Mitochondrial Alterations in Prostate Cancer: Roles in Pathobiology and Racial Disparities
Abstract
1. Introduction
2. Mitochondrial Alterations in Prostate Cancer
2.1. Mitochondrial Genome Variations
2.1.1. Copy Number Variation
2.1.2. Mutations
Mutation in Mitochondrial-Encoded Genes
Mutation in Nuclear-Encoded Mitochondrial Genes
2.2. Alteration of Mitochondrial Respiratory Complexes
2.3. Alteration of Mitochondrial Regulatory Factors
2.3.1. Mitochondrial ROS
2.3.2. Antioxidants
2.3.3. PGC1α
2.3.4. Androgen Receptor Signaling
2.3.5. Heat-Shock Proteins
3. Impact of Mitochondrial Alterations on Prostate Tumor Cell Phenotypes
3.1. Role in Prostate Tumor Cell Growth, Aggressiveness, and Epithelial-to-Mesenchymal Transition
3.2. Role in Therapy Resistance
3.3. Role in Evasion from Apoptosis
4. Mitochondrial Alterations in Stromal Remodeling
4.1. Mitochondrial Damage-Associated Molecular Patterns
4.2. Oncometabolites
5. Mitochondria Alteration in Prostate Cancer Racial Disparity
6. Translational Potential of Mitochondrial Alterations in Prostate Cancer
6.1. Mitochondrial Alterations as Prognostic Markers
6.2. Therapeutic Targeting of Mitochondrial Function
6.2.1. Targeting Prostate Cancer Metabolism
6.2.2. Targeting Mitochondrial Dynamics
6.2.3. Targeting Translocases and Solute Transporters of Mitochondria
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer of the Prostate—Cancer Stat Facts. Available online: https://seer.cancer.gov/statfacts/html/prost.html (accessed on 28 December 2022).
- Hinata, N.; Fujisawa, M. Racial Differences in Prostate Cancer Characteristics and Cancer-Specific Mortality: An Overview. World J. Mens Health 2022, 40, 217–227. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA. Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Coughlin, S.S. A Review of Social Determinants of Prostate Cancer Risk, Stage, and Survival. Prostate Int. 2020, 8, 49–54. [Google Scholar] [CrossRef]
- Lewis, D.D.; Cropp, C.D. The Impact of African Ancestry on Prostate Cancer Disparities in the Era of Precision Medicine. Genes 2020, 11, 1471. [Google Scholar] [CrossRef]
- Slatkoff, S.; Gamboa, S.; Zolotor, A.J.; Mounsey, A.L.; Jones, K. PURLs: PSA Testing: When It’s Useful, When It’s Not. J. Fam. Pract. 2011, 60, 357–360. [Google Scholar]
- Chism, D.D.; De Silva, D.; Whang, Y.E. Mechanisms of Acquired Resistance to Androgen Receptor Targeting Drugs in Castration-Resistant Prostate Cancer. Expert Rev. Anticancer Ther. 2014, 14, 1369–1378. [Google Scholar] [CrossRef]
- Pinto, F.; Dibitetto, F.; Ragonese, M.; Bassi, P. Mechanisms of Resistance to Second-Generation Antiandrogen Therapy for Prostate Cancer: Actual Knowledge and Perspectives. Med. Sci. Basel Switz. 2022, 10, 25. [Google Scholar] [CrossRef]
- Sotgia, F.; Lisanti, M.P. Mitochondrial Biomarkers Predict Tumor Progression and Poor Overall Survival in Gastric Cancers: Companion Diagnostics for Personalized Medicine. Oncotarget 2017, 8, 67117–67128. [Google Scholar] [CrossRef] [PubMed]
- Arance, E.; Ramírez, V.; Rubio-Roldan, A.; Ocaña-Peinado, F.M.; Romero-Cachinero, C.; Jódar-Reyes, A.B.; Vazquez-Alonso, F.; Martinez-Gonzalez, L.J.; Alvarez-Cubero, M.J. Determination of Exosome Mitochondrial DNA as a Biomarker of Renal Cancer Aggressiveness. Cancers 2021, 14, 199. [Google Scholar] [CrossRef] [PubMed]
- Mohd Khair, S.Z.N.; Abd Radzak, S.M.; Mohamed Yusoff, A.A. The Uprising of Mitochondrial DNA Biomarker in Cancer. Dis. Mrk. 2021, 2021, 7675269. [Google Scholar] [CrossRef] [PubMed]
- Vikramdeo, K.S.; Sudan, S.K.; Singh, A.P.; Singh, S.; Dasgupta, S. Mitochondrial Respiratory Complexes: Significance in Human Mitochondrial Disorders and Cancers. J. Cell. Physiol. 2022, 237, 4049–4078. [Google Scholar] [CrossRef]
- Jakupciak, J.P.; Wang, W.; Markowitz, M.E.; Ally, D.; Coble, M.; Srivastava, S.; Maitra, A.; Barker, P.E.; Sidransky, D.; O’Connell, C.D. Mitochondrial DNA as a Cancer Biomarker. J. Mol. Diagn. JMD 2005, 7, 258–267. [Google Scholar] [CrossRef]
- Javadov, S.; Kuznetsov, A.V. Mitochondria: The Cell Powerhouse and Nexus of Stress. Front. Physiol. 2013, 4, 207. [Google Scholar] [CrossRef]
- Picard, M.; McEwen, B.S. Psychological Stress and Mitochondria: A Systematic Review. Psychosom. Med. 2018, 80, 141–153. [Google Scholar] [CrossRef]
- Ju, Y.S.; Alexandrov, L.B.; Gerstung, M.; Martincorena, I.; Nik-Zainal, S.; Ramakrishna, M.; Davies, H.R.; Papaemmanuil, E.; Gundem, G.; Shlien, A.; et al. Origins and Functional Consequences of Somatic Mitochondrial DNA Mutations in Human Cancer. eLife 2014, 3, e02935. [Google Scholar] [CrossRef]
- Grupp, K.; Jedrzejewska, K.; Tsourlakis, M.C.; Koop, C.; Wilczak, W.; Adam, M.; Quaas, A.; Sauter, G.; Simon, R.; Izbicki, J.R.; et al. High Mitochondria Content Is Associated with Prostate Cancer Disease Progression. Mol. Cancer 2013, 12, 145. [Google Scholar] [CrossRef]
- Zhou, W.; Zhu, M.; Gui, M.; Huang, L.; Long, Z.; Wang, L.; Chen, H.; Yin, Y.; Jiang, X.; Dai, Y.; et al. Peripheral Blood Mitochondrial DNA Copy Number Is Associated with Prostate Cancer Risk and Tumor Burden. PloS ONE 2014, 9, e109470. [Google Scholar] [CrossRef]
- Moore, A.; Lan, Q.; Hofmann, J.N.; Liu, C.-S.; Cheng, W.-L.; Lin, T.-T.; Berndt, S.I. A Prospective Study of Mitochondrial DNA Copy Number and the Risk of Prostate Cancer. Cancer Causes Control CCC 2017, 28, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Koochekpour, S.; Marlowe, T.; Singh, K.K.; Attwood, K.; Chandra, D. Reduced Mitochondrial DNA Content Associates with Poor Prognosis of Prostate Cancer in African American Men. PloS ONE 2013, 8, e74688. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Gu, J.; Meng, Q.H.; Kim, J.; Davis, J.W.; He, Y.; Wagar, E.A.; Thompson, T.C.; Logothetis, C.J.; Wu, X. Mitochondrial DNA Copy Number in Peripheral Blood Leukocytes and the Aggressiveness of Localized Prostate Cancer. Oncotarget 2015, 6, 41988–41996. [Google Scholar] [CrossRef] [PubMed]
- Moro, L.; Arbini, A.A.; Yao, J.L.; di Sant’Agnese, P.A.; Marra, E.; Greco, M. Mitochondrial DNA Depletion in Prostate Epithelial Cells Promotes Anoikis Resistance and Invasion through Activation of PI3K/Akt2. Cell Death Differ. 2009, 16, 571–583. [Google Scholar] [CrossRef] [PubMed]
- Schöpf, B.; Weissensteiner, H.; Schäfer, G.; Fazzini, F.; Charoentong, P.; Naschberger, A.; Rupp, B.; Fendt, L.; Bukur, V.; Giese, I.; et al. OXPHOS Remodeling in High-Grade Prostate Cancer Involves MtDNA Mutations and Increased Succinate Oxidation. Nat. Commun. 2020, 11, 1487. [Google Scholar] [CrossRef] [PubMed]
- Kalsbeek, A.M.F.; Chan, E.F.K.; Grogan, J.; Petersen, D.C.; Jaratlerdsiri, W.; Gupta, R.; Lyons, R.J.; Haynes, A.-M.; Horvath, L.G.; Kench, J.G.; et al. Mutational Load of the Mitochondrial Genome Predicts Pathological Features and Biochemical Recurrence in Prostate Cancer. Aging 2016, 8, 2702–2712. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, M.; Kudo, T.; Suzuki, S.; Evans, T.T.; Sasaki, R.; Wada, Y.; Shirakawa, T.; Sawyer, J.R.; Gotoh, A. Mitochondrial DNA Determines Androgen Dependence in Prostate Cancer Cell Lines. Oncogene 2006, 25, 1437–1445. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.Z.; Gokden, N.; Greene, G.F.; Mukunyadzi, P.; Kadlubar, F.F. Extensive Somatic Mitochondrial Mutations in Primary Prostate Cancer Using Laser Capture Microdissection. Cancer Res. 2002, 62, 6470–6474. [Google Scholar]
- Abstracts of Presentations at the Association of Clinical Scientists 143rd Meeting Louisville, KY May 11-14,2022. Ann. Clin. Lab. Sci. 2022, 52, 511–525.
- Ashtiani, Z.O.; Heidari, M.; Hasheminasab, S.-M.; Ayati, M.; Rakhshani, N. Mitochondrial D-Loop Polymorphism and Microsatellite Instability in Prostate Cancer and Benign Hyperplasia Patients. Asian Pac. J. Cancer Prev. APJCP 2012, 13, 3863–3868. [Google Scholar] [CrossRef]
- Hopkins, J.F.; Sabelnykova, V.Y.; Weischenfeldt, J.; Simon, R.; Aguiar, J.A.; Alkallas, R.; Heisler, L.E.; Zhang, J.; Watson, J.D.; Chua, M.L.K.; et al. Mitochondrial Mutations Drive Prostate Cancer Aggression. Nat. Commun. 2017, 8, 656. [Google Scholar] [CrossRef]
- Philley, J.V.; Kannan, A.; Qin, W.; Sauter, E.R.; Ikebe, M.; Hertweck, K.L.; Troyer, D.A.; Semmes, O.J.; Dasgupta, S. Complex-I Alteration and Enhanced Mitochondrial Fusion Are Associated With Prostate Cancer Progression. J. Cell. Physiol. 2016, 231, 1364–1374. [Google Scholar] [CrossRef]
- Jerónimo, C.; Nomoto, S.; Caballero, O.L.; Usadel, H.; Henrique, R.; Varzim, G.; Oliveira, J.; Lopes, C.; Fliss, M.S.; Sidransky, D. Mitochondrial Mutations in Early Stage Prostate Cancer and Bodily Fluids. Oncogene 2001, 20, 5195–5198. [Google Scholar] [CrossRef]
- Petros, J.A.; Baumann, A.K.; Ruiz-Pesini, E.; Amin, M.B.; Sun, C.Q.; Hall, J.; Lim, S.; Issa, M.M.; Flanders, W.D.; Hosseini, S.H.; et al. MtDNA Mutations Increase Tumorigenicity in Prostate Cancer. Proc. Natl. Acad. Sci. USA 2005, 102, 719–724. [Google Scholar] [CrossRef]
- Basu, H.S.; Wilganowski, N.; Robertson, S.; Reuben, J.M.; Cohen, E.N.; Zurita, A.; Ramachandran, S.; Xiao, L.-C.; Titus, M.; Wilding, G. Prostate Cancer Cells Survive Anti-Androgen and Mitochondrial Metabolic Inhibitors by Modulating Glycolysis and Mitochondrial Metabolic Activities. Prostate 2021, 81, 799–811. [Google Scholar] [CrossRef] [PubMed]
- Bevan, S.; Edwards, S.M.; Ardern Jones, A.; Dowe, A.; Southgate, C.; Dearnaley, D.; Easton, D.F.; Houlston, R.S.; Eeles, R.A. CRC/BPG UK Familial Prostate Cancer Study Collaborators Germline Mutations in Fumarate Hydratase (FH) Do Not Predispose to Prostate Cancer. Prostate Cancer Prostatic Dis. 2003, 6, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Millis, S.Z.; Marsh, S.; Pecci, C.; Boddupalli, S.-S.; Ross, J.S.; Stephens, P.; Miller, V.A.; Ali, S.M.; Wang, J. Identification of Novel Fumarate Hydratase Gene Alterations in Prostate Cancer. J. Clin. Oncol. 2017, 35, 11585. [Google Scholar] [CrossRef]
- Zhang, L.; Qi, M.; Feng, T.; Hu, J.; Wang, L.; Li, X.; Gao, W.; Liu, H.; Jiao, M.; Wu, Z.; et al. IDH1R132H Promotes Malignant Transformation of Benign Prostatic Epithelium by Dysregulating MicroRNAs: Involvement of IGF1R-AKT/STAT3 Signaling Pathway. Neoplasia N. Y. N 2018, 20, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.R.; Kim, M.S.; Oh, J.E.; Kim, Y.R.; Song, S.Y.; Seo, S.I.; Lee, J.Y.; Yoo, N.J.; Lee, S.H. Mutational Analysis of IDH1 Codon 132 in Glioblastomas and Other Common Cancers. Int. J. Cancer 2009, 125, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Ghiam, A.F.; Cairns, R.A.; Thoms, J.; Dal Pra, A.; Ahmed, O.; Meng, A.; Mak, T.W.; Bristow, R.G. IDH Mutation Status in Prostate Cancer. Oncogene 2012, 31, 3826. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, L.; Morandi, A.; Taddei, M.L.; Parri, M.; Comito, G.; Iscaro, A.; Raspollini, M.R.; Magherini, F.; Rapizzi, E.; Masquelier, J.; et al. Cancer-Associated Fibroblasts Promote Prostate Cancer Malignancy via Metabolic Rewiring and Mitochondrial Transfer. Oncogene 2019, 38, 5339–5355. [Google Scholar] [CrossRef] [PubMed]
- Abril, J.; de Heredia, M.L.; González, L.; Clèries, R.; Nadal, M.; Condom, E.; Aguiló, F.; Gómez-Zaera, M.; Nunes, V. Altered Expression of 12S/MT-RNR1, MT-CO2/COX2, and MT-ATP6 Mitochondrial Genes in Prostate Cancer. Prostate 2008, 68, 1086–1096. [Google Scholar] [CrossRef]
- Kloss-Brandstätter, A.; Schäfer, G.; Erhart, G.; Hüttenhofer, A.; Coassin, S.; Seifarth, C.; Summerer, M.; Bektic, J.; Klocker, H.; Kronenberg, F. Somatic Mutations throughout the Entire Mitochondrial Genome Are Associated with Elevated PSA Levels in Prostate Cancer Patients. Am. J. Hum. Genet. 2010, 87, 802–812. [Google Scholar] [CrossRef]
- Verma, S.; Shukla, S.; Pandey, M.; MacLennan, G.T.; Gupta, S. Differentially Expressed Genes and Molecular Pathways in an Autochthonous Mouse Prostate Cancer Model. Front. Genet. 2019, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- Feichtinger, R.G.; Schäfer, G.; Seifarth, C.; Mayr, J.A.; Kofler, B.; Klocker, H. Reduced Levels of ATP Synthase Subunit ATP5F1A Correlate with Earlier-Onset Prostate Cancer. Oxid. Med. Cell. Longev. 2018, 2018, 1347174. [Google Scholar] [CrossRef] [PubMed]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The CBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the CBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef]
- Zhang, A.; Gupte, A.A.; Chatterjee, S.; Li, S.; Ayala, A.G.; Miles, B.J.; Hamilton, D.J. Enhanced Succinate Oxidation with Mitochondrial Complex II Reactive Oxygen Species Generation in Human Prostate Cancer. Int. J. Mol. Sci. 2022, 23, 12168. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna-Silva, A.C.B.; Perez-Valencia, J.A.; Sciacovelli, M.; Lalou, C.; Sarlak, S.; Tronci, L.; Nikitopoulou, E.; Meszaros, A.T.; Frezza, C.; Rossignol, R.; et al. Succinate Anaplerosis Has an Onco-Driving Potential in Prostate Cancer Cells. Cancers 2021, 13, 1727. [Google Scholar] [CrossRef]
- Stroud, D.A.; Surgenor, E.E.; Formosa, L.E.; Reljic, B.; Frazier, A.E.; Dibley, M.G.; Osellame, L.D.; Stait, T.; Beilharz, T.H.; Thorburn, D.R.; et al. Accessory Subunits Are Integral for Assembly and Function of Human Mitochondrial Complex I. Nature 2016, 538, 123–126. [Google Scholar] [CrossRef]
- Sachdeva, A.; Hart, C.A.; Carey, C.D.; Vincent, A.E.; Greaves, L.C.; Heer, R.; Oliveira, P.; Brown, M.D.; Clarke, N.W.; Turnbull, D.M. Automated Quantitative High-Throughput Multiplex Immunofluorescence Pipeline to Evaluate OXPHOS Defects in Formalin-Fixed Human Prostate Tissue. Sci. Rep. 2022, 12, 6660. [Google Scholar] [CrossRef]
- Cheung, E.C.; Vousden, K.H. The Role of ROS in Tumour Development and Progression. Nat. Rev. Cancer 2022, 22, 280–297. [Google Scholar] [CrossRef]
- Nakamura, H.; Takada, K. Reactive Oxygen Species in Cancer: Current Findings and Future Directions. Cancer Sci. 2021, 112, 3945–3952. [Google Scholar] [CrossRef]
- Liou, G.-Y.; Storz, P. Reactive Oxygen Species in Cancer. Free Radic. Res. 2010, 44, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Khandrika, L.; Kumar, B.; Koul, S.; Maroni, P.; Koul, H.K. Oxidative Stress in Prostate Cancer. Cancer Lett. 2009, 282, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Koul, S.; Khandrika, L.; Meacham, R.B.; Koul, H.K. Oxidative Stress Is Inherent in Prostate Cancer Cells and Is Required for Aggressive Phenotype. Cancer Res. 2008, 68, 1777–1785. [Google Scholar] [CrossRef] [PubMed]
- Bao, M.H.-R.; Wong, C.C.-L. Hypoxia, Metabolic Reprogramming, and Drug Resistance in Liver Cancer. Cells 2021, 10, 1715. [Google Scholar] [CrossRef] [PubMed]
- Bourdeau-Heller, J.; Oberley, T.D. Prostate Carcinoma Cells Selected by Long-Term Exposure to Reduced Oxygen Tension Show Remarkable Biochemical Plasticity via Modulation of Superoxide, HIF-1alpha Levels, and Energy Metabolism. J. Cell. Physiol. 2007, 212, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Liu, L.-Z.; Fu, B.; Hu, X.; Shi, X.; Fang, J.; Jiang, B.-H. Reactive Oxygen Species Regulate Insulin-Induced VEGF and HIF-1alpha Expression through the Activation of P70S6K1 in Human Prostate Cancer Cells. Carcinogenesis 2007, 28, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.; Yeoh, K.K.; Tian, Y.-M.; Hillringhaus, L.; Bagg, E.A.; Rose, N.R.; Leung, I.K.H.; Li, X.S.; Woon, E.C.Y.; Yang, M.; et al. The Oncometabolite 2-Hydroxyglutarate Inhibits Histone Lysine Demethylases. EMBO Rep. 2011, 12, 463–469. [Google Scholar] [CrossRef]
- Nguyen, T.; Nioi, P.; Pickett, C.B. The Nrf2-Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress. J. Biol. Chem. 2009, 284, 13291–13295. [Google Scholar] [CrossRef]
- Frohlich, D.A.; McCabe, M.T.; Arnold, R.S.; Day, M.L. The Role of Nrf2 in Increased Reactive Oxygen Species and DNA Damage in Prostate Tumorigenesis. Oncogene 2008, 27, 4353–4362. [Google Scholar] [CrossRef]
- Yang, J.; Wu, R.; Li, W.; Gao, L.; Yang, Y.; Li, P.; Kong, A.-N. The Triterpenoid Corosolic Acid Blocks Transformation and Epigenetically Reactivates Nrf2 in TRAMP-C1 Prostate Cells. Mol. Carcinog. 2018, 57, 512–521. [Google Scholar] [CrossRef]
- Bellezza, I.; Scarpelli, P.; Pizzo, S.V.; Grottelli, S.; Costanzi, E.; Minelli, A. ROS-Independent Nrf2 Activation in Prostate Cancer. Oncotarget 2017, 8, 67506–67518. [Google Scholar] [CrossRef] [PubMed]
- Payandeh, Z.; Pirpour Tazehkand, A.; Barati, G.; Pouremamali, F.; Kahroba, H.; Baradaran, B.; Samadi, N. Role of Nrf2 and Mitochondria in Cancer Stem Cells; in Carcinogenesis, Tumor Progression, and Chemoresistance. Biochimie 2020, 179, 32–45. [Google Scholar] [CrossRef] [PubMed]
- Valcarcel-Jimenez, L.; Macchia, A.; Crosas-Molist, E.; Schaub-Clerigué, A.; Camacho, L.; Martín-Martín, N.; Cicogna, P.; Viera-Bardón, C.; Fernández-Ruiz, S.; Rodriguez-Hernandez, I.; et al. PGC1α Suppresses Prostate Cancer Cell Invasion through ERRα Transcriptional Control. Cancer Res. 2019, 79, 6153–6165. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, L.; Torrino, S.; Dufies, M.; Djabari, Z.; Haider, R.; Roustan, F.-R.; Jaune, E.; Laurent, K.; Nottet, N.; Michiels, J.-F.; et al. PGC1α Inhibits Polyamine Synthesis to Suppress Prostate Cancer Aggressiveness. Cancer Res. 2019, 79, 3268–3280. [Google Scholar] [CrossRef]
- Gonthier, K.; Poluri, R.T.K.; Weidmann, C.; Tadros, M.; Audet-Walsh, É. Reprogramming of Isocitrate Dehydrogenases Expression and Activity by the Androgen Receptor in Prostate Cancer. Mol. Cancer Res. MCR 2019, 17, 1699–1709. [Google Scholar] [CrossRef]
- Bajpai, P.; Koc, E.; Sonpavde, G.; Singh, R.; Singh, K.K. Mitochondrial Localization, Import, and Mitochondrial Function of the Androgen Receptor. J. Biol. Chem. 2019, 294, 6621–6634. [Google Scholar] [CrossRef]
- Uo, T.; Sprenger, C.C.; Plymate, S.R. Androgen Receptor Signaling and Metabolic and Cellular Plasticity During Progression to Castration Resistant Prostate Cancer. Front. Oncol. 2020, 10, 580617. [Google Scholar] [CrossRef]
- Lee, Y.G.; Nam, Y.; Shin, K.J.; Yoon, S.; Park, W.S.; Joung, J.Y.; Seo, J.K.; Jang, J.; Lee, S.; Nam, D.; et al. Androgen-Induced Expression of DRP1 Regulates Mitochondrial Metabolic Reprogramming in Prostate Cancer. Cancer Lett. 2020, 471, 72–87. [Google Scholar] [CrossRef]
- Glaessgen, A.; Jonmarker, S.; Lindberg, A.; Nilsson, B.; Lewensohn, R.; Ekman, P.; Valdman, A.; Egevad, L. Heat Shock Proteins 27, 60 and 70 as Prognostic Markers of Prostate Cancer. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2008, 116, 888–895. [Google Scholar] [CrossRef]
- Kumar, R.; Chaudhary, A.K.; Woytash, J.; Inigo, J.R.; Gokhale, A.A.; Bshara, W.; Attwood, K.; Wang, J.; Spernyak, J.A.; Rath, E.; et al. A Mitochondrial Unfolded Protein Response Inhibitor Suppresses Prostate Cancer Growth in Mice via HSP60. J. Clin. Invest. 2022, 132, e149906. [Google Scholar] [CrossRef]
- Mamouni, K.; Kallifatidis, G.; Lokeshwar, B.L. Targeting Mitochondrial Metabolism in Prostate Cancer with Triterpenoids. Int. J. Mol. Sci. 2021, 22, 2466. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-L.; Lin, C.-Y.; Kung, H.-J. Targeting Mitochondrial OXPHOS and Their Regulatory Signals in Prostate Cancers. Int. J. Mol. Sci. 2021, 22, 13435. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Wang, Z.; Xu, Y.; Chen, S.; Han, Y.; Li, L.; Wang, M.; Jin, X. Roles of Reactive Oxygen Species in Biological Behaviors of Prostate Cancer. BioMed Res. Int. 2020, 2020, 1269624. [Google Scholar] [CrossRef] [PubMed]
- Georgakopoulos-Soares, I.; Chartoumpekis, D.V.; Kyriazopoulou, V.; Zaravinos, A. EMT Factors and Metabolic Pathways in Cancer. Front. Oncol. 2020, 10, 499. [Google Scholar] [CrossRef]
- Grassian, A.R.; Lin, F.; Barrett, R.; Liu, Y.; Jiang, W.; Korpal, M.; Astley, H.; Gitterman, D.; Henley, T.; Howes, R.; et al. Isocitrate Dehydrogenase (IDH) Mutations Promote a Reversible ZEB1/MicroRNA (MiR)-200-Dependent Epithelial-Mesenchymal Transition (EMT). J. Biol. Chem. 2012, 287, 42180–42194. [Google Scholar] [CrossRef]
- Sciacovelli, M.; Gonçalves, E.; Johnson, T.I.; Zecchini, V.R.; da Costa, A.S.H.; Gaude, E.; Drubbel, A.V.; Theobald, S.J.; Abbo, S.R.; Tran, M.G.B.; et al. Fumarate Is an Epigenetic Modifier That Elicits Epithelial-to-Mesenchymal Transition. Nature 2016, 537, 544–547. [Google Scholar] [CrossRef]
- Loriot, C.; Burnichon, N.; Gadessaud, N.; Vescovo, L.; Amar, L.; Libé, R.; Bertherat, J.; Plouin, P.-F.; Jeunemaitre, X.; Gimenez-Roqueplo, A.-P.; et al. Epithelial to Mesenchymal Transition Is Activated in Metastatic Pheochromocytomas and Paragangliomas Caused by SDHB Gene Mutations. J. Clin. Endocrinol. Metab. 2012, 97, E954–E962. [Google Scholar] [CrossRef]
- Cairns, R.A.; Mak, T.W. Oncogenic Isocitrate Dehydrogenase Mutations: Mechanisms, Models, and Clinical Opportunities. Cancer Discov. 2013, 3, 730–741. [Google Scholar] [CrossRef]
- Galluzzi, L.; Kroemer, G. Potent Immunosuppressive Effects of the Oncometabolite R-2-Hydroxyglutarate. Oncoimmunology 2018, 7, e1528815. [Google Scholar] [CrossRef]
- Liu, L.; Hu, K.; Feng, J.; Wang, H.; Fu, S.; Wang, B.; Wang, L.; Xu, Y.; Yu, X.; Huang, H. The Oncometabolite R-2-Hydroxyglutarate Dysregulates the Differentiation of Human Mesenchymal Stromal Cells via Inducing DNA Hypermethylation. BMC Cancer 2021, 21, 36. [Google Scholar] [CrossRef]
- Ježek, P. 2-Hydroxyglutarate in Cancer Cells. Antioxid. Redox Signal. 2020, 33, 903–926. [Google Scholar] [CrossRef] [PubMed]
- Nowicki, S.; Gottlieb, E. Oncometabolites: Tailoring Our Genes. FEBS J. 2015, 282, 2796–2805. [Google Scholar] [CrossRef] [PubMed]
- Sciacovelli, M.; Frezza, C. Oncometabolites: Unconventional Triggers of Oncogenic Signalling Cascades. Free Radic. Biol. Med. 2016, 100, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Guerra, F.; Guaragnella, N.; Arbini, A.A.; Bucci, C.; Giannattasio, S.; Moro, L. Mitochondrial Dysfunction: A Novel Potential Driver of Epithelial-to-Mesenchymal Transition in Cancer. Front. Oncol. 2017, 7, 295. [Google Scholar] [CrossRef]
- Gaude, E.; Frezza, C. Tissue-Specific and Convergent Metabolic Transformation of Cancer Correlates with Metastatic Potential and Patient Survival. Nat. Commun. 2016, 7, 13041. [Google Scholar] [CrossRef]
- Sun, Q.; Arnold, R.S.; Sun, C.Q.; Petros, J.A. A Mitochondrial DNA Mutation Influences the Apoptotic Effect of Statins on Prostate Cancer. Prostate 2015, 75, 1916–1925. [Google Scholar] [CrossRef]
- Seo, J.H.; Agarwal, E.; Chae, Y.C.; Lee, Y.G.; Garlick, D.S.; Storaci, A.M.; Ferrero, S.; Gaudioso, G.; Gianelli, U.; Vaira, V.; et al. Mitochondrial Fission Factor Is a Novel Myc-Dependent Regulator of Mitochondrial Permeability in Cancer. EBioMedicine 2019, 48, 353–363. [Google Scholar] [CrossRef]
- Civenni, G.; Bosotti, R.; Timpanaro, A.; Vàzquez, R.; Merulla, J.; Pandit, S.; Rossi, S.; Albino, D.; Allegrini, S.; Mitra, A.; et al. Epigenetic Control of Mitochondrial Fission Enables Self-Renewal of Stem-like Tumor Cells in Human Prostate Cancer. Cell Metab. 2019, 30, 303–318.e6. [Google Scholar] [CrossRef]
- Haldar, S.; Mishra, R.; Billet, S.; Thiruvalluvan, M.; Placencio-Hickok, V.R.; Madhav, A.; Duong, F.; Angara, B.; Agarwal, P.; Tighiouart, M.; et al. Cancer Epithelia-Derived Mitochondrial DNA Is a Targetable Initiator of a Paracrine Signaling Loop That Confers Taxane Resistance. Proc. Natl. Acad. Sci. USA 2020, 117, 8515–8523. [Google Scholar] [CrossRef]
- Sheridan, M.; Ogretmen, B. The Role of Ceramide Metabolism and Signaling in the Regulation of Mitophagy and Cancer Therapy. Cancers 2021, 13, 2475. [Google Scholar] [CrossRef]
- Lin, H.-M.; Mak, B.; Yeung, N.; Huynh, K.; Meikle, T.G.; Mellett, N.A.; Kwan, E.M.; Fettke, H.; Tran, B.; Davis, I.D.; et al. Overcoming Enzalutamide Resistance in Metastatic Prostate Cancer by Targeting Sphingosine Kinase. EBioMedicine 2021, 72, 103625. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Youle, R.J. The Role of Mitochondria in Apoptosis. Annu. Rev. Genet. 2009, 43, 95–118. [Google Scholar] [CrossRef] [PubMed]
- Castilla, C.; Congregado, B.; Chinchón, D.; Torrubia, F.J.; Japón, M.A.; Sáez, C. Bcl-XL Is Overexpressed in Hormone-Resistant Prostate Cancer and Promotes Survival of LNCaP Cells via Interaction with Proapoptotic Bak. Endocrinology 2006, 147, 4960–4967. [Google Scholar] [CrossRef] [PubMed]
- Krajewska, M.; Krajewski, S.; Epstein, J.I.; Shabaik, A.; Sauvageot, J.; Song, K.; Kitada, S.; Reed, J.C. Immunohistochemical Analysis of Bcl-2, Bax, Bcl-X, and Mcl-1 Expression in Prostate Cancers. Am. J. Pathol. 1996, 148, 1567–1576. [Google Scholar] [PubMed]
- Jeong, S.M.; Xiao, C.; Finley, L.W.S.; Lahusen, T.; Souza, A.L.; Pierce, K.; Li, Y.-H.; Wang, X.; Laurent, G.; German, N.J.; et al. SIRT4 Has Tumor-Suppressive Activity and Regulates the Cellular Metabolic Response to DNA Damage by Inhibiting Mitochondrial Glutamine Metabolism. Cancer Cell 2013, 23, 450–463. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, Y.; Liu, T.; Hu, B.; Li, J.; Liu, C.; Liu, T.; Li, F. Mitochondrial PAK6 Inhibits Prostate Cancer Cell Apoptosis via the PAK6-SIRT4-ANT2 Complex. Theranostics 2020, 10, 2571–2586. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Yuan, X.; Lu, M.L.; Balk, S.P. Increased PAK6 Expression in Prostate Cancer and Identification of PAK6 Associated Proteins. Prostate 2008, 68, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, L.; Huang, Y.; Lu, K.; Tao, T.; Chen, S.; Zhang, X.; Guan, H.; Chen, M.; Xu, B. MicroRNA-328 Directly Targets P21-activated Protein Kinase 6 Inhibiting Prostate Cancer Proliferation and Enhancing Docetaxel Sensitivity. Mol. Med. Rep. 2015, 12, 7389–7395. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kim, S.Y.; Shin, S.; Jung, S.-H.; Yim, S.-H.; Lee, J.Y.; Lee, S.-H.; Chung, Y.-J. Overexpression of TFF3 Is Involved in Prostate Carcinogenesis via Blocking Mitochondria-Mediated Apoptosis. Exp. Mol. Med. 2018, 50, 1–11. [Google Scholar] [CrossRef]
- Faith, D.A.; Isaacs, W.B.; Morgan, J.D.; Fedor, H.L.; Hicks, J.L.; Mangold, L.A.; Walsh, P.C.; Partin, A.W.; Platz, E.A.; Luo, J.; et al. Trefoil Factor 3 Overexpression in Prostatic Carcinoma: Prognostic Importance Using Tissue Microarrays. Prostate 2004, 61, 215–227. [Google Scholar] [CrossRef]
- Kono, H.; Rock, K.L. How Dying Cells Alert the Immune System to Danger. Nat. Rev. Immunol. 2008, 8, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Y.; Nuñez, G. Sterile Inflammation: Sensing and Reacting to Damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F.; Mantovani, A. Inflammation and Cancer: Back to Virchow? Lancet Lond. Engl. 2001, 357, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Ben-Neriah, Y.; Karin, M. Inflammation Meets Cancer, with NF-ΚB as the Matchmaker. Nat. Immunol. 2011, 12, 715–723. [Google Scholar] [CrossRef]
- Scaffidi, P.; Misteli, T.; Bianchi, M.E. Release of Chromatin Protein HMGB1 by Necrotic Cells Triggers Inflammation. Nature 2002, 418, 191–195. [Google Scholar] [CrossRef]
- Quintana, F.J.; Cohen, I.R. Heat Shock Proteins as Endogenous Adjuvants in Sterile and Septic Inflammation. J. Immunol. Baltim. Md 1950 2005, 175, 2777–2782. [Google Scholar] [CrossRef] [PubMed]
- Ghiringhelli, F.; Apetoh, L.; Tesniere, A.; Aymeric, L.; Ma, Y.; Ortiz, C.; Vermaelen, K.; Panaretakis, T.; Mignot, G.; Ullrich, E.; et al. Activation of the NLRP3 Inflammasome in Dendritic Cells Induces IL-1beta-Dependent Adaptive Immunity against Tumors. Nat. Med. 2009, 15, 1170–1178. [Google Scholar] [CrossRef]
- Bresnick, A.R.; Weber, D.J.; Zimmer, D.B. S100 Proteins in Cancer. Nat. Rev. Cancer 2015, 15, 96–109. [Google Scholar] [CrossRef]
- Averboukh, L.; Liang, P.; Kantoff, P.W.; Pardee, A.B. Regulation of S100P Expression by Androgen. Prostate 1996, 29, 350–355. [Google Scholar] [CrossRef]
- Minner, S.; Hager, D.; Steurer, S.; Höflmayer, D.; Tsourlakis, M.C.; Möller-Koop, C.; Clauditz, T.S.; Hube-Magg, C.; Luebke, A.M.; Simon, R.; et al. Down-Regulation of S100A8 Is an Independent Predictor of PSA Recurrence in Prostate Cancer Treated by Radical Prostatectomy. Neoplasia N. Y. N 2019, 21, 872–881. [Google Scholar] [CrossRef]
- Grazioli, S.; Pugin, J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front. Immunol. 2018, 9, 832. [Google Scholar] [CrossRef] [PubMed]
- Kalsbeek, A.M.F.; Chan, E.K.F.; Corcoran, N.M.; Hovens, C.M.; Hayes, V.M. Mitochondrial Genome Variation and Prostate Cancer: A Review of the Mutational Landscape and Application to Clinical Management. Oncotarget 2017, 8, 71342–71357. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Nomoto, S.; Fujii, T.; Kaneko, T.; Takeda, S.; Inoue, S.; Kanazumi, N.; Nakao, A. Correlation between Copy Number of Mitochondrial DNA and Clinico-Pathologic Parameters of Hepatocellular Carcinoma. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2006, 32, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Chen, M.; Wood, C.G.; Lin, J.; Spitz, M.R.; Ma, J.; Amos, C.I.; Shields, P.G.; Benowitz, N.L.; Gu, J.; et al. Mitochondrial DNA Content: Its Genetic Heritability and Association with Renal Cell Carcinoma. J. Natl. Cancer Inst. 2008, 100, 1104–1112. [Google Scholar] [CrossRef]
- Lynch, S.M.; Weinstein, S.J.; Virtamo, J.; Lan, Q.; Liu, C.-S.; Cheng, W.-L.; Rothman, N.; Albanes, D.; Stolzenberg-Solomon, R.Z. Mitochondrial DNA Copy Number and Pancreatic Cancer in the Alpha-Tocopherol Beta-Carotene Cancer Prevention Study. Cancer Prev. Res. Phila. Pa 2011, 4, 1912–1919. [Google Scholar] [CrossRef]
- Hosgood, H.D.; Liu, C.-S.; Rothman, N.; Weinstein, S.J.; Bonner, M.R.; Shen, M.; Lim, U.; Virtamo, J.; Cheng, W.; Albanes, D.; et al. Mitochondrial DNA Copy Number and Lung Cancer Risk in a Prospective Cohort Study. Carcinogenesis 2010, 31, 847–849. [Google Scholar] [CrossRef]
- Di, J.M.; Pang, J.; Sun, Q.P.; Zhang, Y.; Fang, Y.Q.; Liu, X.P.; Zhou, J.H.; Ruan, X.X.; Gao, X. Toll-like Receptor 9 Agonists up-Regulates the Expression of Cyclooxygenase-2 via Activation of NF-KappaB in Prostate Cancer Cells. Mol. Biol. Rep. 2010, 37, 1849–1855. [Google Scholar] [CrossRef]
- Väisänen, M.-R.; Jukkola-Vuorinen, A.; Vuopala, K.S.; Selander, K.S.; Vaarala, M.H. Expression of Toll-like Receptor-9 Is Associated with Poor Progression-Free Survival in Prostate Cancer. Oncol. Lett. 2013, 5, 1659–1663. [Google Scholar] [CrossRef]
- Yang, M.; Soga, T.; Pollard, P.J. Oncometabolites: Linking Altered Metabolism with Cancer. J. Clin. Investig. 2013, 123, 3652–3658. [Google Scholar] [CrossRef]
- Xu, W.; Yang, H.; Liu, Y.; Yang, Y.; Wang, P.; Kim, S.-H.; Ito, S.; Yang, C.; Wang, P.; Xiao, M.-T.; et al. Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of α-Ketoglutarate-Dependent Dioxygenases. Cancer Cell 2011, 19, 17–30. [Google Scholar] [CrossRef]
- Chen, C.-L.; Hsu, S.-C.; Chung, T.-Y.; Chu, C.-Y.; Wang, H.-J.; Hsiao, P.-W.; Yeh, S.-D.; Ann, D.K.; Yen, Y.; Kung, H.-J. Arginine Is an Epigenetic Regulator Targeting TEAD4 to Modulate OXPHOS in Prostate Cancer Cells. Nat. Commun. 2021, 12, 2398. [Google Scholar] [CrossRef] [PubMed]
- Tebay, L.E.; Robertson, H.; Durant, S.T.; Vitale, S.R.; Penning, T.M.; Dinkova-Kostova, A.T.; Hayes, J.D. Mechanisms of Activation of the Transcription Factor Nrf2 by Redox Stressors, Nutrient Cues, and Energy Status and the Pathways through Which It Attenuates Degenerative Disease. Free Radic. Biol. Med. 2015, 88, 108–146. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Cohen, P.; Stern, M.C.; Odedina, F.; Carpten, J.; Reams, R. Mitochondrial Biology and Prostate Cancer Ethnic Disparity. Carcinogenesis 2018, 39, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Adachi, N.; Hirota, M.; Hamaguchi, M.; Okamoto, K.; Watanabe, K.; Endo, F. Serum Cytochrome c Level as a Prognostic Indicator in Patients with Systemic Inflammatory Response Syndrome. Clin. Chim. Acta Int. J. Clin. Chem. 2004, 342, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Piyarathna, D.W.B.; Balasubramanian, A.; Arnold, J.M.; Lloyd, S.M.; Karanam, B.; Castro, P.; Ittmann, M.M.; Putluri, N.; Navone, N.; Jones, J.A.; et al. ERR1 and PGC1α Associated Mitochondrial Alterations Correlate with Pan-Cancer Disparity in African Americans. J. Clin. Investig. 2019, 129, 2351–2356. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chang, W.-S.; Tsai, C.-W.; Bau, D.-T.; Davis, J.W.; Thompson, T.C.; Logothetis, C.J.; Gu, J. Mitochondrial DNA Copy Number in Peripheral Blood Leukocytes Is Associated with Biochemical Recurrence in Prostate Cancer Patients in African Americans. Carcinogenesis 2020, 41, 267–273. [Google Scholar] [CrossRef]
- Canto, P.; Benítez Granados, J.; Martínez Ramírez, M.A.; Reyes, E.; Feria-Bernal, G.; García-García, E.; Tejeda, M.E.; Zavala, E.; Tapia, A.; Rojano-Mejía, D.; et al. Genetic Variants in ATP6 and ND3 Mitochondrial Genes Are Not Associated with Aggressive Prostate Cancer in Mexican-Mestizo Men with Overweight or Obesity. Aging Male Off. J. Int. Soc. Study Aging Male 2016, 19, 187–191. [Google Scholar] [CrossRef]
- Vidal, I.; Zheng, Q.; Hicks, J.L.; Chen, J.; Platz, E.A.; Trock, B.J.; Kulac, I.; Baena-Del Valle, J.A.; Sfanos, K.S.; Ernst, S.; et al. GSTP1 Positive Prostatic Adenocarcinomas Are More Common in Black than White Men in the United States. PloS ONE 2021, 16, e0241934. [Google Scholar] [CrossRef]
- Miyake, T.; Nakayama, T.; Naoi, Y.; Yamamoto, N.; Otani, Y.; Kim, S.J.; Shimazu, K.; Shimomura, A.; Maruyama, N.; Tamaki, Y.; et al. GSTP1 Expression Predicts Poor Pathological Complete Response to Neoadjuvant Chemotherapy in ER-Negative Breast Cancer. Cancer Sci. 2012, 103, 913–920. [Google Scholar] [CrossRef]
- Eralp, Y.; Keskin, S.; Akışık, E.; Akışık, E.; İğci, A.; Müslümanoğlu, M.; Yılmaz, S.; Tunacı, M.; Çamlıca, H.; Tuzlalı, S.; et al. Predictive Role of Midtreatment Changes in Survivin, GSTP1, and Topoisomerase 2α Expressions for Pathologic Complete Response to Neoadjuvant Chemotherapy in Patients with Locally Advanced Breast Cancer. Am. J. Clin. Oncol. 2013, 36, 215–223. [Google Scholar] [CrossRef]
- Rishi, I.; Baidouri, H.; Abbasi, J.A.; Bullard-Dillard, R.; Kajdacsy-Balla, A.; Pestaner, J.P.; Skacel, M.; Tubbs, R.; Bagasra, O. Prostate Cancer in African American Men Is Associated with Downregulation of Zinc Transporters. Appl. Immunohistochem. Mol. Morphol. AIMM 2003, 11, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.K.; Desouki, M.M.; Franklin, R.B.; Costello, L.C. Mitochondrial Aconitase and Citrate Metabolism in Malignant and Nonmalignant Human Prostate Tissues. Mol. Cancer 2006, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, Y.; Kurita, M.; Aiso, S.; Nishimoto, I.; Matsuoka, M. Humanin Inhibits Neuronal Cell Death by Interacting with a Cytokine Receptor Complex or Complexes Involving CNTF Receptor Alpha/WSX-1/Gp130. Mol. Biol. Cell 2009, 20, 2864–2873. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Howard, L.; Wan, J.; Wiggins, E.; Vidal, A.; Cohen, P.; Freedland, S.J. Low Circulating Levels of the Mitochondrial-Peptide Hormone SHLP2: Novel Biomarker for Prostate Cancer Risk. Oncotarget 2017, 8, 94900–94909. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Torres, A.; Reagan, A.L.; Howard, L.E.; Wiggins, E.; Vidal, A.C.; Wan, J.; Miller, B.; Freedland, S.J.; Cohen, P. Racial Differences in Circulating Mitochondria-Derived Peptides May Contribute to Prostate Cancer Health Disparities. Prostate 2022, 82, 1248–1257. [Google Scholar] [CrossRef]
- Ray, A.M.; Zuhlke, K.A.; Levin, A.M.; Douglas, J.A.; Cooney, K.A.; Petros, J.A. Sequence Variation in the Mitochondrial Gene Cytochrome c Oxidase Subunit I and Prostate Cancer in African American Men. Prostate 2009, 69, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Azrak, S.; Ayyasamy, V.; Zirpoli, G.; Ambrosone, C.; Bandera, E.V.; Bovbjerg, D.H.; Jandorf, L.; Ciupak, G.; Davis, W.; Pawlish, K.S.; et al. CAG Repeat Variants in the POLG1 Gene Encoding MtDNA Polymerase-Gamma and Risk of Breast Cancer in African-American Women. PloS ONE 2012, 7, e29548. [Google Scholar] [CrossRef]
- Canter, J.A.; Kallianpur, A.R.; Parl, F.F.; Millikan, R.C. Mitochondrial DNA G10398A Polymorphism and Invasive Breast Cancer in African-American Women. Cancer Res. 2005, 65, 8028–8033. [Google Scholar] [CrossRef] [PubMed]
- Kulawiec, M.; Owens, K.M.; Singh, K.K. MtDNA G10398A Variant in African-American Women with Breast Cancer Provides Resistance to Apoptosis and Promotes Metastasis in Mice. J. Hum. Genet. 2009, 54, 647–654. [Google Scholar] [CrossRef]
- Booker, L.M.; Habermacher, G.M.; Jessie, B.C.; Sun, Q.C.; Baumann, A.K.; Amin, M.; Lim, S.D.; Fernandez-Golarz, C.; Lyles, R.H.; Brown, M.D.; et al. North American White Mitochondrial Haplogroups in Prostate and Renal Cancer. J. Urol. 2006, 175, 468–472. [Google Scholar] [CrossRef]
- Chaudhary, A.K.; Bhat, T.A.; Kumar, S.; Kumar, A.; Kumar, R.; Underwood, W.; Koochekpour, S.; Shourideh, M.; Yadav, N.; Dhar, S.; et al. Mitochondrial Dysfunction-Mediated Apoptosis Resistance Associates with Defective Heat Shock Protein Response in African-American Men with Prostate Cancer. Br. J. Cancer 2016, 114, 1090–1100. [Google Scholar] [CrossRef] [PubMed]
- Kenney, M.C.; Chwa, M.; Atilano, S.R.; Falatoonzadeh, P.; Ramirez, C.; Malik, D.; Tarek, M.; Del Carpio, J.C.; Nesburn, A.B.; Boyer, D.S.; et al. Molecular and Bioenergetic Differences between Cells with African versus European Inherited Mitochondrial DNA Haplogroups: Implications for Population Susceptibility to Diseases. Biochim. Biophys. Acta 2014, 1842, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.K.; Kulawiec, M. Mitochondrial DNA Polymorphism and Risk of Cancer. Methods Mol. Biol. Clifton NJ 2009, 471, 291–303. [Google Scholar] [CrossRef]
- Yu, M.; Zhou, Y.; Shi, Y.; Ning, L.; Yang, Y.; Wei, X.; Zhang, N.; Hao, X.; Niu, R. Reduced Mitochondrial DNA Copy Number Is Correlated with Tumor Progression and Prognosis in Chinese Breast Cancer Patients. IUBMB Life 2007, 59, 450–457. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, L.; Yu, X.; Zhou, H.; Luo, Y.; Wang, W.; Wang, L. Clinical Application of Plasma Mitochondrial DNA Content in Patients with Lung Cancer. Oncol. Lett. 2018, 16, 7074–7081. [Google Scholar] [CrossRef]
- Xia, P.; An, H.-X.; Dang, C.-X.; Radpour, R.; Kohler, C.; Fokas, E.; Engenhart-Cabillic, R.; Holzgreve, W.; Zhong, X.Y. Decreased Mitochondrial DNA Content in Blood Samples of Patients with Stage I Breast Cancer. BMC Cancer 2009, 9, 454. [Google Scholar] [CrossRef]
- Arnold, R.S.; Sun, C.Q.; Richards, J.C.; Grigoriev, G.; Coleman, I.M.; Nelson, P.S.; Hsieh, C.-L.; Lee, J.K.; Xu, Z.; Rogatko, A.; et al. Mitochondrial DNA Mutation Stimulates Prostate Cancer Growth in Bone Stromal Environment. Prostate 2009, 69, 1–11. [Google Scholar] [CrossRef]
- Cavalcante, G.C.; Ribeiro-Dos-Santos, Â.; de Araújo, G.S. Mitochondria in Tumour Progression: A Network of MtDNA Variants in Different Types of Cancer. BMC Genom. Data 2022, 23, 16. [Google Scholar] [CrossRef]
- Pérez-Amado, C.J.; Tovar, H.; Gómez-Romero, L.; Beltrán-Anaya, F.O.; Bautista-Piña, V.; Dominguez-Reyes, C.; Villegas-Carlos, F.; Tenorio-Torres, A.; Alfaro-Ruíz, L.A.; Hidalgo-Miranda, A.; et al. Mitochondrial DNA Mutation Analysis in Breast Cancer: Shifting From Germline Heteroplasmy Toward Homoplasmy in Tumors. Front. Oncol. 2020, 10, 572954. [Google Scholar] [CrossRef]
- Porporato, P.E.; Filigheddu, N.; Pedro, J.M.B.-S.; Kroemer, G.; Galluzzi, L. Mitochondrial Metabolism and Cancer. Cell Res. 2018, 28, 265–280. [Google Scholar] [CrossRef]
- Ashton, T.M.; McKenna, W.G.; Kunz-Schughart, L.A.; Higgins, G.S. Oxidative Phosphorylation as an Emerging Target in Cancer Therapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 2482–2490. [Google Scholar] [CrossRef] [PubMed]
- Costello, L.C.; Franklin, R.B. A Comprehensive Review of the Role of Zinc in Normal Prostate Function and Metabolism; and Its Implications in Prostate Cancer. Arch. Biochem. Biophys. 2016, 611, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.A.; Kanak, M.A.; Kajdacsy-Balla, A.; Pestaner, J.P.; Bagasra, O. Differential Zinc Accumulation and Expression of Human Zinc Transporter 1 (HZIP1) in Prostate Glands. Methods San Diego Calif 2010, 52, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Desouki, M.M.; Geradts, J.; Milon, B.; Franklin, R.B.; Costello, L.C. HZip2 and HZip3 Zinc Transporters Are down Regulated in Human Prostate Adenocarcinomatous Glands. Mol. Cancer 2007, 6, 37. [Google Scholar] [CrossRef]
- Golovine, K.; Makhov, P.; Uzzo, R.G.; Shaw, T.; Kunkle, D.; Kolenko, V.M. Overexpression of the Zinc Uptake Transporter HZIP1 Inhibits Nuclear Factor-KappaB and Reduces the Malignant Potential of Prostate Cancer Cells in Vitro and in Vivo. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 5376–5384. [Google Scholar] [CrossRef]
- Ippolito, L.; Comito, G.; Parri, M.; Iozzo, M.; Duatti, A.; Virgilio, F.; Lorito, N.; Bacci, M.; Pardella, E.; Sandrini, G.; et al. Lactate Rewires Lipid Metabolism and Sustains a Metabolic-Epigenetic Axis in Prostate Cancer. Cancer Res. 2022, 82, 1267–1282. [Google Scholar] [CrossRef]
- Pértega-Gomes, N.; Vizcaíno, J.R.; Attig, J.; Jurmeister, S.; Lopes, C.; Baltazar, F. A Lactate Shuttle System between Tumour and Stromal Cells Is Associated with Poor Prognosis in Prostate Cancer. BMC Cancer 2014, 14, 352. [Google Scholar] [CrossRef]
- Pardo, J.C.; Ruiz de Porras, V.; Gil, J.; Font, A.; Puig-Domingo, M.; Jordà, M. Lipid Metabolism and Epigenetics Crosstalk in Prostate Cancer. Nutrients 2022, 14, 851. [Google Scholar] [CrossRef]
- Sadeghi, R.N.; Karami-Tehrani, F.; Salami, S. Targeting Prostate Cancer Cell Metabolism: Impact of Hexokinase and CPT-1 Enzymes. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2015, 36, 2893–2905. [Google Scholar] [CrossRef]
- Scaglia, N.; Frontini-López, Y.R.; Zadra, G. Prostate Cancer Progression: As a Matter of Fats. Front. Oncol. 2021, 11, 719865. [Google Scholar] [CrossRef]
- Bader, D.A.; Hartig, S.M.; Putluri, V.; Foley, C.; Hamilton, M.P.; Smith, E.A.; Saha, P.K.; Panigrahi, A.; Walker, C.; Zong, L.; et al. Mitochondrial Pyruvate Import Is a Metabolic Vulnerability in Androgen Receptor-Driven Prostate Cancer. Nat. Metab. 2019, 1, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Massie, C.E.; Lynch, A.; Ramos-Montoya, A.; Boren, J.; Stark, R.; Fazli, L.; Warren, A.; Scott, H.; Madhu, B.; Sharma, N.; et al. The Androgen Receptor Fuels Prostate Cancer by Regulating Central Metabolism and Biosynthesis. EMBO J. 2011, 30, 2719–2733. [Google Scholar] [CrossRef] [PubMed]
- Barfeld, S.J.; Itkonen, H.M.; Urbanucci, A.; Mills, I.G. Androgen-Regulated Metabolism and Biosynthesis in Prostate Cancer. Endocr. Relat. Cancer 2014, 21, T57–T66. [Google Scholar] [CrossRef] [PubMed]
- Beltran, H.; Hruszkewycz, A.; Scher, H.I.; Hildesheim, J.; Isaacs, J.; Yu, E.Y.; Kelly, K.; Lin, D.; Dicker, A.; Arnold, J.; et al. The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 6916–6924. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Khan, M.A.; Anand, S.; Zubair, H.; Deshmukh, S.K.; Patel, G.K.; Singh, S.; Andrews, J.; Wang, B.; Carter, J.E.; et al. MYB Interacts with Androgen Receptor, Sustains Its Ligand-Independent Activation and Promotes Castration Resistance in Prostate Cancer. Br. J. Cancer 2022, 126, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Vidal, C.; Dey, S.; Zhang, L. Mitochondria Targeting as an Effective Strategy for Cancer Therapy. Int. J. Mol. Sci. 2020, 21, 3363. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, L.; Jia, R. The Role of Mitochondrial Dynamics in Human Cancers. Am. J. Cancer Res. 2020, 10, 1278–1293. [Google Scholar]
- Furnish, M.; Boulton, D.P.; Genther, V.; Grofova, D.; Ellinwood, M.L.; Romero, L.; Lucia, M.S.; Cramer, S.D.; Caino, M.C. MIRO2 Regulates Prostate Cancer Cell Growth via GCN1-Dependent Stress Signaling. Mol. Cancer Res. MCR 2022, 20, 607–621. [Google Scholar] [CrossRef]
- Wang, Y.; Agarwal, E.; Bertolini, I.; Ghosh, J.C.; Seo, J.H.; Altieri, D.C. IDH2 Reprograms Mitochondrial Dynamics in Cancer through a HIF-1α-Regulated Pseudohypoxic State. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019, 33, 13398–13411. [Google Scholar] [CrossRef]
- Harbauer, A.B.; Zahedi, R.P.; Sickmann, A.; Pfanner, N.; Meisinger, C. The Protein Import Machinery of Mitochondria-a Regulatory Hub in Metabolism, Stress, and Disease. Cell Metab. 2014, 19, 357–372. [Google Scholar] [CrossRef]
- Ruprecht, J.J.; Kunji, E.R.S. The SLC25 Mitochondrial Carrier Family: Structure and Mechanism. Trends Biochem. Sci. 2020, 45, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Iddawela, M.; Pazaro, C.; Lawrence, M.; Furic, L.; Taylor, R.; Risbridger, G. Association of “DNA Damage Signature” with Poor Outcome in Early Prostate Cancer. J. Clin. Oncol. 2015, 33, 13. [Google Scholar] [CrossRef]
- Zheng, H.; Liang, G.; Chen, Y.; Lin, S.; Liu, W.; Fang, Y. Potential Anticancer Mechanisms of a Novel EGFR/DNA-Targeting Combi-Molecule (JDF12) against DU145 Prostate Cancer Cells: An ITRAQ-Based Proteomic Analysis. BioMed Res. Int. 2017, 2017, 8050313. [Google Scholar] [CrossRef]
- Mazure, N.M. VDAC in Cancer. Biochim. Biophys. Acta Bioenerg. 2017, 1858, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Arif, T.; Vasilkovsky, L.; Refaely, Y.; Konson, A.; Shoshan-Barmatz, V. Silencing VDAC1 Expression by SiRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo. Mol. Ther. Nucleic Acids 2014, 3, e159. [Google Scholar] [CrossRef] [PubMed]
- Zhunussova, A.; Sen, B.; Friedman, L.; Tuleukhanov, S.; Brooks, A.D.; Sensenig, R.; Orynbayeva, Z. Tumor Microenvironment Promotes Dicarboxylic Acid Carrier-Mediated Transport of Succinate to Fuel Prostate Cancer Mitochondria. Am. J. Cancer Res. 2015, 5, 1665–1679. [Google Scholar]
- Rochette, L.; Meloux, A.; Zeller, M.; Malka, G.; Cottin, Y.; Vergely, C. Mitochondrial SLC25 Carriers: Novel Targets for Cancer Therapy. Molecules 2020, 25, 2417. [Google Scholar] [CrossRef] [PubMed]
- Rise, K.; Tessem, M.-B.; Drabløs, F.; Rye, M.B. FunHoP Analysis Reveals Upregulation of Mitochondrial Genes in Prostate Cancer. PloS ONE 2022, 17, e0275621. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, H.R.; Gadre, S.M.; Tan, M.; Graham, G.T.; Mosaoa, R.; Ongkeko, M.S.; Kim, K.A.; Riggins, R.B.; Parasido, E.; Petrini, I.; et al. The Mitochondrial Citrate Carrier, SLC25A1, Drives Stemness and Therapy Resistance in Non-Small Cell Lung Cancer. Cell Death Differ. 2018, 25, 1239–1258. [Google Scholar] [CrossRef]
- Kolukula, V.K.; Sahu, G.; Wellstein, A.; Rodriguez, O.C.; Preet, A.; Iacobazzi, V.; D’Orazi, G.; Albanese, C.; Palmieri, F.; Avantaggiati, M.L. SLC25A1, or CIC, Is a Novel Transcriptional Target of Mutant P53 and a Negative Tumor Prognostic Marker. Oncotarget 2014, 5, 1212–1225. [Google Scholar] [CrossRef]
S.N. | Gene/Variant | Function | Type of Cancer | Racial Disparity | Reference |
---|---|---|---|---|---|
1 | ERR1 and PGC1α | Mitochondrial biogenesis | Pan cancer | Strong enrichment of ERR1-PGC1α transcriptional program in AA tumors than EA | [126] |
2 | Cytochrome c oxidase subunit I (COI) | Oxidative phosphorylation, Mitochondrial supercomplex assembly | Prostate cancer | COI missense mutations more common in African American compare to others | [32,137] |
3 | POLG | Mitochondrial DNA replication | Prostate Cancer | CAG repeats variants in POLG associated with increased risk of breast cancer in African American Women | [138] |
4 | ND3 (G10398A) | Alters the structure of Complex I | Prostate cancer and Breast Cancer | Increased risk of breast cancer in African American women with G10398A allele | [139,140] |
5 | Haplogroup U (A11467G, A12308G, G12372A) | ----- | Prostate Cancer | Mitochondrial haplogroup U is associated with increased risk of prostate cancer in white North American individuals | [141] |
6 | HSP60 and HSP90 | Act as chaperones and support cancer cell survival | Prostate cancer | Compare to CA cells, lower expression of HSP60 and HSP90 in AA cells is associated with mitochondrial dysfunction, and chemoresistance | [142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vikramdeo, K.S.; Sharma, A.; Anand, S.; Sudan, S.K.; Singh, S.; Singh, A.P.; Dasgupta, S. Mitochondrial Alterations in Prostate Cancer: Roles in Pathobiology and Racial Disparities. Int. J. Mol. Sci. 2023, 24, 4482. https://doi.org/10.3390/ijms24054482
Vikramdeo KS, Sharma A, Anand S, Sudan SK, Singh S, Singh AP, Dasgupta S. Mitochondrial Alterations in Prostate Cancer: Roles in Pathobiology and Racial Disparities. International Journal of Molecular Sciences. 2023; 24(5):4482. https://doi.org/10.3390/ijms24054482
Chicago/Turabian StyleVikramdeo, Kunwar Somesh, Amod Sharma, Shashi Anand, Sarabjeet Kour Sudan, Seema Singh, Ajay Pratap Singh, and Santanu Dasgupta. 2023. "Mitochondrial Alterations in Prostate Cancer: Roles in Pathobiology and Racial Disparities" International Journal of Molecular Sciences 24, no. 5: 4482. https://doi.org/10.3390/ijms24054482
APA StyleVikramdeo, K. S., Sharma, A., Anand, S., Sudan, S. K., Singh, S., Singh, A. P., & Dasgupta, S. (2023). Mitochondrial Alterations in Prostate Cancer: Roles in Pathobiology and Racial Disparities. International Journal of Molecular Sciences, 24(5), 4482. https://doi.org/10.3390/ijms24054482