Calcium Handling in Inherited Cardiac Diseases: A Focus on Catecholaminergic Polymorphic Ventricular Tachycardia and Hypertrophic Cardiomyopathy
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Catecholaminergic Polymorphic Ventricular Tachycardia
3.1.1. Major CPVT Genes
Ryanodine Receptor 2
Calsequestrin 2
Trans-2,3-Enoyl-CoA Reductase-like
Triadin
Calmodulin
3.1.2. Minor CPVT Genes
Plakophilin-2
Ankyrin-2
HGNC_Gene Symbol | Full Name | Location | Exon Count | Protein Function | OMIM Disease | OMIM IDs | Inheritance | References |
---|---|---|---|---|---|---|---|---|
RYR2 | Ryanodine receptor 2 | 1q43 | 105 | Calcium release channels from the sarcoplasmic reticulum into the cytoplasm by ER and SR. Activates and modulates small-conductance Ca2+-activated K+ channels in cardiac myocytes. Regulates cardiac muscle contraction by calcium ion signaling. | ARVD2 | 600996 | AD | [18,49,50] |
VA | 115000 | AD | ||||||
CPVT1 | 604772 | AD | ||||||
CASQ2 | Calsequestrin 2 | 1p13.1 | 11 | Major Ca2+-binding protein in the SR. Key SR Ca2+ storage protein essential for SR Ca2+ release in the heart. Structural organization of the SR with TRDN. Facilitates high rates of Ca2+ release through RYR2 during systole. Plays a critical role in mobilizing Ca2+ release from ER/SR lumens. Role in ECC in the heart and regulation of heart rate beats. Regulates cardiac muscle conduction and contraction by calcium ion signaling. Regulates ryanodine-sensitive calcium-release channel activity. | CPVT2 | 611938 | AR/ AD | [51,52] |
TECRL | Trans-2,3-Enoyl-CoA Reductase Like | 4q13.1 | 12 | ER protein. Role in intracellular Ca2+ homeostasis. Regulates heart contraction. | CPVT3 | 614021 | AR | [26,27,30,31] |
TRDN | Triadin | 6q22.31 | 41 | Contributes to the regulation of lumenal Ca2+ release via the SR calcium release channels RYR1 and RYR2, a key step in triggering skeletal and heart muscle contraction. Regulates the release of sequestered calcium ions into the cytosol by SR. Cell–cell signaling involved in cardiac conduction. Anchors calsequestrin to the junctional SR, allowing its functional coupling with the ryanodine receptor. Indirect role of triadin in regulating myoplasmic Ca2+ homeostasis and organizing the molecular complex of the triad but not in regulating skeletal-type excitation–contraction coupling. | CPVT5 | 615441 | AR | [35,53] |
CALM1 | Calmodulin 1 | 14q32.11 | 6 | Intracellular Ca2+ transducer involved in numerous activities in a broad Ca2+ signaling network. Regulates RYR1 and RYR2 by binding to a single, highly conserved calmodulin binding site. Regulates tail-anchored insertion into the ER membrane in a Ca2+-dependent manner. | LQTS14 | 616247 | AD | [54,55] |
CPVT4 | 614916 | AD | ||||||
CALM2 | Calmodulin 2 | 2p21 | 6 | Phosphorylase kinase, delta, calcium-modulated protein. Mediates the control of a large number of enzymes and other proteins by Ca2+. Plays a crucial role in the processes of Ca2+-induced neuronal cell death. | LQTS 15 | 616249 | AD | [37,56] |
CALM3 | Calmodulin 3 | 19q13.32 | 6 | Calcium-modulated protein. Mediates the control of a large number of enzymes by Ca2+, protein kinases, and phosphatases. | CPVT6 | 618782 | AD | [37,40,57] |
LQTS16 | ||||||||
PKP2 | Plakophilin-2 | 12p11.21 | 13 | Regulates the signaling activity of beta-catenin. Maintains the transcription of genes that control intracellular calcium cycling including RYR2, ANK2, TRDN, and CACNA1C. Regulates cardiac muscle cell contraction and cell action potential. Regulates actin filament-based movement/cardiac muscle tissue development/cell–cell junction organization. | ARVD 9 | 609040 | AD | [42] |
ANK2 | Ankyrin 2 | 4q25-q26 | 46 | Required for coordinated assembly of Na/Ca exchanger, Na/K ATPase, and inositol trisphosphate INSP3 receptor at transverse-tubule/sarcoplasmic reticulum sites in cardiomyocytes. Regulates cardiac muscle contraction by calcium ion signaling. Role in normal cardiac electric activity and cardiac automaticity. Regulates KCNJ5 channel gating. | LQTS4 | 600919 | AD | [58,59,60] |
3.2. Hypertrophic Cardiomyopathy
3.2.1. Troponin C1
3.2.2. Ryanodine Receptor Type 2
3.2.3. Alpha Kinase 3
3.2.4. Junctophilin 2
3.2.5. Phospholamban
HGNC_Gene Symbol | Full Name | Location | Exon Count | Protein Function | OMIM Disease | OMIM IDs | Inheritance | References |
---|---|---|---|---|---|---|---|---|
RYR2 | Ryanodine receptor 2 | 1q43 | 105 | Regulates muscle hypertrophy and actin filament-based movement. | ARVD2 | 600996 | AD | [104,105] |
VA | 115000 | AD | ||||||
CPVT1 | 604772 | AD | ||||||
ALPK3 | Alpha kinase 3 | 15q25.3 | 14 | Striated muscle cell development and differentiation. Actomyosin structure organization. Heart development and morphogenesis. Regulates the expression and localization of critical proteins in both the sarcomere M-band and nuclear envelope of cardiomyocytes. | HCM,27 | 618052 | AR | [84,85] |
TNNC1 | Troponin C1, slow skeletal and cardiac type | 3p21.1 | 6 | Ca2+ sensor and key regulator of cardiac contraction. Its Ca2+-binding properties modulate the rate of cardiac muscle contraction at submaximal levels of Ca2+ activation. Modulates the Ca2+-binding properties. Calcium-binding subunit of the troponin complex responsible for initiating striated muscle contraction in response to calcium influx. | DCM, 1Z | 611879 | AD | [106,107,108] |
HCM13 | 613243 | AD | ||||||
JPH2 | Junctophilin 2 | 20q13.12 | 5 | Mediates cross-talk between the cell surface and ER. Cellular Ca2+ signaling in excitable cells form junctional membrane complexes between the plasma membrane and the ER/SR. | DCM, 2E | 619492 | AR | [109,110,111] |
HCM,17 | 613873 | AD | ||||||
PLN | Phospholamban | 6q22.31 | 2 | Crucial Ca2+ cycling protein and a primary mediator of the beta-adrenergic effects, resulting in enhanced cardiac activity. Regulates the activity of the sarcoplasmic Ca2+ ATPase isoform, a regulator of the kinetics of cardiac contraction. Unphosphorylated PLN reduces ATP2A1 affinity for Ca2+ and affects enzymatic turnover. | DCM, 1P | 609909 | AD | [97,112,113] |
HCM, 18 | 613874 | AD |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bers, D.M. Cardiac excitation–contraction coupling. Nature 2002, 415, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Gambardella, J.; Trimarco, B.; Iaccarino, G.; Santulli, G. New Insights in Cardiac Calcium Handling and Excitation-Contraction Coupling. Adv. Exp. Med. Biol. 2018, 1067, 373–385. [Google Scholar] [CrossRef]
- Blayney, L.M.; Lai, T. Ryanodine receptor-mediated arrhythmias and sudden cardiac death. Pharmacol. Ther. 2009, 123, 151–177. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-T.; Valdivia, C.R.; Gurrola, G.B.; Hernández, J.J.; Valdivia, H.H. Arrhythmogenic mechanisms in ryanodine receptor channelopathies. Sci. China Life Sci. 2014, 58, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Lan, F.; Lee, A.S.; Liang, P.; Sanchez-Freire, V.; Nguyen, P.K.; Wang, L.; Han, L.; Yen, M.; Wang, Y.; Sun, N.; et al. Abnormal Calcium Handling Properties Underlie Familial Hypertrophic Cardiomyopathy Pathology in Patient-Specific Induced Pluripotent Stem Cells. Cell Stem Cell 2013, 12, 101–113. [Google Scholar] [CrossRef]
- Kim, C.W.; Aronow, W.S.; Dutta, T.; Frenkel, D.; Frishman, W.H. Catecholaminergic Polymorphic Ventricular Tachycardia. Cardiol. Rev. 2020, 28, 325–331. [Google Scholar] [CrossRef]
- Roston, T.M.; Yuchi, Z.; Kannankeril, P.J.; Hathaway, J.; Vinocur, J.M.; Etheridge, S.P.; E Potts, J.; Maginot, K.R.; Salerno, J.C.; I Cohen, M.; et al. The clinical and genetic spectrum of catecholaminergic polymorphic ventricular tachycardia: Findings from an international multicentre registry. EP Eur. 2017, 20, 541–547. [Google Scholar] [CrossRef]
- Kallas, D.; Lamba, A.; Roston, T.M.; Arslanova, A.; Franciosi, S.; Tibbits, G.F.; Sanatani, S. Pediatric Catecholaminergic Polymorphic Ventricular Tachycardia: A Translational Perspective for the Clinician-Scientist. Int. J. Mol. Sci. 2021, 22, 9293. [Google Scholar] [CrossRef]
- Priori, S.G.; Wilde, A.A.; Horie, M.; Cho, Y.; Behr, E.R.; Berul, C.; Blom, N.; Brugada, J.; Chiang, C.-E.; Huikuri, H.; et al. HRS/EHRA/APHRS Expert Consensus Statement on the Diagnosis and Management of Patients with Inherited Primary Arrhythmia Syndromes. Heart Rhythm 2013, 10, 1932–1963. [Google Scholar] [CrossRef]
- Jaouadi, H.; Chabrak, S.; Lahbib, S.; Abdelhak, S.; Zaffran, S. Identification of two variants in AGRN and RPL3L genes in a patient with catecholaminergic polymorphic ventricular tachycardia suggesting new candidate disease genes and digenic inheritance. Clin. Case Rep. 2022, 10. [Google Scholar] [CrossRef]
- Sumitomo, N. Current topics in catecholaminergic polymorphic ventricular tachycardia. J. Arrhythmia 2016, 32, 344–351. [Google Scholar] [CrossRef]
- Liu, N.; Ruan, Y.; Priori, S.G. Catecholaminergic Polymorphic Ventricular Tachycardia. Prog. Cardiovasc. Dis. 2008, 51, 23–30. [Google Scholar] [CrossRef]
- Györke, S. Molecular basis of catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2009, 6, 123–129. [Google Scholar] [CrossRef]
- Priori, S.G.; Napolitano, C.; Memmi, M.; Colombi, B.; Drago, F.; Gasparini, M.; DeSimone, L.; Coltorti, F.; Bloise, R.; Keegan, R.; et al. Clinical and Molecular Characterization of Patients With Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation 2002, 106, 69–74. [Google Scholar] [CrossRef]
- Xie, L.-H.; Weiss, J.N. Arrhythmogenic consequences of intracellular calcium waves. Am. J. Physiol. Circ. Physiol. 2009, 297, H997–H1002. [Google Scholar] [CrossRef]
- Zhao, Y.-T.; Valdivia, C.R.; Gurrola, G.B.; Powers, P.P.; Willis, B.C.; Moss, R.L.; Jalife, J.; Valdivia, H.H. Arrhythmogenesis in a catecholaminergic polymorphic ventricular tachycardia mutation that depresses ryanodine receptor function. Proc. Natl. Acad. Sci. USA 2015, 112, E1669–E1677. [Google Scholar] [CrossRef]
- Seidel, M.; Lai, F.A.; Zissimopoulos, S. Structural and functional interactions within ryanodine receptor. Biochem. Soc. Trans. 2015, 43, 377–383. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Waddell, H.M.; Jones, P.P. Regulation of RYR2 by sarcoplasmic reticulum Ca2+. Clin. Exp. Pharmacol. Physiol. 2015, 42, 720–726. [Google Scholar] [CrossRef]
- Wehrens, X.H.; Lehnart, S.E.; Huang, F.; Vest, J.A.; Reiken, S.R.; Mohler, P.J.; Sun, J.; Guatimosim, S.; Song, L.-S.; Rosemblit, N.; et al. FKBP12.6 Deficiency and Defective Calcium Release Channel (Ryanodine Receptor) Function Linked to Exercise-Induced Sudden Cardiac Death. Cell 2003, 113, 829–840. [Google Scholar] [CrossRef]
- Wleklinski, M.J.; Kannankeril, P.J.; Knollmann, B.C. Molecular and tissue mechanisms of catecholaminergic polymorphic ventricular tachycardia. J. Physiol. 2020, 598, 2817–2834. [Google Scholar] [CrossRef]
- Sleiman, Y.; Lacampagne, A.; Meli, A.C. “Ryanopathies” and RyR2 dysfunctions: Can we further decipher them using in vitro human disease models? Cell Death Dis. 2021, 12, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Olubando, D.; Hopton, C.; Eden, J.; Caswell, R.; Thomas, N.L.; Roberts, S.A.; Morris-Rosendahl, D.; Venetucci, L.; Newman, W.G. Classification and correlation of RYR2 missense variants in individuals with catecholaminergic polymorphic ventricular tachycardia reveals phenotypic relationships. J. Hum. Genet. 2020, 65, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.; Gamberucci, A.; Pierantozzi, E.; Amato, C.; Migliore, L.; Sorrentino, V. Calsequestrin, a key protein in striated muscle health and disease. J. Muscle Res. Cell Motil. 2020, 42, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Gray, B.; Bagnall, R.D.; Lam, L.; Ingles, J.; Turner, C.; Haan, E.; Davis, A.; Yang, P.-C.; Clancy, C.E.; Sy, R.W.; et al. A novel heterozygous mutation in cardiac calsequestrin causes autosomal dominant catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2016, 13, 1652–1660. [Google Scholar] [CrossRef]
- Knollmann, B.C.; Chopra, N.; Hlaing, T.; Akin, B.; Yang, T.; Ettensohn, K.; Knollmann, B.E.C.; Horton, K.D.; Weissman, N.J.; Holinstat, I.; et al. Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia. J. Clin. Investig. 2006, 116, 2510–2520. [Google Scholar] [CrossRef]
- Perry, M.D.; I Vandenberg, J. TECRL: Connecting sequence to consequence for a new sudden cardiac death gene. EMBO Mol. Med. 2016, 8, 1364–1365. [Google Scholar] [CrossRef]
- Devalla, H.D.; Gélinas, R.; Aburawi, E.H.; Beqqali, A.; Goyette, P.; Freund, C.; Chaix, M.; Tadros, R.; Jiang, H.; Le Béchec, A.; et al. TECRL, a new life-threatening inherited arrhythmia gene associated with overlapping clinical features of both LQTS and CPVT. EMBO Mol. Med. 2016, 8, 1390–1408. [Google Scholar] [CrossRef]
- Bhuiyan, Z.A.; Hamdan, M.A.; Shamsi, E.T.; Postma, A.V.; Mannens, M.M.; Wilde, A.A.M.; Al-Gazali, L. A Novel Early Onset Lethal Form of Catecholaminergic Polymorphic Ventricular Tachycardia Maps to Chromosome 7p14-p22. J. Cardiovasc. Electrophysiol. 2007, 18, 1060–1066. [Google Scholar] [CrossRef]
- Jaouadi, H.; Bouyacoub, Y.; Chabrak, S.; Kraoua, L.; Zaroui, A.; Elouej, S.; Nagara, M.; Dallali, H.; Delague, V.; Levy, N.; et al. Multiallelic rare variants support an oligogenic origin of sudden cardiac death in the young. Herz 2020, 46, 94–102. [Google Scholar] [CrossRef]
- Webster, G.; Aburawi, E.H.; A Chaix, M.; Chandler, S.; Foo, R.; Islam, A.K.M.M.; A E Kammeraad, J.; Rioux, J.D.; Al-Gazali, L.; Sayeed, Z.; et al. Life-threatening arrhythmias with autosomal recessive TECRL variants. EP Eur. 2020, 23, 781–788. [Google Scholar] [CrossRef]
- Msc, A.M.; Marschall, C.; Müntjes, C.; Schönecker, A.; Schuessler-Hahn, F.; Hohendanner, F.; Parwani, A.S.; Boldt, L.; Ott, C.; Bennewiz, A.; et al. Novel variants in TECRL cause recessive inherited CPVT type 3 with severe and variable clinical symptoms. J. Cardiovasc. Electrophysiol. 2020, 31, 1527–1535. [Google Scholar] [CrossRef]
- Jaouadi, H.; Bouyacoub, Y.; Chabrak, S.; Elouej, S.; Delague, V.; Levy, N.; Nagara, M.; Dallali, H.; Delague, V.; Levy, N.; et al. An oligogenic inheritance pattern in a Tunisian family with sudden cardiac death in the young n.d.:19. Herz 2021, 46 (Suppl. 1), 94–102. [Google Scholar] [CrossRef]
- Chopra, N.; Knollmann, B.C. Triadin regulates cardiac muscle couplon structure and microdomain Ca2+ signalling: A path towards ventricular arrhythmias. Cardiovasc. Res. 2013, 98, 187–191. [Google Scholar] [CrossRef]
- Landstrom, A.P.; Dobrev, D.; Wehrens, X.H. Calcium Signaling and Cardiac Arrhythmias. Circ. Res. 2017, 120, 1969–1993. [Google Scholar] [CrossRef]
- Roux-Buisson, N.; Cacheux, M.; Fourest-Lieuvin, A.; Fauconnier, J.; Brocard, J.; Denjoy, I.; Durand, P.; Guicheney, P.; Kyndt, F.; Leenhardt, A.; et al. Absence of triadin, a protein of the calcium release complex, is responsible for cardiac arrhythmia with sudden death in human. Hum. Mol. Genet. 2012, 21, 2759–2767. [Google Scholar] [CrossRef]
- Rooryck, C.; Kyndt, F.; Bozon, D.; Roux-Buisson, N.; Sacher, F.; Probst, V.; Thambo, J.-B. New Family With Catecholaminergic Polymorphic Ventricular Tachycardia Linked to the Triadin Gene. J. Cardiovasc. Electrophysiol. 2015, 26, 1146–1150. [Google Scholar] [CrossRef]
- Crotti, L.; Spazzolini, C.; Tester, D.J.; Ghidoni, A.; Baruteau, A.-E.; Beckmann, B.-M.; Behr, E.R.; Bennett, J.S.; Bezzina, C.R.; A Bhuiyan, Z.; et al. Calmodulin mutations and life-threatening cardiac arrhythmias: Insights from the International Calmodulinopathy Registry. Eur. Heart J. 2019, 40, 2964–2975. [Google Scholar] [CrossRef]
- Nyegaard, M.; Overgaard, M.T.; Søndergaard, M.T.; Vranas, M.; Behr, E.R.; Hildebrandt, L.L.; Lund, J.; Hedley, P.L.; Camm, A.J.; Wettrell, G.; et al. Mutations in Calmodulin Cause Ventricular Tachycardia and Sudden Cardiac Death. Am. J. Hum. Genet. 2012, 91, 703–712. [Google Scholar] [CrossRef]
- Makita, N.; Yagihara, N.; Crotti, L.; Johnson, C.N.; Beckmann, B.-M.; Roh, M.S.; Shigemizu, D.; Lichtner, P.; Ishikawa, T.; Aiba, T.; et al. Novel Calmodulin Mutations Associated With Congenital Arrhythmia Susceptibility. Circ. Cardiovasc. Genet. 2014, 7, 466–474. [Google Scholar] [CrossRef]
- Gomez-Hurtado, N.; Boczek, N.J.; Kryshtal, D.O.; Johnson, C.N.; Sun, J.; Nitu, F.R.; Cornea, R.L.; Chazin, W.J.; Calvert, M.L.; Tester, D.J.; et al. Novel CPVT-Associated Calmodulin Mutation in CALM3 (CALM3-A103V) Activates Arrhythmogenic Ca Waves and Sparks. Circ. Arrhythmia Electrophysiol. 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.S.; Nitu, F.; Yang, Y.; Walweel, K.; Pereira, L.; Johnson, C.N.; Faggioni, M.; Chazin, W.J.; Laver, D.; George, A.L.; et al. Divergent regulation of ryanodine receptor 2 calcium release channels by arrhythmogenic human calmodulin missense mutants. Circ. Res. 2014, 114, 1114–1124. [Google Scholar] [CrossRef] [PubMed]
- Alcalde, M.; Campuzano, O.; Berne, P.; García-Pavía, P.; Doltra, A.; Arbelo, E.; Sarquella-Brugada, G.; Iglesias, A.; Alonso-Pulpón, L.; Brugada, J.; et al. Stop-Gain Mutations in PKP2 Are Associated with a Later Age of Onset of Arrhythmogenic Right Ventricular Cardiomyopathy. PLoS ONE 2014, 9, e100560. [Google Scholar] [CrossRef] [PubMed]
- Cerrone, M.; Montnach, J.; Lin, X.; Zhao, Y.-T.; Zhang, M.; Agullo-Pascual, E.; Leo-Macias, A.; Alvarado, F.J.; Dolgalev, I.; Karathanos, T.V.; et al. Plakophilin-2 is required for transcription of genes that control calcium cycling and cardiac rhythm. Nat. Commun. 2017, 8, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tester, D.J.; Ackerman, J.P.; Giudicessi, J.R.; Ackerman, N.C.; Cerrone, M.; Delmar, M.; Ackerman, M.J. Plakophilin-2 Truncation Variants in Patients Clinically Diagnosed With Catecholaminergic Polymorphic Ventricular Tachycardia and Decedents With Exercise-Associated Autopsy Negative Sudden Unexplained Death in the Young. JACC Clin. Electrophysiol. 2018, 5, 120–127. [Google Scholar] [CrossRef]
- Mohler, P.J.; Schott, J.-J.; Gramolini, A.O.; Dilly, K.W.; Guatimosim, S.; Dubell, W.H.; Song, L.-S.; Haurogné, K.; Kyndt, F.; Ali, M.E.; et al. Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 2003, 421, 634–639. [Google Scholar] [CrossRef]
- Mohler, P.J.; Davis, J.Q.; Bennett, V. Ankyrin-B Coordinates the Na/K ATPase, Na/Ca Exchanger, and InsP3 Receptor in a Cardiac T-Tubule/SR Microdomain. PLoS Biol. 2005, 3, e423. [Google Scholar] [CrossRef]
- Mohler, P.J.; Splawski, I.; Napolitano, C.; Bottelli, G.; Sharpe, L.; Timothy, K.; Priori, S.G.; Keating, M.T.; Bennett, V. A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc. Natl. Acad. Sci. USA 2004, 101, 9137–9142. [Google Scholar] [CrossRef]
- Mohler, P.J.; Le Scouarnec, S.; Denjoy, I.; Lowe, J.S.; Guicheney, P.; Caron, L.; Driskell, I.M.; Schott, J.-J.; Norris, K.; Leenhardt, A.; et al. Defining the Cellular Phenotype of “Ankyrin-B Syndrome” Variants. Circulation 2007, 115, 432–441. [Google Scholar] [CrossRef]
- Seidel, M.; de Meritens, C.R.; Johnson, L.; Parthimos, D.; Bannister, M.; Thomas, N.L.; Ozekhome-Mike, E.; Lai, F.A.; Zissimopoulos, S. Identification of an amino-terminus determinant critical for ryanodine receptor/Ca2+ release channel function. Cardiovasc. Res. 2020, 117, 780–791. [Google Scholar] [CrossRef]
- Wescott, A.P.; Jafri, M.S.; Lederer, W.; Williams, G.S. Ryanodine receptor sensitivity governs the stability and synchrony of local calcium release during cardiac excitation-contraction coupling. J. Mol. Cell. Cardiol. 2016, 92, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Hanna, A.D.; Beard, N.A.; Dulhunty, A.F. Unique isoform-specific properties of calsequestrin in the heart and skeletal muscle. Cell Calcium 2009, 45, 474–484. [Google Scholar] [CrossRef]
- Guo, A.; Cala, S.E.; Song, L.-S. Calsequestrin Accumulation in Rough Endoplasmic Reticulum Promotes Perinuclear Ca2+ Release. J. Biol. Chem. 2012, 287, 16670–16680. [Google Scholar] [CrossRef]
- Shen, X.; Franzini-Armstrong, C.; Lopez, J.R.; Jones, L.R.; Kobayashi, Y.M.; Wang, Y.; Kerrick, W.G.L.; Caswell, A.H.; Potter, J.D.; Miller, T.; et al. Triadins Modulate Intracellular Ca2+ Homeostasis but Are Not Essential for Excitation-Contraction Coupling in Skeletal Muscle. J. Biol. Chem. 2007, 282, 37864–37874. [Google Scholar] [CrossRef]
- Zou, J.; Salarian, M.; Chen, Y.; Zhuo, Y.; Brown, N.E.; Hepler, J.R.; Yang, J.J. Direct visualization of interaction between calmodulin and connexin. Biochem. J. 2017, 474, 4035–4051. [Google Scholar] [CrossRef]
- Haßdenteufel, S.; Schäuble, N.; Cassella, P.; Leznicki, P.; Müller, A.; High, S.; Jung, M.; Zimmermann, R. Ca2+-calmodulin inhibits tail-anchored protein insertion into the mammalian endoplasmic reticulum membrane. FEBS Lett. 2011, 585, 3485–3490. [Google Scholar] [CrossRef]
- Jiménez-Jáimez, J.; Doza, J.P.; Ortega, Á.; Macías-Ruiz, R.; Perin, F.; Del Rey, M.M.R.-V.; Ortiz-Genga, M.; Monserrat, L.; Barriales-Villa, R.; Blanca, E.; et al. Calmodulin 2 Mutation N98S Is Associated with Unexplained Cardiac Arrest in Infants Due to Low Clinical Penetrance Electrical Disorders. PLoS ONE 2016, 11, e0153851. [Google Scholar] [CrossRef]
- Reed, G.J.; Boczek, N.J.; Etheridge, S.P.; Ackerman, M.J. CALM3 mutation associated with long QT syndrome. Heart Rhythm 2014, 12, 419–422. [Google Scholar] [CrossRef]
- Glukhov, A.V.; Fedorov, V.V.; Anderson, M.E.; Mohler, P.J.; Efimov, I.R. Functional anatomy of the murine sinus node: High-resolution optical mapping of ankyrin-B heterozygous mice. Am. J. Physiol. Circ. Physiol. 2010, 299, H482–H491. [Google Scholar] [CrossRef]
- Li, J.; Kline, C.F.; Hund, T.J.; Anderson, M.E.; Mohler, P.J. Ankyrin-B Regulates Kir6.2 Membrane Expression and Function in Heart. J. Biol. Chem. 2010, 285, 28723–28730. [Google Scholar] [CrossRef]
- Sedlacek, K.; Stark, K.; Cunha, S.R.; Pfeufer, A.; Weber, S.; Berger, I.; Perz, S.; Kääb, S.; Wichmann, H.-E.; Mohler, P.J.; et al. Common Genetic Variants in ANK2 Modulate QT Interval. Circ. Cardiovasc. Genet. 2008, 1, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Elliott, P.M.; Anastasakis, A.; Borger, M.A.; Borggrefe, M.; Cecchi, F.; Charron, P.; Hagege, A.A.; Lafont, A.; Limongelli, G.; Mahrholdt, H.; et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014, 35, 2733–2779. [Google Scholar] [CrossRef] [PubMed]
- Sabater-Molina, M.; Pérez-Sánchez, I.; Hernandez Del Rincon, J.P.; Gimeno, J.R. Genetics of hypertrophic cardiomyopathy: A review of current state. Clin. Genet. 2018, 93, 3–14. [Google Scholar] [CrossRef]
- Maron, B.J.; Maron, M.S.; Semsarian, C. Double or compound sarcomere mutations in hypertrophic cardiomyopathy: A potential link to sudden death in the absence of conventional risk factors. Heart Rhythm 2012, 9, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Geisterfer-Lowrance, A.A.; Kass, S.; Tanigawa, G.; Vosberg, H.-P.; McKenna, W.; Seidman, C.E.; Seidman, J. A molecular basis for familial hypertrophic cardiomyopathy: A β cardiac myosin heavy chain gene missense mutation. Cell 1990, 62, 999–1006. [Google Scholar] [CrossRef]
- Seidman, J.; Seidman, C. The Genetic Basis for Cardiomyopathy: From Mutation Identification to Mechanistic Paradigms. Cell 2001, 104, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Alfares, A.A.; Kelly, M.A.; McDermott, G.; Funke, B.H.; Lebo, M.S.; Baxter, S.B.; Shen, J.; McLaughlin, H.M.; Clark, E.H.; Babb, L.J.; et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: Expanded panels offer limited additional sensitivity. Anesth. Analg. 2015, 17, 880–888. [Google Scholar] [CrossRef]
- Landstrom, A.P.; Ackerman, M.J. Beyond the Cardiac Myofilament: Hypertrophic Cardiomyopathy- Associated Mutations in Genes that Encode Calcium-Handling Proteins. Curr. Mol. Med. 2012, 12, 507–518. [Google Scholar] [CrossRef]
- Robinson, P.; Liu, X.; Sparrow, A.; Patel, S.; Zhang, Y.-H.; Casadei, B.; Watkins, H.; Redwood, C. Hypertrophic cardiomyopathy mutations increase myofilament Ca2+ buffering, alter intracellular Ca2+ handling, and stimulate Ca2+-dependent signaling. J. Biol. Chem. 2018, 293, 10487–10499. [Google Scholar] [CrossRef]
- Fraysse, B.; Weinberger, F.; Bardswell, S.C.; Cuello, F.; Vignier, N.; Geertz, B.; Starbatty, J.; Krämer, E.; Coirault, C.; Eschenhagen, T.; et al. Increased myofilament Ca2+ sensitivity and diastolic dysfunction as early consequences of Mybpc3 mutation in heterozygous knock-in mice. J. Mol. Cell. Cardiol. 2012, 52, 1299–1307. [Google Scholar] [CrossRef]
- Hoffmann, B.; Schmidt-Traub, H.; Perrot, A.; Osterziel, K.J.; Geßner, R. First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum. Mutat. 2001, 17, 524. [Google Scholar] [CrossRef]
- Helms, A.S.; Alvarado, F.J.; Yob, J.; Tang, V.T.; Pagani, F.; Russell, M.W.; Valdivia, H.H.; Day, S.M. Genotype-Dependent and -Independent Calcium Signaling Dysregulation in Human Hypertrophic Cardiomyopathy. Circulation 2016, 134, 1738–1748. [Google Scholar] [CrossRef]
- Gordon, A.M.; Homsher, E.; Regnier, M. Regulation of Contraction in Striated Muscle. Physiol. Rev. 2000, 80, 853–924. [Google Scholar] [CrossRef]
- Landstrom, A.P.; Parvatiyar, M.S.; Pinto, J.R.; Marquardt, M.L.; Bos, J.M.; Tester, D.J.; Ommen, S.R.; Potter, J.D.; Ackerman, M.J. Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J. Mol. Cell. Cardiol. 2008, 45, 281–288. [Google Scholar] [CrossRef]
- Robertson, I.M.; Sevrieva, I.; Li, M.X.; Irving, M.; Sun, Y.-B.; Sykes, B.D. The structural and functional effects of the familial hypertrophic cardiomyopathy-linked cardiac troponin C mutation, L29Q. J. Mol. Cell. Cardiol. 2015, 87, 257–269. [Google Scholar] [CrossRef]
- Chung, W.K.; Kitner, C.; Maron, B.J. Novel frameshift mutation in Troponin C (TNNC1) associated with hypertrophic cardiomyopathy and sudden death. Cardiol. Young 2011, 21, 345–348. [Google Scholar] [CrossRef]
- Parvatiyar, M.; Landstrom, A.; Figueiredo-Freitas, C.; Potter, J.D.; Ackerman, M.J.; Pinto, J.R. A Mutation in TNNC1-encoded Cardiac Troponin C, TNNC1-A31S, Predisposes to Hypertrophic Cardiomyopathy and Ventricular Fibrillation. J. Biol. Chem. 2012, 287, 31845–31855. [Google Scholar] [CrossRef]
- Jaafar, N.; Girolami, F.; Zairi, I.; Kraiem, S.; Hammami, M.; Olivotto, I. Genetic profile of hypertrophic cardiomyopathy in Tunisia: Is it different? Glob. Cardiol. Sci. Pract. 2015, 2015, 16. [Google Scholar] [CrossRef] [PubMed]
- Lindhout, D.A.; Sykes, B.D. Structure and Dynamics of the C-domain of Human Cardiac Troponin C in Complex with the Inhibitory Region of Human Cardiac Troponin I. J. Biol. Chem. 2003, 278, 27024–27034. [Google Scholar] [CrossRef] [PubMed]
- Fujino, N.; Ino, H.; Hayashi, K.; Uchiyama, K.; Nagata, M.; Konno, T.; Katoh, H.; Sakamoto, Y.; Tsubokawa, T.; Ohsato, K.; et al. Abstract 915: A Novel Missense Mutation in Cardiac Ryanodine Receptor Gene as a Possible Cause of Hypertrophic Cardiomyopathy: Evidence From Familial Analysis. Circulation 2006, 114, II_165. [Google Scholar] [CrossRef]
- Landstrom, A.P.; Dailey-Schwartz, A.L.; Rosenfeld, J.A.; Yang, Y.; McLean, M.J.; Miyake, C.Y.; Valdes, S.O.; Fan, Y.; Allen, H.D.; Penny, D.J.; et al. Interpreting Incidentally Identified Variants in Genes Associated With Catecholaminergic Polymorphic Ventricular Tachycardia in a Large Cohort of Clinical Whole-Exome Genetic Test Referrals. Circ. Arrhythmia Electrophysiol. 2017, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medeiros-Domingo, A.; Bhuiyan, Z.A.; Tester, D.J.; Hofman, N.; Bikker, H.; van Tintelen, J.P.; Mannens, M.M.; Wilde, A.A.; Ackerman, M.J. The RYR2-Encoded Ryanodine Receptor/Calcium Release Channel in Patients Diagnosed Previously With Either Catecholaminergic Polymorphic Ventricular Tachycardia or Genotype Negative, Exercise-Induced Long QT Syndrome: A Comprehensive Open Reading Frame Mutational Analysis. J. Am. Coll. Cardiol. 2009, 54, 2065–2074. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, F.J.; Bos, J.M.; Yuchi, Z.; Valdivia, C.R.; Hernández, J.J.; Zhao, Y.-T.; Henderlong, D.S.; Chen, Y.; Booher, T.R.; Marcou, C.A.; et al. Cardiac hypertrophy and arrhythmia in mice induced by a mutation in ryanodine receptor. J. Clin. Investig. 2019, 4. [Google Scholar] [CrossRef]
- Hosoda, T.; Monzen, K.; Hiroi, Y.; Oka, T.; Takimoto, E.; Yazaki, Y.; Nagai, R.; Komuro, I. A Novel Myocyte-specific Gene MidoriPromotes the Differentiation of P19CL6 Cells into Cardiomyocytes. J. Biol. Chem. 2001, 276, 35978–35989. [Google Scholar] [CrossRef]
- Almomani, R.; Verhagen, J.M.; Herkert, J.C.; Brosens, E.; van Spaendonck-Zwarts, K.Y.; Asimaki, A.; van der Zwaag, P.A.; Frohn-Mulder, I.M.; Bertoli-Avella, A.M.; Boven, L.G.; et al. Biallelic Truncating Mutations in ALPK3 Cause Severe Pediatric Cardiomyopathy. J. Am. Coll. Cardiol. 2016, 67, 515–525. [Google Scholar] [CrossRef]
- Agarwal, R.; Wakimoto, H.; Paulo, J.A.; Zhang, Q.; Reichart, D.; Toepfer, C.; Sharma, A.; Tai, A.C.; Lun, M.; Gorham, J.; et al. Pathogenesis of Cardiomyopathy Caused by Variants in ALPK3, an Essential Pseudokinase in the Cardiomyocyte Nucleus and Sarcomere. Circulation 2022, 146, 1674–1693. [Google Scholar] [CrossRef]
- Çağlayan, A.O.; Sezer, R.G.; Kaymakçalan, H.; Ulgen, E.; Yavuz, T.; Baranoski, J.F.; Bozaykut, A.; Harmanci, A.S.; Yalcin, Y.; Youngblood, M.W.; et al. ALPK3 gene mutation in a patient with congenital cardiomyopathy and dysmorphic features. Mol. Case Stud. 2017, 3, a001859. [Google Scholar] [CrossRef]
- Jaouadi, H.; Kraoua, L.; Chaker, L.; Atkinson, A.; Delague, V.; Levy, N.; Benkhalifa, R.; Mrad, R.; Abdelhak, S.; Zaffran, S. Novel ALPK3 mutation in a Tunisian patient with pediatric cardiomyopathy and facio-thoraco-skeletal features. J. Hum. Genet. 2018, 63, 1077–1082. [Google Scholar] [CrossRef]
- Phelan, D.G.; Anderson, D.J.; Howden, S.; Wong, R.C.-B.; Hickey, P.; Pope, K.; Wilson, G.R.; Pébay, A.; Davis, A.M.; Petrou, S.; et al. ALPK3-deficient cardiomyocytes generated from patient-derived induced pluripotent stem cells and mutant human embryonic stem cells display abnormal calcium handling and establish that ALPK3 deficiency underlies familial cardiomyopathy. Eur. Heart J. 2016, 37, 2586–2590. [Google Scholar] [CrossRef]
- Walsh, R.; Bezzina, C.R. ALPK3: A full spectrum cardiomyopathy gene? Eur. Heart J. 2021, 42, 3074–3077. [Google Scholar] [CrossRef]
- Lopes, L.R.; Garcia-Hernández, S.; Lorenzini, M.; Futema, M.; Chumakova, O.; Zateyshchikov, D.; Isidoro-Garcia, M.; Villacorta, E.; Escobar-Lopez, L.; Garcia-Pavia, P.; et al. Alpha-protein kinase 3 (ALPK3) truncating variants are a cause of autosomal dominant hypertrophic cardiomyopathy. Eur. Heart J. 2021, 42, 3063–3073. [Google Scholar] [CrossRef]
- Van Sligtenhorst, I.; Ding, Z.-M.; Shi, Z.-Z.; Read, R.W.; Hansen, G.; Vogel, P. Cardiomyopathy in α-Kinase 3 (ALPK3)–Deficient Mice. Vet. Pathol. 2011, 49, 131–141. [Google Scholar] [CrossRef]
- Marian, A. Molecular Genetic Basis of Hypertrophic Cardiomyopathy. Circ. Res. 2021, 128, 1533–1553. [Google Scholar] [CrossRef] [PubMed]
- Garbino, A.; Van Oort, R.J.; Dixit, S.S.; Landstrom, A.P.; Ackerman, M.J.; Wehrens, X.H.T. Molecular evolution of the junctophilin gene family. Physiol. Genom. 2009, 37, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Ziman, A.P.; Gómez-Viquez, N.L.; Bloch, R.J.; Lederer, W. Excitation–contraction coupling changes during postnatal cardiac development. J. Mol. Cell. Cardiol. 2010, 48, 379–386. [Google Scholar] [CrossRef]
- Landstrom, A.P.; Weisleder, N.; Batalden, K.B.; Bos, J.M.; Tester, D.J.; Ommen, S.R.; Wehrens, X.H.; Claycomb, W.C.; Ko, J.-K.; Hwang, M.; et al. Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J. Mol. Cell. Cardiol. 2007, 42, 1026–1035. [Google Scholar] [CrossRef]
- Oxenoid, K.; Chou, J.J. The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc. Natl. Acad. Sci. USA 2005, 102, 10870–10875. [Google Scholar] [CrossRef]
- Gustavsson, M.; Traaseth, N.J.; Veglia, G. Activating and Deactivating Roles of Lipid Bilayers on the Ca2+-ATPase/Phospholamban Complex. Biochemistry 2011, 50, 10367–10374. [Google Scholar] [CrossRef] [PubMed]
- Koss, K.L.; Kranias, E.G. Phospholamban: A Prominent Regulator of Myocardial Contractility. Circ. Res. 1996, 79, 1059–1063. [Google Scholar] [CrossRef]
- Haghighi, K.; Kolokathis, F.; Pater, L.; Lynch, R.A.; Asahi, M.; Gramolini, A.O.; Fan, G.-C.; Tsiapras, D.; Hahn, H.S.; Adamopoulos, S.; et al. Human phospholamban null results in lethal dilated cardiomyopathy revealing a critical difference between mouse and human. J. Clin. Investig. 2003, 111, 869–876. [Google Scholar] [CrossRef]
- Medin, M.; Hermida-Prieto, M.; Monserrat, L.; Laredo, R.; Rodríguez-Rey, J.C.; Fernandez, X.; Castro-Beiras, A. Mutational screening of phospholamban gene in hypertrophic and idiopathic dilated cardiomyopathy and functional study of the PLN -42 C>G mutation. Eur. J. Heart Fail. 2007, 9, 37–43. [Google Scholar] [CrossRef]
- Minamisawa, S.; Sato, Y.; Tatsuguchi, Y.; Fujino, T.; Imamura, S.-I.; Uetsuka, Y.; Nakazawa, M.; Matsuoka, R. Mutation of the phospholamban promoter associated with hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun. 2003, 304, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Landstrom, A.P.; Adekola, B.A.; Bos, J.M.; Ommen, S.R.; Ackerman, M.J. PLN-encoded phospholamban mutation in a large cohort of hypertrophic cardiomyopathy cases: Summary of the literature and implications for genetic testing. Am. Heart J. 2011, 161, 165–171. [Google Scholar] [CrossRef]
- Chiu, C.L.; Tebo, M.; Ingles, J.; Yeates, L.; Arthur, J.W.; Lind, J.M.; Semsarian, C. Genetic screening of calcium regulation genes in familial hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 2007, 43, 337–343. [Google Scholar] [CrossRef]
- Ding, Z.; Yuan, J.; Liang, Y.; Wu, J.; Gong, H.; Ye, Y.; Jiang, G.; Yin, P.; Li, Y.; Zhang, G.; et al. Ryanodine Receptor Type 2 Plays a Role in the Development of Cardiac Fibrosis under Mechanical Stretch Through TGFβ-1. Int. Heart J. 2017, 58, 957–961. [Google Scholar] [CrossRef]
- Zou, Y.; Liang, Y.; Gong, H.; Zhou, N.; Ma, H.; Guan, A.; Sun, A.; Wang, P.; Niu, Y.; Jiang, H.; et al. Ryanodine Receptor Type 2 Is Required for the Development of Pressure Overload-Induced Cardiac Hypertrophy. Hypertension 2011, 58, 1099–1110. [Google Scholar] [CrossRef]
- Norman, C.; Rall, J.A.; Tikunova, S.B.; Davis, J.P. Modulation of the rate of cardiac muscle contraction by troponin C constructs with various calcium binding affinities. Am. J. Physiol. Circ. Physiol. 2007, 293, H2580–H2587. [Google Scholar] [CrossRef]
- Liu, B.; Tikunova, S.B.; Kline, K.P.; Siddiqui, J.K.; Davis, J.P. Disease-Related Cardiac Troponins Alter Thin Filament Ca2+ Association and Dissociation Rates. PLoS ONE 2012, 7, e38259. [Google Scholar] [CrossRef] [PubMed]
- Cordina, N.; Liew, C.K.; Gell, D.; Fajer, P.G.; Mackay, J.; Brown, L.J. Effects of Calcium Binding and the Hypertrophic Cardiomyopathy A8V Mutation on the Dynamic Equilibrium between Closed and Open Conformations of the Regulatory N-Domain of Isolated Cardiac Troponin C. Biochemistry 2013, 52, 1950–1962. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, D.; Yamazaki, T.; Takeshima, H. New molecular components supporting ryanodine receptor-mediated Ca2+ release: Roles of junctophilin and TRIC channel in embryonic cardiomyocytes. Pharmacol. Ther. 2009, 121, 265–272. [Google Scholar] [CrossRef]
- Vanninen, S.U.M.; Leivo, K.; Seppälä, E.H.; Aalto-Setälä, K.; Pitkänen, O.; Suursalmi, P.; Annala, A.-P.; Anttila, I.; Alastalo, T.-P.; Myllykangas, S.; et al. Heterozygous junctophilin-2 (JPH2) p.(Thr161Lys) is a monogenic cause for HCM with heart failure. PLoS ONE 2018, 13, e0203422. [Google Scholar] [CrossRef]
- Landstrom, A.P.; Kellen, C.A.; Dixit, S.S.; van Oort, R.J.; Garbino, A.; Weisleder, N.; Ma, J.; Wehrens, X.H.; Ackerman, M.J. Junctophilin-2 Expression Silencing Causes Cardiocyte Hypertrophy and Abnormal Intracellular Calcium-Handling. Circ. Heart Fail. 2011, 4, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.T.L.; Yao, Q.; Soares, T.; Squier, T.C.; Bigelow, D.J. Phospholamban Modulates the Functional Coupling between Nucleotide Domains in Ca-ATPase Oligomeric Complexes in Cardiac Sarcoplasmic Reticulum. Biochemistry 2009, 48, 2411–2421. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, A.; Biagi, D.G.; Sobreira, T.J.; de Oliveira, P.S.L.; Negrão, C.E.; Mansur, A.J.; Krieger, J.E.; Brum, P.C.; Pereira, A.C. Mutations in the human phospholamban gene in patients with heart failure. Am. Hear. J. 2011, 162, 1088–1095.e1. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaffran, S.; Kraoua, L.; Jaouadi, H. Calcium Handling in Inherited Cardiac Diseases: A Focus on Catecholaminergic Polymorphic Ventricular Tachycardia and Hypertrophic Cardiomyopathy. Int. J. Mol. Sci. 2023, 24, 3365. https://doi.org/10.3390/ijms24043365
Zaffran S, Kraoua L, Jaouadi H. Calcium Handling in Inherited Cardiac Diseases: A Focus on Catecholaminergic Polymorphic Ventricular Tachycardia and Hypertrophic Cardiomyopathy. International Journal of Molecular Sciences. 2023; 24(4):3365. https://doi.org/10.3390/ijms24043365
Chicago/Turabian StyleZaffran, Stéphane, Lilia Kraoua, and Hager Jaouadi. 2023. "Calcium Handling in Inherited Cardiac Diseases: A Focus on Catecholaminergic Polymorphic Ventricular Tachycardia and Hypertrophic Cardiomyopathy" International Journal of Molecular Sciences 24, no. 4: 3365. https://doi.org/10.3390/ijms24043365
APA StyleZaffran, S., Kraoua, L., & Jaouadi, H. (2023). Calcium Handling in Inherited Cardiac Diseases: A Focus on Catecholaminergic Polymorphic Ventricular Tachycardia and Hypertrophic Cardiomyopathy. International Journal of Molecular Sciences, 24(4), 3365. https://doi.org/10.3390/ijms24043365