Dealloyed Porous NiFe2O4/NiO with Dual-Network Structure as High-Performance Anodes for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Preparation of NiFe2O4/NiO Composites
3.2. Material Characterizations
3.3. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neumann, J.; Petranikova, M.; Meeus, M.; Gamarra, J.D.; Younesi, R.; Winter, M.; Nowak, S. Recycling of lithium-ion batteries—Current state of the art, circular economy, and next generation recycling. Adv. Energy Mater. 2022, 12, 2102917. [Google Scholar] [CrossRef]
- Du, K.D.; Ang, E.H.; Wu, X.L.; Liu, Y.C. Progresses in sustainable recycling technology of spent lithium-ion batteries. Energy Environ. Mater. 2022, 5, 1012–1036. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Zhu, C.X.; Yu, S.C.; Ge, D.H.; Zhou, H.S. Status and challenges facing representative anode materials for rechargeable lithium batteries. J. Energy Chem. 2022, 66, 260–294. [Google Scholar] [CrossRef]
- Li, J.L.; Fleetwood, J.; Hawley, W.B.; Kays, W. From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing. Chem. Rev. 2022, 122, 903–956. [Google Scholar] [CrossRef]
- Cheng, H.; Shapter, J.G.; Li, Y.Y.; Gao, G. Recent progress of advanced anode materials of lithium-ion batteries. J. Energy Chem. 2021, 57, 451–468. [Google Scholar] [CrossRef]
- Tian, K.H.; Duan, C.Q.; Ma, Q.; Li, X.L.; Wang, Z.Y.; Sun, H.Y.; Luo, S.H.; Wang, D.; Liu, Y.G. High-entropy chemistry stabilizing spinel oxide (CoNiZnXMnLi)3O4 (X = Fe, Cr) for high-performance anode of Li-ion batteries. Rare Metals 2022, 41, 1265–1275. [Google Scholar] [CrossRef]
- Qin, G.T.; Wu, X.; Wen, J.W.; Li, J.; Zeng, M. A core-shell NiFe2O4@SiO2 structure as a high-performance anode material for lithium-ion batteries. ChemElectroChem 2019, 6, 911–916. [Google Scholar] [CrossRef]
- Cao, K.Z.; Jin, T.; Yang, L.; Jiao, L.F. Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mat. Chem. Front. 2017, 1, 2213–2242. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Sheldon, B.W. Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 2014, 63, 58–116. [Google Scholar] [CrossRef]
- Christensen, J. Modeling diffusion-induced stress in Li-ion cells with porous electrodes. J. Electrochem. Soc. 2010, 157, A366–A380. [Google Scholar] [CrossRef]
- Zhou, W.B.; Hao, F.; Fang, D.N. The effects of elastic stiffening on the evolution of the stress field within a spherical electrode particle of lithium-ion batteries. Int. J. Appl. Mech. 2013, 5, 1350040. [Google Scholar] [CrossRef]
- Zhou, W.B. Effects of external mechanical loading on stress generation during lithiation in Li-ion battery electrodes. Electrochim. Acta 2015, 185, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.N.; Yang, G.R.; Wang, L.; Yan, W. Synthesis of one-dimensional NiFe2O4 nanostructures: Tunable morphology and high-performance anode materials for Li ion batteries. J. Mater. Chem. A 2016, 4, 8620–8629. [Google Scholar] [CrossRef]
- Wang, Z.F.; Fei, P.Y.; Xiong, H.Q.; Qin, C.L.; Zhao, W.M.; Liu, X.Z. CoFe2O4 nanoplates synthesized by dealloying method as high performance Li-ion battery anodes. Electrochim. Acta 2017, 252, 295–305. [Google Scholar] [CrossRef]
- Pomerantseva, E.; Bonaccorso, F.; Feng, X.L.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, 969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.J.; Yu, A.S. Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci. Bull. 2015, 60, 823–838. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.F.; Zhang, X.M.; Liu, X.L.; Zhang, W.Q.; Zhang, Y.G.; Li, Y.Y.; Qin, C.L.; Zhao, W.M.; Bakenov, Z. Dual-network nanoporous NiFe2O4/NiO composites for high performance Li-ion battery anodes. Chem. Eng. J. 2020, 388, 124207. [Google Scholar] [CrossRef]
- Wei, H.C.; Qin, S.D.; Zhang, R.P.; Cai, G.F.; Tao, J.; Yan, D.L. Hierarchical porous transition metal oxide nanosheets templated from waste bagasse: General synthesis and Li/Na storage performance. Ceram. Int. 2022, 48, 2298–2305. [Google Scholar] [CrossRef]
- Zeng, G.B.; Shi, N.; Hess, M.; Chen, X.; Cheng, W.; Fan, T.X.; Niederberger, M. A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. ACS Nano 2015, 9, 4227–4235. [Google Scholar] [CrossRef]
- Luo, C.; Wang, Z.G.; Chen, Y.X.; Zhao, Y.M.; Han, Q.Q.; Qin, C.L.; Wang, Z.F. Eutectic-derived bimodal porous Ni@NiO nanowire networks for high-performance Li-ion battery anodes. Int. J. Energy Res. 2022, 46, 24654–24666. [Google Scholar] [CrossRef]
- Yan, Y.J.; Chen, Y.X.; Li, Y.Y.; Wu, X.Y.; Jin, C.; Wang, Z.F. Synthesis of Si/Fe2O3-anchored rGO frameworks as high-performance anodes for Li-ion batteries. Int. J. Mol. Sci. 2021, 22, 11041. [Google Scholar] [CrossRef]
- An, Y.L.; Tian, Y.; Wei, C.L.; Tao, Y.; Xi, B.J.; Xiong, S.L.; Feng, J.K.; Qian, Y.T. Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage. Nano Today 2021, 37, 101094. [Google Scholar] [CrossRef]
- Zhang, D.; Dai, A.; Wu, M.; Shen, K.; Xiao, T.; Hou, G.Y.; Lu, J.; Tang, Y.P. Lithiophilic 3D porous CuZn current collector for stable lithium metal batteries. ACS Energy Lett. 2019, 5, 180–186. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Meng, Y.Q.; Zhang, C.; Yang, H.X.; Xue, Y.C.; Yuan, A.H.; Shen, X.P.; Xu, K.Q. Yolk-shelled ZnO–NiO microspheres derived from tetracyanide-metallic-frameworks as bifunctional electrodes for high-performance lithium-ion batteries and supercapacitors. J. Power Sour. 2019, 421, 41–49. [Google Scholar] [CrossRef]
- Srinivas, K.; Chen, Y.F.; Wang, B.; Yu, B.; Lu, Y.J.; Su, Z.; Zhang, W.L.; Yang, D.X. Metal-organic framework-derived Fe-doped Ni3Fe/NiFe2O4 heteronanoparticle-decorated carbon nanotube network as a highly efficient and durable bifunctional electrocatalyst. ACS Appl. Mater. Interfaces 2020, 12, 55782–55794. [Google Scholar] [CrossRef]
- Du, W.Q.; Zheng, Y.Q.; Liu, X.Y.; Cheng, J.; Chenna Krishna Reddy, R.; Zeb, A.; Lin, X.M.; Luo, Y.F. Oxygen-enriched vacancy spinel MFe2O4/carbon (M = Ni, Mn, Co) derived from metal-organic frameworks toward boosting lithium storage. Chem. Eng. J. 2023, 451, 138626. [Google Scholar] [CrossRef]
- Chen, Z.R.; Zhang, Y.; Wang, X.L.; Sun, W.P.; Dou, S.X.; Huang, X.; Shi, B. Fast-pulverization enabled simultaneous enhancement on cycling stability and rate capability of C@NiFe2O4 hierarchical fibrous bundle. J. Power Sour. 2017, 363, 209–217. [Google Scholar] [CrossRef]
- Li, Z.T.; Qiao, N.; Nie, J.J.; Zhao, J.; Wang, J.; Feng, X.X.; Yao, S.W. NiO/NiFe2O4 nanocubes derived from Prussian blue as anode materials for Li-ion batteries. Mater. Lett. 2020, 275, 128077. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, T.; Cao, L.X.; Luo, K. High-capacity anode material for lithium-ion batteries with a core-shell NiFe2O4/reduced graphene oxide heterostructure. ACS Omega 2021, 6, 25269–25276. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.S.; Huang, Y.; Li, C.; Xiao, Y.Y.; Chen, X.F.; Gao, X.G.; Chen, C. Construction of carnations-like Mn3O4@NiCo2O4@NiO hierarchical nanostructures for high-performance supercapacitors. Electrochim. Acta 2019, 308, 142–149. [Google Scholar] [CrossRef]
- Gao, X.C.; Wang, W.L.; Bi, J.Q.; Chen, Y.F.; Hao, X.X.; Sun, X.N.; Zhang, J.D. Morphology-controllable preparation of NiFe2O4 as high performance electrode material for supercapacitor. Electrochim. Acta 2019, 296, 181–189. [Google Scholar] [CrossRef]
- Yang, C.; Peng, C.C.; Chen, P.; Ma, C.; Guo, K.K.; Cheng, Y.J. Insights into electrochemical performances of NiFe2O4 for lithium-ion anode materials. J. Alloys Compd. 2022, 896, 163079. [Google Scholar] [CrossRef]
- Feng, X.S.; Huang, Y.; Li, C.; Chen, X.F.; Zhou, S.H.; Gao, X.G.; Chen, C. Controllable synthesis of porous NiCo2O4/NiO/Co3O4 nanoflowers for asymmetric all-solid-state supercapacitors. Chem. Eng. J. 2019, 368, 51–60. [Google Scholar] [CrossRef]
- Hao, Q.; Zhao, D.Y.; Duan, H.M.; Zhou, Q.X.; Xu, C.X. Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries. Nanoscale 2015, 7, 5320–5327. [Google Scholar] [CrossRef] [PubMed]
- Santhoshkumar, P.; Kang, S.H.; Shaji, N.; Lee, C.W. Incorporation of binary metal oxide and one dimensional carbon fiber hybrid nanocomposites for electrochemical energy storage applications. J. Alloys Compd. 2020, 842, 155649. [Google Scholar] [CrossRef]
- Yao, L.H.; Zhao, J.G.; Pan, Q.L.; Li, X.Y.; Xing, B.Y.; Jiang, S.; Song, J.; Pang, M.J. Tailoring NiO@NiFe2O4/CNTs triphase hybrids towards high-performance anode for lithium-ion batteries. J. Alloys Compd. 2022, 912, 165209. [Google Scholar] [CrossRef]
- Zhang, D.B.; Shao, Y.; Kong, X.G.; Jiang, M.H.; Lei, X.D. Hierarchical carbon-decorated Fe3O4 on hollow CuO nanotube array: Fabrication and used as negative material for ultrahigh-energy density hybrid supercapacitor. Chem. Eng. J. 2018, 349, 491–499. [Google Scholar] [CrossRef]
- Xue, Z.; Li, L.L.; Cao, L.J.; Zheng, W.Z.; Yang, W.; Yu, X.W. A simple method to fabricate NiFe2O4/NiO@Fe2O3 core-shelled nanocubes based on Prussian blue analogues for lithium ion battery. J. Alloys Compd. 2020, 825, 153966. [Google Scholar] [CrossRef]
- Ni, S.B.; Zhang, J.C.; Lv, X.H.; Yang, X.L.; Zhang, L.L. Superior electrochemical performance of Li3VO4/NiO/Ni electrode via a coordinated electrochemical reconstruction. J. Power Sour. 2015, 291, 95–101. [Google Scholar] [CrossRef]
- Yao, L.H.; Cao, W.Q.; Zhao, J.G.; Zheng, Q.; Wang, Y.C.; Jiang, S.; Pan, Q.L.; Song, J.; Zhu, Y.Q.; Cao, M.S. Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage. J. Mater. Sci. Technol. 2022, 127, 48–60. [Google Scholar] [CrossRef]
- Park, G.D.; Cho, J.S.; Kang, Y.C. Multiphase and double-layer NiFe2O4@NiO-hollow-nanosphere-decorated reduced graphene oxide composite powders prepared by spray pyrolysis applying nanoscale Kirkendall diffusion. ACS Appl. Mater. Interfaces 2015, 7, 16842–16849. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.Y.; Han, T.L.; Ding, Y.Y.; Long, J.W.; Lin, X.R.; Liu, J.Y. A metal–organic-framework derived NiFe2O4@NiCo-LDH nanocube as high-performance lithium-ion battery anode under different temperatures. Appl. Surf. Sci. 2022, 599, 153953. [Google Scholar] [CrossRef]
- Xiao, Y.L.; Zai, J.T.; Li, X.M.; Gong, Y.; Li, B.; Han, Q.Y.; Qian, X.F. Polydopamine functionalized graphene/NiFe2O4 nanocomposite with improving Li storage performances. Nano Energy 2014, 6, 51–58. [Google Scholar] [CrossRef]
- Keppeler, M.; Srinivasan, M. Interfacial phenomena/capacities beyond conversion reaction occurring in nano-sized transition-metal-oxide-based negative electrodes in lithium-ion batteries: A review. ChemElectroChem 2017, 4, 2727–2754. [Google Scholar] [CrossRef]
- Zhao, T.L.; Shen, J.G.; Meng, Y.; Huang, X.Y.; Chen, S.K.; Zheng, Y.D.; Chang, L.Y. In-situ co-construction of carbon coating layer and SWCNTs conductive network for high-capacity nickel-iron oxide anodes. J. Alloys Compd. 2022, 909, 164818. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Fu, Y.S.; Liu, W.W.; Lim, L.; Wang, X.; Yu, A.P. A general approach for fabricating 3D MFe2O4 (M = Mn, Ni, Cu, Co)/graphitic carbon nitride covalently functionalized nitrogen-doped graphene nanocomposites as advanced anodes for lithium-ion batteries. Nano Energy 2019, 57, 48–56. [Google Scholar] [CrossRef]
- Liu, T.L.; Gong, Q.H.; Cao, P.; Sun, X.F.; Ren, J.; Gu, S.N.; Zhou, G.W. Preparations of NiFe2O4 yolk-shell@C nanospheres and their performances as anode materials for lithium-ion batteries. Nanomaterials 2020, 10, 1994. [Google Scholar] [CrossRef]
- Zou, Y.L.; Li, Z.Y.; Liu, Y.L.; Duan, J.L.; Long, B. Coaxial structure of NiFe2O4/CNTs composites as anodes for enhanced lithium ion batteries. J. Alloys Compd. 2020, 820, 153085. [Google Scholar] [CrossRef]
Anode Material | Electrode Mass Loading (mg cm−2) | Current Density (mA g−1) | Cycle Number | Reversible Capacity (mAh g−1) | Ref. |
---|---|---|---|---|---|
NiFe2O4/NC/N-doped graphene | 1.5~2.0 | 100 | 50 | 963 | [46] |
NiFe2O4/graphene | – | 100 | 100 | 732.79 | [40] |
NiFe2O4/carbon | 1.0~1.5 | 200 | 200 | 676.6 | [47] |
NiFe2O4@C/CNTs | ~2.0 | 200 | 100 | 1111.8 | [45] |
NiFe2O4/nickel cobalt double hydroxides | 1.4 | 300 | 100 | 636.9 | [42] |
NiFe2O4/CNTs | – | 500 | 100 | 406 | [48] |
NiFe2O4/NiO@Fe2O3 nanocubes | 1.0~1.5 | 500 | 500 | 472.5 | [38] |
Dual-network NiFe2O4/NiO | 1.0~1.2 | 200 500 | 100 1000 | 756.9 641.1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, C.; Wang, Z.; Luo, C.; Qin, C.; Li, Y.; Wang, Z. Dealloyed Porous NiFe2O4/NiO with Dual-Network Structure as High-Performance Anodes for Lithium-Ion Batteries. Int. J. Mol. Sci. 2023, 24, 4152. https://doi.org/10.3390/ijms24044152
Jin C, Wang Z, Luo C, Qin C, Li Y, Wang Z. Dealloyed Porous NiFe2O4/NiO with Dual-Network Structure as High-Performance Anodes for Lithium-Ion Batteries. International Journal of Molecular Sciences. 2023; 24(4):4152. https://doi.org/10.3390/ijms24044152
Chicago/Turabian StyleJin, Chao, Zigang Wang, Chang Luo, Chunling Qin, Yongyan Li, and Zhifeng Wang. 2023. "Dealloyed Porous NiFe2O4/NiO with Dual-Network Structure as High-Performance Anodes for Lithium-Ion Batteries" International Journal of Molecular Sciences 24, no. 4: 4152. https://doi.org/10.3390/ijms24044152
APA StyleJin, C., Wang, Z., Luo, C., Qin, C., Li, Y., & Wang, Z. (2023). Dealloyed Porous NiFe2O4/NiO with Dual-Network Structure as High-Performance Anodes for Lithium-Ion Batteries. International Journal of Molecular Sciences, 24(4), 4152. https://doi.org/10.3390/ijms24044152