamin D: The Sunshine Vitamin. J. Pharm. Pharm. 2012, 3, 118–126. [Google Scholar]
- Charoenngam, N.; Shirvani, A.; Holick, M.F. Vitamin D for skeletal and non-skeletal health: What we should know. J. Clin. Orthop. Trauma 2019, 10, 1082–1093. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D and Bone. Curr. Osteoporos. Rep. 2012, 10, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suda, T.; Masuyama, R.; Bouillon, R.; Carmeliet, G. Physiological functions of vitamin D: What we have learned from global and conditional VDR knockout mouse studies. Curr. Opin. Pharmacol. 2015, 22, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Lieben, L.; Carmeliet, G. The delicate balance between vitamin D, calcium and bone homeostasis: Lessons learned from intestinal- and osteocyte-specific VDR null mice. J. Steroid Biochem. Mol. Biol. 2013, 136, 102–106. [Google Scholar] [CrossRef]
- Young, M.R.I.; Xiong, Y. Influence of Vitamin D on Cancer Risk and Treatment: Why the Variability? Trends Cancer Res. 2018, 13, 43–53. [Google Scholar]
- Tomíška, M.; Novotná, Š.; Klvačová, L.; Tůmová, J.; Janíková, A. Vitamin D During Cancer Treatment. Klin. Onkol. 2015, 28, 99–104. [Google Scholar] [CrossRef]
- Meg, M.; Sinha, R.; Fincher, K. Inflammation and vitamin D: The infection connection. Inflamm. Res. 2014, 63, 803–819. [Google Scholar]
- Gunville, C.F.; Mourani, P.M.; Ginde, A.A. The Role of Vitamin D in Prevention and Treatment of Infection. Inflamm. Allergy-Drug Targets 2013, 12, 239–245. [Google Scholar] [CrossRef]
- Teymoori-Rad, M.; Shokri, F.; Salimi, V.; Marashi, S.M. The interplay between vitamin D and viral infections. Rev. Med. Virol. 2019, 29, e2032. [Google Scholar] [CrossRef]
- Paces, J.; Strizova, Z.; Smrz, D.; Cerny, J. COVID-19 and the immune system. Physiol. Res. 2020, 69, 379–388. [Google Scholar] [CrossRef]
- Gomez, Q.; Manuel, J.; Entrenas-Castillo, M.; Bouillon, R. Vitamin D Receptor Stimulation to Reduce Acute Respiratory Distress Syndrome (Ards) in Patients with Coronavirus SARS-CoV-2 Infections: Revised Ms Sbmb 2020_166. J. Steroid Biochem. Mol. Biol. 2020, 202, 105719. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Geicu, O.I.; Bilteanu, L.; Serban, A.I. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur. J. Med. Chem. 2022, 232, 114175. [Google Scholar] [CrossRef]
- Giménez, V.M.M.; Inserra, F.; Tajer, C.D.; Mariani, J.; Ferder, L.; Reiter, R.J.; Manucha, W. Lungs as target of COVID-19 infection: Protective common molecular mechanisms of vitamin D and melatonin as a new potential synergistic treatment. Life Sci. 2020, 254, 117808. [Google Scholar] [CrossRef]
- Luca, G.; Mannino, M.C.; Luciani, F.; Sire, A.D.; Mancuso, E.; Gangemi, P.; Cosco, L.; Monea, G.; Averta, C.; Minchella, P.; et al. Vitamin D Serum Levels in Subjects Tested for SARS-CoV-2: What Are the Differences among Acute, Healed, and Negative COVID-19 Patients? A Multicenter Real-Practice Study. Nutrients 2021, 13, 3932. [Google Scholar]
- Mercola, J.; Grant, W.B.; Wagner, C.L. Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity. Nutrients 2020, 12, 3361. [Google Scholar] [CrossRef]
- Al-Salman, J.; Alghareeb, S.; Alarab, E.; Jahrami, H.; Grant, W.B. In COVID-19 patients, low 25-hydroxyvitamin D level in serum is associated with longer viral clearance time and higher risk of intensive care unit admission. Nutr. Food Sci. 2021, 52, 240–254. [Google Scholar] [CrossRef]
- Borsche, L.; Glauner, B.; von Mendel, J. COVID-19 Mortality Risk Correlates Inversely with Vitamin D3 Status, and a Mortality Rate Close to Zero Could Theoretically Be Achieved at 50 ng/mL 25(OH)D3: Results of a Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3596. [Google Scholar] [CrossRef]
- Karonova, T.L.; Kudryavtsev, I.V.; Golovatyuk, K.A.; Aquino, A.D.; Kalinina, O.V.; Chernikova, A.T.; Zaikova, E.K.; Lebedev, D.A.; Bykova, E.S.; Golovkin, A.S.; et al. Vitamin D Status and Immune Response in Hospitalized Patients with Moderate and Severe COVID-19. Pharmaceuticals 2022, 15, 305. [Google Scholar] [CrossRef]
- Ertugrul, S.; Yucel, C.; Sertoglu, E.; Ozkan, Y.; Ozgurtas, T. Development and optimization of simultaneous determination of fat soluble vitamins by liquid chromatography tandem mass spectrometry. Chem. Phys. Lipids 2020, 230, 104932. [Google Scholar] [CrossRef]
- Jensen, B.P.; Saraf, R.; Ma, J.; Berry, S.; Grant, C.C.; Camargo, C.A.; Sies, C.W. Quantitation of 25-hydroxyvitamin D in dried blood spots by 2D LC-MS/MS without derivatization and correlation with serum in adult and pediatric studies. Clin. Chim. Acta 2018, 481, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Glenville, J.; Kaufmann, M. Vitamin D Metabolite Profiling Using Liquid Chromatography–Tandem Mass Spectrometry (Lc–Ms/Ms). J. Steroid Biochem. Mol. Biol. 2016, 164, 10–14. [Google Scholar]
- Sieglinde, Z.; Meinitzer, A.; Enko, D.; Simstich, S.; Goff, C.L.; Cavalier, E.; Herrmann, M.; Goessler, W. Simultaneous Determination of 24,25- and 25,26-Dihydroxyvitamin D3 in Serum Samples with Liquid-Chromatography Mass Spectrometry—a Useful Tool for the Assessment of Vitamin D Metabolism. J. Chromatogr. B 2020, 1158, 122394. [Google Scholar]
- Zakaria, R.; Allen, K.J.; Koplin, J.J.; Roche, P.; Greaves, R.F. Candidate reference method for determination of vitamin D from dried blood spot samples. Clin. Chem. Lab. Med. 2019, 58, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wu, Y.; Wang, F.; Liu, H.; Zhang, S.; Zhang, Z.; Shao, L.; Yang, J.; Cui, X.; Zhang, Y.; et al. Improving long-term stability of retinol in dried blood spots and quantification of its levels via a novel LC-MS/MS method. Anal. Bioanal. Chem. 2019, 411, 8073–8080. [Google Scholar] [CrossRef]
- Lote-Oke, R.; Pawar, J.; Kulkarni, S.; Sanas, P.; Kajale, N.; Gondhalekar, K.; Khadilkar, V.; Kamat, S.; Khadilkar, A. A LC–MS method for 25-hydroxy-vitamin D3 measurements from dried blood spots for an epidemiological survey in India. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Xu, J.-D.; Xu, M.-Z.; Zhou, S.-S.; Kong, M.; Shen, H.; Mao, Q.; Zhu, H.; Chan, G.; Liu, L.-F.; Zhang, Q.-W.; et al. Effects of chromatographic conditions and mass spectrometric parameters on the ionization and fragmentation of triterpene saponins of Ilex asprella in liquid chromatography–mass spectrometry analysis. J. Chromatogr. A 2019, 1608, 460418. [Google Scholar] [CrossRef]
- Galior, K.; Ketha, H.; Grebe, S.; Singh, R.J. 10 years of 25-hydroxyvitamin-D testing by LC-MS/MS-trends in vitamin-D deficiency and sufficiency. Bone Rep. 2018, 8, 268–273. [Google Scholar] [CrossRef]
- Ahadi, A.; Partoazar, A.; Abedi-Khorasgani, M.-H.; Shetab-Boushehri, S.V. Comparison of liquid-liquid extraction-thin layer chromatography with solid-phase extraction-high-performance thin layer chromatography in detection of urinary morphine. J. Biomed. Res. 2011, 25, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Bouillon, R.; Schuit, F.; Antonio, L.; Rastinejad, F. Vitamin D Binding Protein: A Historic Overview. Front. Endocrinol. 2020, 10, 910. [Google Scholar] [CrossRef]
- Rola, R.K.; Kowalski, T.B.; Studzińska, S. Improved sample preparation method for fast LC-MS/MS analysis of vitamin D metabolites in serum. J. Pharm. Biomed. Anal. 2020, 190, 113529. [Google Scholar] [CrossRef]
- Teegarden, M.D.; Riedl, K.M.; Schwartz, S.J. Chromatographic separation of PTAD-derivatized 25-hydroxyvitamin D3 and its C-3 epimer from human serum and murine skin. J. Chromatogr. B 2015, 991, 118–121. [Google Scholar] [CrossRef]
- Stanley, Z.; Jian, W.; Sullivan, S.; Sankaran, B.; Edom, R.W.; Weng, N.; Sharkey, D. Development and validation of an LC–MS/MS based method for quantification of 25 hydroxyvitamin D2 and 25 hydroxyvitamin D3 in human serum and plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 961, 62–70. [Google Scholar]
- Lee, S.; Kim, J.-H.; Kim, S.-A.; Sun, Y.-S.; Lee, A.; Park, S.-J.; Kim, Y.-T.; Lee, K.-R.; Kim, Y.-J. A Rapid and Simple Liquid-Chromatography-Tandem Mass Spectrometry Method for Measuring 25-Hydroxyvitamin D2 and 25-Hydroxyvitamin D3 in Human Serum: Comparison with Two Automated Immunoassays. Ann. Clin. Lab. Sci. 2016, 46, 645–653. [Google Scholar]
- Thakare, R.; Chhonker, Y.S.; Gautam, N.; Nelson, A.; Casaburi, R.; Criner, G.; Dransfield, M.T.; Make, B.; Schmid, K.K.; Rennard, S.I.; et al. Simultaneous Lc-Ms/Ms Analysis of Eicosanoids and Related Metabolites in Human Serum, Sputum and Balf. Biomed. Chromatogr 2018, 32, e4102. [Google Scholar] [CrossRef]
- US Food and Drug Administration Centre for Drug Evaluation and Research (FDA). Guidance for Industry-Bioanalytical Method Validation; Center for Drug Evaluation and Research, US Department for Health and Human Services: Silver Spring, MD, USA, 2018. [Google Scholar]
- Barnabas, R.V.; Brown, E.R.; Bershteyn, A.; Stankiewicz Karita, H.C.; Johnston, C.; Thorpe, L.E.; Kottkamp, A.; Neuzil, K.M.; Laufer, M.K.; Deming, M.; et al. Hydroxychloroquine as Postexposure Prophylaxis to Prevent Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Randomized Trial. Ann. Intern. Med. 2021, 174, 344–352. [Google Scholar] [CrossRef]
- Johnston, C.; Brown, E.R.; Stewart, J.; Karita, H.C.S.; Kissinger, P.J.; Dwyer, J.; Hosek, S.; Oyedele, T.; Paasche-Orlow, M.K.; Paolino, K.; et al. Hydroxychloroquine with or without Azithromycin for Treatment of Early SARS-CoV-2 Infection among High-Risk Outpatient Adults: A Randomized Clinical Trial. EClinicalMedicine 2021, 33, 100773. [Google Scholar] [CrossRef]
Analyte | QCs | Accuracy (% Bias) | Precision (% RSD) | ||
---|---|---|---|---|---|
Levels | Intra Day | Inter Day | Intra Day | Inter Day | |
25(OH)D2 | LLOQ | 3.3 | 5.1 | 11.8 | 13.0 |
LQC | 2.4 | 1.7 | 7.7 | 7.0 | |
MQC | 8.7 | 4.4 | 10.9 | 13.2 | |
HQC | 7.2 | 10.2 | 12.6 | 6.0 | |
25(OH)D3 | LLOQ | 11.4 | 14.1 | 1.9 | 4.5 |
LQC | 5.1 | 4.8 | 4.7 | 6.7 | |
MQC | −2.5 | −2.2 | 2.8 | 11.3 | |
HQC | 11.1 | 6.3 | 9.1 | 7.4 | |
vitaminD2 | LLOQ | 10.7 | 16.4 | 6.2 | 14.4 |
LQC | −1.9 | −5.0 | 6.4 | 10.3 | |
MQC | 8.7 | 2.3 | 6.8 | 10.7 | |
HQC | −3.0 | −10.0 | 0.9 | 7.0 | |
vitaminD3 | LLOQ | 15.0 | 9.5 | 7.7 | 4.7 |
LQC | 3.3 | −3.2 | 7.9 | 7.4 | |
MQC | 1.0 | 1.7 | 5.4 | 13.5 | |
HQC | −3.4 | −11.8 | 0.4 | 12.1 |
Analyte | Extraction Recoveries (Mean ± SD, n#3) with (%) | |
---|---|---|
LQC | HQC | |
25(OH)D2 | 57.2 ± 5.3 | 51.4 ± 8.3 |
25(OH)D3 | 53.7 ± 7.4 | 55.05 ± 7.7 |
vitamin D2 | 48.4 ± 5.05 | 53.4 ± 7.5 |
vitamin D2 | 57.4 ± 3.99 | 60.1 ± 6.8 |
Analyte | MRM (Precursor/Fragment Ions) | Q1 (V) | CE (V) | Q3 (V) | Retention Time (min) | Linearity (ng/mL) |
---|---|---|---|---|---|---|
25(OH)D2 | 570.30 > 297.95 | −40.0 | −29.0 | −22.0 | 3.243 | 0.78–200 |
25(OH)D3 | 558.30 > 298.05 | −11 | −21 | −18 | 3.191 | 0.78–200 |
Vitamin D2 | 572.35 > 298.05 | −10 | −21 | −12 | 5.549 | 0.78–200 |
Vitamin D3 | 560.30 > 298.05 | −11 | −22 | −13 | 5.654 | 0.78–200 |
d-6 25(OH)D3 | 564.30 > 298.00 | −19 | −25 | −13 | 3.168 | NA |
d-3 vitamin D2 | 575.35 > 301.10 | −12 | −22 | −18 | 5.5 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chhonker, Y.S.; Ahmed, N.; Johnston, C.M.; Barnabas, R.V.; Murry, D.J. A Simultaneous Extraction/Derivatization Strategy for Quantitation of Vitamin D in Dried Blood Spots Using LC–MS/MS: Application to Biomarker Study in Subjects Tested for SARS-CoV-2. Int. J. Mol. Sci. 2023, 24, 5489. https://doi.org/10.3390/ijms24065489
Chhonker YS, Ahmed N, Johnston CM, Barnabas RV, Murry DJ. A Simultaneous Extraction/Derivatization Strategy for Quantitation of Vitamin D in Dried Blood Spots Using LC–MS/MS: Application to Biomarker Study in Subjects Tested for SARS-CoV-2. International Journal of Molecular Sciences. 2023; 24(6):5489. https://doi.org/10.3390/ijms24065489
Chicago/Turabian StyleChhonker, Yashpal S., Nusrat Ahmed, Christine M. Johnston, Ruanne V. Barnabas, and Daryl J. Murry. 2023. "A Simultaneous Extraction/Derivatization Strategy for Quantitation of Vitamin D in Dried Blood Spots Using LC–MS/MS: Application to Biomarker Study in Subjects Tested for SARS-CoV-2" International Journal of Molecular Sciences 24, no. 6: 5489. https://doi.org/10.3390/ijms24065489
APA StyleChhonker, Y. S., Ahmed, N., Johnston, C. M., Barnabas, R. V., & Murry, D. J. (2023). A Simultaneous Extraction/Derivatization Strategy for Quantitation of Vitamin D in Dried Blood Spots Using LC–MS/MS: Application to Biomarker Study in Subjects Tested for SARS-CoV-2. International Journal of Molecular Sciences, 24(6), 5489. https://doi.org/10.3390/ijms24065489