FHL2 Genetic Polymorphisms and Pro-Diabetogenic Lipid Profile in the Multiethnic HELIUS Cohort
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. FHL2 Genetic Polymorphism Distribution
2.3. Associations between FHL2 SNPs and Lipid Metabolism and Glucose Tolerance
3. Discussion
4. Materials and Methods
4.1. Population
4.2. Phenotypical Assessments
4.3. Genotyping and Polymorphism Quality Control
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Kasuga, M. Insulin resistance and pancreatic beta cell failure. J. Clin. Investig. 2006, 116, 1756–1760. [Google Scholar] [CrossRef]
- Turner, R.C.; Millns, H.; Neil, H.A.; Stratton, I.M.; Manley, S.E.; Matthews, D.R.; Holman, R.R. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS: 23). BMJ 1998, 316, 823–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayaraghavan, K. Treatment of dyslipidemia in patients with type 2 diabetes. Lipids Health Dis. 2010, 9, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taskinen, M.R. Type 2 diabetes as a lipid disorder. Curr. Mol. Med. 2005, 5, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Chapman, M.J.; Ginsberg, H.N.; Amarenco, P.; Andreotti, F.; Borén, J.; Catapano, A.L.; Descamps, O.S.; Fisher, E.; Kovanen, P.T.; Kuivenhovenet, J.I.; et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: Evidence and guidance for management. Eur. Heart J. 2011, 32, 1345–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeks, K.A.C.; Freitas-Da-Silva, D.; Adeyemo, A.; Beune, E.J.A.J.; Modesti, P.A.; Stronks, K.; Zafarmand, M.H.; Agyemang, C. Disparities in type 2 diabetes prevalence among ethnic minority groups resident in Europe: A systematic review and meta-analysis. Intern. Emerg. Med. 2016, 11, 327–340. [Google Scholar] [CrossRef]
- Gazzola, K.; Reeskamp, L.; van den Born, B.J. Ethnicity, lipids and cardiovascular disease. Curr. Opin. Lipidol. 2017, 28, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Xue, A.; Wu, Y.; Zhu, Z.; Zhang, F.; Kemper, K.E.; Zheng, Z.; Yengo, L.; Lloyd-Jones, L.R.; Sidorenko, J.; Wu, Y.; et al. Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat. Commun. 2018, 9, 2941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Giustiniani, D.; Stein, R. Genetics of Dyslipidemia. Arq. Bras. Cardiol. 2016, 106, 434–438. [Google Scholar] [CrossRef]
- Chen, C.Y.; Tsai, H.Y.; Tsai, S.H.; Chu, P.H.; Huang, P.H.; Chen, J.W.; Lin, S.J. Deletion of the FHL2 gene attenuates intima-media thickening in a partially ligated carotid artery ligated mouse model. J. Cell. Mol. Med. 2020, 24, 160–173. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Bradford, W.H.; Zhang, J.; Sheikh, F. Four and a half LIM domain protein signaling and cardiomyopathy. Biophys. Rev. 2018, 10, 1073–1085. [Google Scholar] [CrossRef]
- Liu, Z.; Han, S.; Wang, Y.; Cui, C.; Zhu, Q.; Jiang, X.; Yang, C.; Du, H.; Yu, C.; Li, Q.; et al. The LIM-Only Protein FHL2 is involved in Autophagy to Regulate the Development of Skeletal Muscle Cell. Int. J. Biol. Sci. 2019, 15, 838–846. [Google Scholar] [CrossRef]
- van de Pol, V.; Vos, M.; DeRuiter, M.C.; Goumans, M.J.; de Vries, C.J.M.; Kurakula, K. LIM-only protein FHL2 attenuates inflammation in vascular smooth muscle cells through inhibition of the NFκB pathway. Vasc. Pharmacol. 2020, 125–126, 106634. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-García, I.; Rabbitts, T.H. The LIM domain: A new structural motif found in zinc-finger-like proteins. Trends Genet. 1994, 10, 315–320. [Google Scholar] [CrossRef]
- Tran, M.K.; Kurakula, K.; Koenis, D.S.; de Vries, C.J.M. Protein-protein interactions of the LIM-only protein FHL2 and functional implication of the interactions relevant in cardiovascular disease. Biochim. Biophys Acta 2016, 1863, 219–228. [Google Scholar] [CrossRef]
- Cai, T.; Sun, D.; Duan, Y.; Qiu, Y.; Dai, C.; Yang, J.; He, W. FHL2 promotes tubular epithelial-to-mesenchymal transition through modulating β-catenin signalling. J. Cell. Mol. Med. 2018, 22, 1684–1695. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.Y.; Mok, S.W.F.; Cheng, V.W.S.; Tsui, S.K.W. The FHL2 regulation in the transcriptional circuitry of human cancers. Gene 2015, 572, 1–7. [Google Scholar] [CrossRef]
- FHL2: A Scaffold Protein of Carcinogenesis, Tumour-Stroma Interactions and Treatment Response. Available online: https://pubmed.ncbi.nlm.nih.gov/26676939/ (accessed on 24 April 2022).
- Kleiber, K.; Strebhardt, K.; Martin, B.T. The biological relevance of FHL2 in tumour cells and its role as a putative cancer target. Anticancer Res. 2007, 27, 55–61. [Google Scholar]
- Ramayo-Caldas, Y.; Ballester, M.; Fortes, M.R.S.; Esteve-Codina, A.; Castelló, A.; Noguera, J.L.; Folch, J.M.; Reverter, A.; Pérez-Enciso, M.; Fernández, A.I. From SNP co-association to RNA co-expression: Novel insights into gene networks for intramuscular fatty acid composition in porcine. BMC Genom. 2014, 15, 232. [Google Scholar] [CrossRef] [Green Version]
- Kichaev, G.; Bhatia, G.; Loh, P.-R.; Gazal, S.; Burch, K.; Freund, M.K.; Schoech, A.; Pasaniuc, B.; Price, A.L. Leveraging Polygenic Functional Enrichment to Improve GWAS Power. Am. J. Hum. Genet. 2019, 104, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Guo, Y.; Shi, H.; Liu, C.L.; Panganiban, R.A.; Chung, W.; Connor, L.J.O.; Himes, B.E.; Gazal, S.; Hasegawa, K.; et al. Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J. Allergy Clin. Immunol. 2020, 145, 537–549. [Google Scholar] [CrossRef] [Green Version]
- Bacos, K.; Gillberg, L.; Volkov, P.; Olsson, A.H.; Hansen, T.; Pedersen, O.; Gjesing, A.P.; Eiberg, H.; Tuomi, T.; Almgren, P.; et al. Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat. Commun. 2016, 7, 11089. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-Y.; Huang, P.-H.; Tarng, D.-C.; Lin, T.-P.; Yang, W.-C.; Chang, Y.-H.; Yang, A.-H.; Lin, C.-C.; Yang, M.-H.; Chen, J.-W.; et al. Four-and-a-Half LIM Domains Protein 2 Is a Coactivator of Wnt Signaling in Diabetic Kidney Disease. J. Am. Soc. Nephrol. 2015, 26, 3072–3084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habibe, J.J.; Clemente-Olivo, M.P.; Scheithauer, T.P.M.; Rampanelli, E.; Herrema, H.; Vos, M.; Mieremet, A.; Nieuwdorp, M.; van Raalte, D.H.; Eringa, E.C.; et al. Glucose-mediated insulin secretion is improved in FHL2-deficient mice and elevated FHL2 expression in humans is associated with type 2 diabetes. Diabetologia 2022, 65, 1721–1733. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Olivo, M.P.; Habibe, J.J.; Vos, M.; Ottenhoff, R.; Jongejan, A.; Herrema, H.; Zelcer, N.; Kooijman, S.; Rensen, P.C.; van Raalte, D.H.; et al. Four-and-a-half LIM domain protein 2 (FHL2) deficiency protects mice from diet-induced obesity and high FHL2 expression marks human obesity. Metabolism 2021, 121, 154815. [Google Scholar] [CrossRef] [PubMed]
- Tachmazidou, I.; Süveges, D.; Min, J.L.; Ritchie, G.R.S.; Steinberg, J.; Walter, K.; Iotchkova, V.; Schwartzentruber, J.; Huang, J.; Memari, Y.; et al. Whole-Genome Sequencing Coupled to Imputation Discovers Genetic Signals for Anthropometric Traits. Am. J. Hum. Genet. 2017, 100, 865–884. [Google Scholar] [CrossRef] [Green Version]
- Zempo, H.; Kim, S.J.; Fuku, N.; Nishida, Y.; Higaki, Y.; Wan, J.; Yen, K.; Miller, B.; Vicinanza, R.; Miyamoto-Mikami, E.; et al. A pro-diabetogenic mtDNA polymorphism in the mitochondrial-derived peptide, MOTS-c. Aging 2021, 13, 1692–1717. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Song, S.; Li, C.; Zhang, J. Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature 2022, 606, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Snijder, M.B.; Galenkamp, H.; Prins, M.; Derks, E.; Peters, R.J.G.; Zwinderman, A.H.; Stronks, K. Cohort profile: The Healthy Life in an Urban Setting (HELIUS) study in Amsterdam, The Netherlands. BMJ Open 2017, 7, e017873. [Google Scholar] [CrossRef] [Green Version]
- Stronks, K.; Snijder, M.B.; Peters, R.J.G.; Prins, M.; Schene, A.H.; Zwinderman, A.H. Unravelling the impact of ethnicity on health in Europe: The HELIUS study. BMC Public Health 2013, 13, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boulund, U.; Bastos, D.M.; Ferwerda, B.; van den Born, B.J.; Pinto-Sietsma, S.-J.; Galenkamp, H.; Levin, E.; Groen, A.K.; Zwinderman, A.H.; Nieuwdorp, M. Gut microbiome associations with host genotype vary across ethnicities and potentially influence cardiometabolic traits. Cell Host Microbe 2022, 30, 1464–1480.e6. [Google Scholar] [CrossRef]
- Deschasaux, M.; Bouter, K.E.; Prodan, A.; Levin, E.; Groen, A.K.; Herrema, H.; Tremaroli, V.; Bakker, G.J.; Attaye, I.; Pinto-Sietsma, S.-J.; et al. Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography. Nat. Med. 2018, 24, 1526–1531. [Google Scholar] [CrossRef] [PubMed]
- Sturkenboom, S.M.; Dekker, L.H.; Lamkaddem, M.; A Schaap, L.; de Vries, J.H.; Stronks, K.; Nicolaou, M. Acculturation and dietary patterns among residents of Surinamese origin in the Netherlands: The HELIUS dietary pattern study. Public Health Nutr. 2016, 19, 682–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazzola, K.; Snijder, M.B.; Hovingh, G.K.; Stroes, E.S.G.; Peters, R.J.G.; van den Born, B.J.H. Ethnic differences in plasma lipid levels in a large multiethnic cohort: The HELIUS study. J. Clin. Lipidol. 2018, 12, 1217–1224.e1. [Google Scholar] [CrossRef]
- Ferwerda, B.; Abdellaoui, A.; Nieuwdorp, M.; Zwinderman, K.A. Genetic Map of the Modern Urban Society of Amsterdam. Front. Genet. 2021, 12, 727269. [Google Scholar] [CrossRef]
- Anderson, C.A.; Pettersson, F.H.; Clarke, G.M.; Cardon, L.R.; Morris, A.P.; Zondervan, K.T. Data quality control in genetic case-control association studies. Nat. Protoc. 2010, 5, 1564–1573. [Google Scholar] [CrossRef] [Green Version]
Baseline Characteristics | European Dutch | South Asian Surinamese | African Surinamese | Ghanaian | Turkish | Moroccan |
---|---|---|---|---|---|---|
No. of participants | 1286 | 1502 | 1156 | 445 | 2636 | 3031 |
Total cohort (%) | 12.8 | 14.9 | 11.5 | 4.4 | 26.2 | 30.1 |
Males (% of ethnicity) | 50 | 46 | 39 | 41 | 46 | 39 |
Diabetic individuals (% of ethnicity) | 5.8 | 21.4 | 15.4 | 14.6 | 10.2 | 11.7 |
Age (years) | 51.8 ± 13 | 47.0 ± 13 | 52 ± 11 | 48 ± 9 | 41 ± 12 | 41 ± 13 |
BMI (kg/m2) | 25.5 ± 4.4 | 26.4 ± 4.6 | 28.4 ± 5.5 | 28.4 ± 4.6 | 28.5 ± 5.6 | 27.7 ± 5.2 |
Waist-to-hip ratio (WHR) | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 |
BIA Fat percentage (%) | 29.4 ± 7.5 | 32.0 ± 8.2 | 32.7 ± 9.0 | 32.6 ± 8.9 | 31.9 ± 8.3 | 32.8 ±8.3 |
Fasting blood glucose (mmol/L) | 5.4 ± 0.8 | 5.9 ± 1.5 | 5.6 ± 1.3 | 5.5 ± 1.4 | 5.5 ± 1.2 | 5.5 ± 1.4 |
Fasting blood HbA1c (mmol/mol) | 36.9 ± 4.9 | 42.6 ± 10.1 | 40.7 ± 9.1 | 40.2 ± 11.0 | 38.7 ± 8.3 | 38.9 ± 8.7 |
Blood triglyceride (mmol/L) | 1.1 ± 0.7 | 1.2 ± 0.9 | 0.9 ± 0.6 | 0.7 ± 0.4 | 1.2 ± 0.9 | 1.0 ± 0.6 |
Blood total cholesterol (mmol/L) | 5.2 ± 1.0 | 5.0 ± 1.1 | 5.0 ± 1.0 | 5.0 ± 1.0 | 4.9 ± 1.0 | 4.6 ± 0.9 |
Blood HDL (mmol/L) | 1.5 ± 0.4 | 1.3 ± 0.4 | 1.5 ± 0.4 | 1.6 ± 0.4 | 1.3 ± 0.4 | 1.3 ± 0.3 |
Blood LDL (mmol/L) | 3.2 ± 0.9 | 3.1 ± 0.9 | 3.0 ± 0.9 | 3.0 ± 0.9 | 3.0 ± 0.8 | 2.9 ± 0.8 |
FHL2 SNP | European Dutch | South Asian Surinamese | African Surinamese | Ghanaian | Turkish | Moroccan | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SNP ID | Ref Allele | Alt Allele | Type | Ref Allele | Alt Allele | Ref Allele | Alt Allele | REF ALLELE | Alt Allele | Ref Allele | Alt Allele | Ref Allele | Alt Allele | Ref Allele | Alt Allele |
rs11124029 | G | A | Synonymous | 0.79 | 0.21 | 0.88 | 0.12 | 0.91 | 0.09 | 0.92 | 0.08 | 0.79 | 0.21 | 0.83 | 0.17 |
rs3087523 | G | A | Synonymous | 0.89 | 0.11 | 0.96 | 0.04 | 0.97 | 0.03 | 0.98 | 0.02 | 0.91 | 0.09 | 0.93 | 0.07 |
rs2278501 | T | C | Intron | 0.54 | 0.46 | 0.47 | 0.53 | 0.31 | 0.69 | 0.28 | 0.72 | 0.49 | 0.51 | 0.35 | 0.65 |
rs2278502 | C | A | Intron | 0.61 | 0.39 | 0.64 | 0.36 | 0.8 | 0.2 | 0.86 | 0.14 | 0.63 | 0.37 | 0.74 | 0.26 |
rs137869171 | G | A | Missense | 0.99 | 0.01 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0.99 | 0.01 |
rs2576778 | G | A | Intron | 0.8 | 0.2 | 0.78 | 0.22 | 0.9 | 0.1 | 0.91 | 0.09 | 0.83 | 0.17 | 0.9 | 0.1 |
rs880427 | G | A | Intron | 0.66 | 0.34 | 0.65 | 0.35 | 0.81 | 0.19 | 0.84 | 0.16 | 0.64 | 0.36 | 0.68 | 0.32 |
rs4640402 | A | C | Intron | 0.59 | 0.41 | 0.45 | 0.55 | 0.38 | 0.62 | 0.34 | 0.66 | 0.6 | 0.4 | 0.61 | 0.39 |
rs4851765 | T | C | Intron | 0.66 | 0.34 | 0.64 | 0.36 | 0.76 | 0.24 | 0.8 | 0.2 | 0.67 | 0.33 | 0.8 | 0.2 |
rs11891016 | C | T | Intron | 0.67 | 0.33 | 0.64 | 0.36 | 0.74 | 0.26 | 0.78 | 0.22 | 0.68 | 0.32 | 0.81 | 0.19 |
rs11884297 | C | T | Intron | 0.57 | 0.43 | 0.68 | 0.32 | 0.72 | 0.28 | 0.79 | 0.21 | 0.61 | 0.39 | 0.62 | 0.38 |
rs4374396 | A | G | Intron | 0.64 | 0.36 | 0.58 | 0.42 | 0.62 | 0.38 | 0.6 | 0.4 | 0.63 | 0.37 | 0.58 | 0.42 |
rs2376740 | C | T | Intron | 0.57 | 0.43 | 0.7 | 0.3 | 0.69 | 0.31 | 0.78 | 0.22 | 0.58 | 0.42 | 0.62 | 0.38 |
rs1914748 | C | T | Intron | 0.54 | 0.46 | 0.49 | 0.51 | 0.51 | 0.49 | 0.44 | 0.56 | 0.53 | 0.47 | 0.5 | 0.5 |
rs4851770 | C | T | Intron | 0.5 | 0.5 | 0.58 | 0.42 | 0.74 | 0.26 | 0.84 | 0.16 | 0.53 | 0.47 | 0.61 | 0.39 |
rs6750100 | A | G | Intron | 0.75 | 0.25 | 0.69 | 0.31 | 0.61 | 0.39 | 0.53 | 0.47 | 0.76 | 0.24 | 0.72 | 0.28 |
rs4851772 | A | G | Intron | 0.92 | 0.08 | 0.82 | 0.18 | 0.77 | 0.23 | 0.73 | 0.27 | 0.85 | 0.15 | 0.77 | 0.23 |
rs7583367 | G | T | Intergenic | 0.53 | 0.47 | 0.61 | 0.39 | 0.82 | 0.18 | 0.92 | 0.08 | 0.55 | 0.45 | 0.65 | 0.35 |
rs10177620 | A | G | Intergenic | 0.67 | 0.33 | 0.66 | 0.34 | 0.6 | 0.4 | 0.56 | 0.44 | 0.7 | 0.3 | 0.67 | 0.33 |
Outcome | SNP ID | Ethnicity | Raw p-Value |
---|---|---|---|
HbA1c | rs11124029 | African Surinamese | 2.06 × 10−2 |
Glucose | rs11884297 | African Surinamese | 4.25 × 10−2 |
Triglycerides | rs11884297 | African Surinamese | 4.14 × 10−2 |
Cholesterol | rs11884297 | African Surinamese | 1.47 × 10−2 |
Triglycerides | rs1914748 | African Surinamese | 1.53 × 10−2 |
LDL-C | rs2576778 | African Surinamese | 4.17 × 10−2 |
HDL-C | rs3087523 | African Surinamese | 3.45 × 10−2 |
HDL-C | rs2576778 | European Dutch | 4.39 × 10−2 |
T2D | rs2278501 | Ghanaian | 2.73 × 10−2 |
Cholesterol | rs11884297 | Ghanaian | 2.81 × 10−2 |
HDL-C | rs11884297 | Ghanaian | 8.92 × 10−3 |
Triglycerides | rs11891016 | Ghanaian | 2.23 × 10−2 |
Triglycerides | rs1914748 | Ghanaian | 7.39 × 10−3 |
HbA1c | rs4640402 | Ghanaian | 3.30 × 10−2 |
Triglycerides | rs4640402 | Ghanaian | 1.12 × 10−3 |
HDL-C | rs4640402 | Ghanaian | 3.51 × 10−2 |
Triglycerides | rs4851765 | Ghanaian | 1.83 × 10−2 |
HDL-C | rs4851772 | Ghanaian | 4.57 × 10−2 |
HbA1c | rs880427 | Ghanaian | 1.49 × 10−2 |
HDL-C | rs880427 | Ghanaian | 1.70 × 10−3 |
T2D | rs137869171 | Moroccan | 5.11 × 10−3 |
T2D | rs2278501 | Moroccan | 3.14 × 10−2 |
LDL-C | rs11891016 | Moroccan | 4.20 × 10−2 |
HDL-C | rs2376740 | Moroccan | 3.97 × 10−2 |
Triglycerides | rs3087523 | Moroccan | 4.71 × 10−2 |
LDL-C | rs4851765 | Moroccan | 4.88 × 10−2 |
Cholesterol | rs4851770 | Moroccan | 5.71 × 10−3 |
LDL-C | rs4851770 | Moroccan | 1.48 × 10−2 |
HDL-C | rs11124029 | Total | 4.51 × 10−2 |
Triglycerides | rs4640402 | Total | 1.81 × 10−2 |
HDL-C | rs4640402 | Total | 2.53 × 10−2 |
Cholesterol | rs4851770 | Total | 2.44 × 10−2 |
LDL-C | rs4851770 | Total | 1.82 × 10−2 |
HbA1c | rs880427 | Total | 3.71 × 10−2 |
HDL-C | rs880427 | Total | 2.99 × 10−3 |
Cholesterol | rs4851770 | Turkish | 3.18 × 10−2 |
HbA1c | rs880427 | Turkish | 3.18 × 10−2 |
HDL-C | rs880427 | Turkish | 2.04 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habibe, J.J.; Boulund, U.; Clemente-Olivo, M.P.; de Vries, C.J.M.; Eringa, E.C.; Nieuwdorp, M.; Ferwerda, B.; Zwinderman, K.; van den Born, B.-J.H.; Galenkamp, H.; et al. FHL2 Genetic Polymorphisms and Pro-Diabetogenic Lipid Profile in the Multiethnic HELIUS Cohort. Int. J. Mol. Sci. 2023, 24, 4332. https://doi.org/10.3390/ijms24054332
Habibe JJ, Boulund U, Clemente-Olivo MP, de Vries CJM, Eringa EC, Nieuwdorp M, Ferwerda B, Zwinderman K, van den Born B-JH, Galenkamp H, et al. FHL2 Genetic Polymorphisms and Pro-Diabetogenic Lipid Profile in the Multiethnic HELIUS Cohort. International Journal of Molecular Sciences. 2023; 24(5):4332. https://doi.org/10.3390/ijms24054332
Chicago/Turabian StyleHabibe, Jayron J., Ulrika Boulund, Maria P. Clemente-Olivo, Carlie J. M. de Vries, Etto C. Eringa, Max Nieuwdorp, Bart Ferwerda, Koos Zwinderman, Bert-Jan H. van den Born, Henrike Galenkamp, and et al. 2023. "FHL2 Genetic Polymorphisms and Pro-Diabetogenic Lipid Profile in the Multiethnic HELIUS Cohort" International Journal of Molecular Sciences 24, no. 5: 4332. https://doi.org/10.3390/ijms24054332
APA StyleHabibe, J. J., Boulund, U., Clemente-Olivo, M. P., de Vries, C. J. M., Eringa, E. C., Nieuwdorp, M., Ferwerda, B., Zwinderman, K., van den Born, B.-J. H., Galenkamp, H., & van Raalte, D. H. (2023). FHL2 Genetic Polymorphisms and Pro-Diabetogenic Lipid Profile in the Multiethnic HELIUS Cohort. International Journal of Molecular Sciences, 24(5), 4332. https://doi.org/10.3390/ijms24054332