Enzyme Inhibition-Based Assay to Estimate the Contribution of Formulants to the Effect of Commercial Pesticide Formulations
Abstract
:1. Introduction
2. Results
2.1. Physico-Chemical Characterization of Active Ingredients of Pesticides
2.2. A Study of Sensitivity of the Assay Systems to the Active Ingredients of Pesticides
2.3. Comparing Effects of Commercial Pesticide Formulations and Their Active Ingredients on the Function of Assay Systems
2.4. The Effect of Pesticide Formulations on the Structure of Enzymes Used in the Assays
3. Discussion
4. Materials and Methods
4.1. Reagents and Pesticides
4.2. Effects of Active Ingredients of Pesticides on the Activities of Single-Enzyme Systems
4.3. The Effects of Active Ingredients of Pesticides on the Activity of Multi-Enzyme Systems
4.4. The Effects of Active Ingredients of Pesticides on Bioluminescence of the Assay System Based on P. phosphoreum Luminous Bacterium
4.5. Fluorescence and Circular Dichroism Spectra Measurements
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cimino, A.M.; Boyles, A.L.; Thayer, K.A.; Perry, M.J. Effects of Neonicotinoid Pesticide Exposure on Human Health: A Systematic Review. Environ. Health Perspect. 2017, 125, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, Y.; Ji, C.; Qu, J.; Chen, Y.; Wu, S.; Zhu, X.; Niu, L.; Zhao, M. Old Pesticide, New Use: Smart and Safe Enantiomer of Isocarbophos in Locust Control. Ecotoxicol. Environ. Saf. 2021, 225, 112710. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Bajpai, J.; Saini, R.; Bajpai, A.K.; Acharya, S. Sustained Release of Pesticide (Cypermethrin) from Nanocarriers: An Effective Technique for Environmental and Crop Protection. Process Saf. Environ. Prot. 2018, 117, 315–325. [Google Scholar] [CrossRef]
- Singh, A.; Dhiman, N.; Kar, A.K.; Singh, D.; Purohit, M.P.; Ghosh, D.; Patnaik, S. Advances in Controlled Release Pesticide Formulations: Prospects to Safer Integrated Pest Management and Sustainable Agriculture. J. Hazard. Mater. 2020, 385, 121525. [Google Scholar] [CrossRef]
- Rani Sarkar, M.; Rashid, M.H.; Rahman, A.; Kafi, M.A.; Hosen, M.I.; Rahman, M.S.; Khan, M.N. Recent Advances in Nanomaterials Based Sustainable Agriculture: An Overview. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100687. [Google Scholar] [CrossRef]
- Straw, E.A. A Brief Note on Pollinator Exposure to Co-Formulants and Adjuvants. Environ. Toxicol. Chem. 2022, 41, 1584–1585. [Google Scholar] [CrossRef]
- US EPA. Data Requirements for Pesticide Registration. Available online: https://www.epa.gov/pesticide-registration/data-requirements-pesticide-registration (accessed on 4 November 2022).
- Vincent, K.; Davidson, C. The Toxicity of Glyphosate Alone and Glyphosate–Surfactant Mixtures to Western Toad (Anaxyrus Boreas) Tadpoles. Environ. Toxicol. Chem. 2015, 34, 2791–2795. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.I.L.; Ammendola, A.; Casini, S.; Amorim, M.J.B. Toxicity of Fungicides to Terrestrial Non-Target Fauna—Formulated Products versus Active Ingredients (Azoxystrobin, Cyproconazole, Prothioconazole, Tebuconazole)—A Case Study with Enchytraeus Crypticus (Oligochaeta). Sci. Total Environ. 2021, 754, 142098. [Google Scholar] [CrossRef] [PubMed]
- Beggel, S.; Werner, I.; Connon, R.E.; Geist, J.P. Sublethal Toxicity of Commercial Insecticide Formulations and Their Active Ingredients to Larval Fathead Minnow (Pimephales Promelas). Sci. Total Environ. 2010, 408, 3169–3175. [Google Scholar] [CrossRef]
- Adams, E.; Gerstle, V.; Schmitt, T.; Brühl, C.A. Co-Formulants and Adjuvants Affect the Acute Aquatic and Terrestrial Toxicity of a Cycloxydim Herbicide Formulation to European Common Frogs (Rana Temporaria). Sci. Total Environ. 2021, 789, 147865. [Google Scholar] [CrossRef]
- Straw, E.A.; Brown, M.J.F. Co-Formulant in a Commercial Fungicide Product Causes Lethal and Sub-Lethal Effects in Bumble Bees. Sci. Rep. 2021, 11, 21653. [Google Scholar] [CrossRef] [PubMed]
- Nagy, K.; Duca, R.C.; Lovas, S.; Creta, M.; Scheepers, P.T.J.; Godderis, L.; Ádám, B. Systematic Review of Comparative Studies Assessing the Toxicity of Pesticide Active Ingredients and Their Product Formulations. Environ. Res. 2020, 181, 108926. [Google Scholar] [CrossRef] [PubMed]
- Karaca, M.; Fischer, B.C.; Willenbockel, C.T.; Tralau, T.; Marx-Stoelting, P.; Bloch, D. Effects of Co-Formulants on the Absorption and Secretion of Active Substances in Plant Protection Products in Vitro. Arch Toxicol. 2021, 95, 3205–3221. [Google Scholar] [CrossRef]
- Kovačević, M.; Stjepanović, N.; Hackenberger, D.K.; Lončarić, Ž.; Hackenberger, B.K. Toxicity of Fungicide Azoxystrobin to Enchytraeus Albidus: Differences between the Active Ingredient and Formulated Product. Pestic. Biochem. Physiol. 2022, 187, 105198. [Google Scholar] [CrossRef]
- Sivey, J.D.; Roberts, A.L. Abiotic Reduction Reactions of Dichloroacetamide Safeners: Transformations of “Inert” Agrochemical Constituents. Environ. Sci. Technol. 2012, 46, 2187–2195. [Google Scholar] [CrossRef]
- Liu, S.; Deng, X.; Zhou, X.; Bai, L. Assessing the Toxicity of Three “Inert” Herbicide Safeners toward Danio Rerio: Effects on Embryos Development. Ecotoxicol. Environ. Saf. 2021, 207, 111576. [Google Scholar] [CrossRef] [PubMed]
- Takács, E.; Klátyik, S.; Mörtl, M.; Rácz, G.; Kovács, K.; Darvas, B.; Székács, A. Effects of Neonicotinoid Insecticide Formulations and Their Components on Daphnia Magna–the Role of Active Ingredients and Co-Formulants. Int. J. Environ. Anal. Chem. 2017, 97, 885–900. [Google Scholar] [CrossRef]
- van de Merwe, J.P.; Neale, P.A.; Melvin, S.D.; Leusch, F.D.L. In Vitro Bioassays Reveal That Additives Are Significant Contributors to the Toxicity of Commercial Household Pesticides. Aquat. Toxicol. 2018, 199, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Mottier, A.; Serpentini, A.; Dallas, L.; James, A.; Lebel, J.-M.; Costil, K. In Vitro Effects of Glyphosate-Based Herbicides and Related Adjuvants on Primary Culture of Hemocytes from Haliotis Tuberculata. Fish Shellfish Immunol. 2020, 100, 1–8. [Google Scholar] [CrossRef]
- Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; Nichols, J.W.; Russom, C.L.; Schmieder, P.K.; et al. Adverse Outcome Pathways: A Conceptual Framework to Support Ecotoxicology Research and Risk Assessment. Environ. Toxicol. Chem. 2010, 29, 730–741. [Google Scholar] [CrossRef]
- Gonçalves, A.M.M.; Rocha, C.P.; Marques, J.C.; Gonçalves, F.J.M. Enzymes as Useful Biomarkers to Assess the Response of Freshwater Communities to Pesticide Exposure—A Review. Ecol. Indic. 2021, 122, 107303. [Google Scholar] [CrossRef]
- Pundir, C.S.; Malik, A. Preety Bio-Sensing of Organophosphorus Pesticides: A Review. Biosens. Bioelectron. 2019, 140, 111348. [Google Scholar] [CrossRef] [PubMed]
- Bucur, B.; Munteanu, F.D.; Marty, J.L.; Vasilescu, A. Advances in Enzyme-Based Biosensors for Pesticide Detection. Biosensors 2018, 8, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esimbekova, E.N.; Kalyabina, V.P.; Kopylova, K.V.; Lonshakova-Mukina, V.I.; Antashkevich, A.A.; Torgashina, I.G.; Lukyanenko, K.A.; Kratasyuk, V.A. The Effects of Commercial Pesticide Formulations on the Function of In Vitro and In Vivo Assay Systems: A Comparative Analysis. Chemosensors 2022, 10, 328. [Google Scholar] [CrossRef]
- Esimbekova, E.N.; Kalyabina, V.P.; Kopylova, K.V.; Torgashina, I.G.; Kratasyuk, V.A. Design of Bioluminescent Biosensors for Assessing Contamination of Complex Matrices. Talanta 2021, 233, 122509. [Google Scholar] [CrossRef]
- SanPiN 1.2.3685-21; Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors for Humans (for Russian Federation). Approved by the resolution of the Chief state sanitary physician of the Russian Federation of 28.01.2021 N 2; Russia, Moscow, 2021.
- Shimizu, A.; Yamada, Y.; Mizuta, T.; Haseba, T.; Sugai, S. The Contribution of the Dynamic Behavior of a Water Molecule to the Amyloid Formation of Yeast Alcohol Dehydrogenase. J. Mol. Liq. 2004, 109, 45–52. [Google Scholar] [CrossRef]
- Principles of Fluorescence Spectroscopy; Lakowicz, J.R. (Ed.) Springer: Boston, MA, USA, 2006; ISBN 978-0-387-31278-1. [Google Scholar]
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, Distribution Pathways and Effects on Human Health—A Review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef]
- Puglis, H.J.; Boone, M.D. Effects of Technical-Grade Active Ingredient vs. Commercial Formulation of Seven Pesticides in the Presence or Absence of UV Radiation on Survival of Green Frog Tadpoles. Arch. Environ. Contam. Toxicol. 2011, 60, 145–155. [Google Scholar] [CrossRef]
- McLuckie, C.; Moltschaniwskyj, N.; Gaston, T.; Dunstan, R.H.; Crompton, M.; Butcherine, P.; Benkendorff, K.; Taylor, M.D. Lethal and Sub-Lethal Effects of Environmentally Relevant Levels of Imidacloprid Pesticide to Eastern School Prawn, Metapenaeus Macleayi. Sci. Total Environ. 2020, 742, 140449. [Google Scholar] [CrossRef]
- Li, M.; Lv, M.; Liu, T.; Du, G.; Wang, Q. Lipid Metabolic Disorder Induced by Pyrethroids in Nonalcoholic Fatty Liver Disease of Xenopus Laevis. Environ. Sci. Technol. 2022, 56, 8463–8474. [Google Scholar] [CrossRef]
- Bertrand, L.; Monferrán, M.V.; Mouneyrac, C.; Bonansea, R.I.; Asis, R.; Amé, M.V. Sensitive Biomarker Responses of the Shrimp Palaemonetes Argentinus Exposed to Chlorpyrifos at Environmental Concentrations: Roles of Alpha-Tocopherol and Metallothioneins. Aquat. Toxicol. 2016, 179, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Pinto, T.J.d.S.; Rocha, G.S.; Moreira, R.A.; da Silva, L.C.M.; Yoshii, M.P.C.; Goulart, B.V.; Montagner, C.C.; Daam, M.A.; Espindola, E.L.G. Chronic Environmentally Relevant Levels of Pesticides Disrupt Energy Reserves, Feeding Rates, and Life-Cycle Responses in the Amphipod Hyalella Meinerti. Aquat. Toxicol. 2022, 245, 106117. [Google Scholar] [CrossRef] [PubMed]
- Matozzo, V.; Fabrello, J.; Marin, M.G. The Effects of Glyphosate and Its Commercial Formulations to Marine Invertebrates: A Review. J. Mar. Sci. Eng. 2020, 8, 399. [Google Scholar] [CrossRef]
- Straw, E.A.; Thompson, L.J.; Leadbeater, E.; Brown, M.J.F. ‘Inert’ Ingredients Are Understudied, Potentially Dangerous to Bees and Deserve More Research Attention. Proc. R. Soc. 2022, 289, 20212353. [Google Scholar] [CrossRef]
- Cossi, P.F.; Herbert, L.T.; Yusseppone, M.S.; Pérez, A.F.; Kristoff, G. Toxicity Evaluation of the Active Ingredient Acetamiprid and a Commercial Formulation (Assail® 70) on the Non-Target Gastropod Biomphalaria Straminea (Mollusca: Planorbidae). Ecotoxicol. Environ. Saf. 2020, 192, 110248. [Google Scholar] [CrossRef] [PubMed]
- Fisher, A.; DeGrandi-Hoffman, G.; Smith, B.H.; Johnson, M.; Kaftanoglu, O.; Cogley, T.; Fewell, J.H.; Harrison, J.F. Colony Field Test Reveals Dramatically Higher Toxicity of a Widely-Used Mito-Toxic Fungicide on Honey Bees (Apis Mellifera). Environ. Pollut. 2021, 269, 115964. [Google Scholar] [CrossRef] [PubMed]
- Demirdağ, R.; Yerlikaya, E.; Aksakal, E.; Küfrevioğlu, Ö.I.; Ekinci, D. Influence of Pesticides on the PH Regulatory Enzyme, Carbonic Anhydrase, from European Seabass Liver and Bovine Erythrocytes. Environ. Toxicol. Pharmacol. 2012, 34, 218–222. [Google Scholar] [CrossRef]
- Yao, J.; Zhu, Y.C.; Adamczyk, J.; Luttrell, R. Influences of Acephate and Mixtures with Other Commonly Used Pesticides on Honey Bee (Apis Mellifera) Survival and Detoxification Enzyme Activities. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2018, 209, 9–17. [Google Scholar] [CrossRef]
- Mingo, V.; Leeb, C.; Fahl, A.-K.; Lötters, S.; Brühl, C.; Wagner, N. Validating Buccal Swabbing as a Minimal-Invasive Method to Detect Pesticide Exposure in Squamate Reptiles. Chemosphere 2019, 229, 529–537. [Google Scholar] [CrossRef]
- Majumder, R.; Kaviraj, A. Acute and Sublethal Effects of Organophosphate Insecticide Chlorpyrifos on Freshwater Fish Oreochromis Niloticus. Drug Chem. Toxicol. 2019, 42, 487–495. [Google Scholar] [CrossRef]
- Chai, J.; Xu, Q.; Dai, J.; Liu, R. Investigation on Potential Enzyme Toxicity of Clenbuterol to Trypsin. Spectrochim. Acta Mol. Biomol. Spectrosc. 2013, 105, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wei, J.; Yang, H.; Dai, J.; Ge, X. Molecular Dynamics Investigation of the Interaction between Colletotrichum Capsici Cutinase and Berberine Suggested a Mechanism for Reduced Enzyme Activity. PLoS ONE 2021, 16, e0247236. [Google Scholar] [CrossRef] [PubMed]
- Momeni, L.; Shareghi, B.; Saboury, A.A.; Farhadian, S.; Reisi, F. A Spectroscopic and Thermal Stability Study on the Interaction between Putrescine and Bovine Trypsin. Int. J. Biol. Macromol. 2017, 94, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Sun, T.; Liu, C.; Song, W.; Cao, Z.; Liu, R. New Insights into the Toxicity of N-Butanol to Trypsin: Spectroscopic and Molecular Docking Descriptions. J. Biochem. Mol. Toxicol. 2015, 29, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, H.; Liu, G.; Gao, C.; Liu, R. Interaction of Cu2+, Pb2+, Zn2+ with Trypsin: What Is the Key Factor of Their Toxicity? J. Fluoresc. 2014, 24, 1803–1810. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Lin, J.; Liu, R. Interaction of Sodium Benzoate with Trypsin by Spectroscopic Techniques. Spectrochim. Acta Mol. Biomol. Spectrosc. 2011, 83, 130–135. [Google Scholar] [CrossRef]
- Nemtseva, E.V.; Gerasimova, M.A.; Melnik, T.N.; Melnik, B.S. Experimental Approach to Study the Effect of Mutations on the Protein Folding Pathway. PLoS ONE 2019, 14, e0210361. [Google Scholar] [CrossRef] [Green Version]
- Nemtseva, E.V.; Gulnov, D.V.; Gerasimova, M.A.; Sukovatyi, L.A.; Burakova, L.P.; Karuzina, N.E.; Melnik, B.S.; Kratasyuk, V.A. Bacterial Luciferases from Vibrio Harveyi and Photobacterium Leiognathi Demonstrate Different Conformational Stability as Detected by Time-Resolved Fluorescence Spectroscopy. Int. J. Mol. Sci. 2021, 22, 10449. [Google Scholar] [CrossRef]
- Siddiqui, M.F.; Khan, M.S.; Husain, F.M.; Bano, B. Deciphering the Binding of Carbendazim (Fungicide) with Human Serum Albumin: A Multi-Spectroscopic and Molecular Modelling Studies. J. Biomol. Struct. Dyn. 2019, 37, 2230–2241. [Google Scholar] [CrossRef]
- Zeng, H.-J.; Yang, D.; Hu, G.-Z.; Yang, R.; Qu, L.-B. Studies on the Binding of Pepsin with Three Pyrethroid Insecticides by Multi-Spectroscopic Approaches and Molecular Docking. J. Mol. Recognit. JMR 2016, 29, 476–484. [Google Scholar] [CrossRef]
- Phopin, K.; Tantimongcolwat, T. Pesticide Aptasensors—State of the Art and Perspectives. Sensors 2020, 20, 6809. [Google Scholar] [CrossRef]
- Jiang, H.S.; Zhang, Y.; Lu, Z.W.; Lebrun, R.; Gontero, B.; Li, W. Interaction between Silver Nanoparticles and Two Dehydrogenases: Role of Thiol Groups. Small 2019, 15, e1900860. [Google Scholar] [CrossRef]
- Camarca, A.; Varriale, A.; Capo, A.; Pennacchio, A.; Calabrese, A.; Giannattasio, C.; Murillo Almuzara, C.; D’Auria, S.; Staiano, M. Emergent Biosensing Technologies Based on Fluorescence Spectroscopy and Surface Plasmon Resonance. Sensors 2021, 21, 906. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Cui, B.; Liu, J.; Song, Y.; Wang, M.; Peng, D.; Zhang, Z. Novel Electrochemical Biosensor Based on Core-Shell Nanostructured Composite of Hollow Carbon Spheres and Polyaniline for Sensitively Detecting Malathion. Sens. Actuators Chem. 2018, 258, 813–821. [Google Scholar] [CrossRef]
- Zambrano-Intriago, L.A.; Amorim, C.G.; Araújo, A.N.; Gritsok, D.; Rodríguez-Díaz, J.M.; Montenegro, M.C.B.S.M. Development of an Inexpensive and Rapidly Preparable Enzymatic Pencil Graphite Biosensor for Monitoring of Glyphosate in Waters. Sci. Total Environ. 2023, 855, 158865. [Google Scholar] [CrossRef] [PubMed]
- Kucherenko, I.S.; Soldatkin, O.O.; Dzyadevych, S.V.; Soldatkin, A.P. Electrochemical Biosensors Based on Multienzyme Systems: Main Groups, Advantages and Limitations—A Review. Anal. Chim. Acta 2020, 1111, 114–131. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; Costa-García, A.; Muñiz, A.d.l.E. Electrochemical (Bio)Sensors for Pesticides Detection Using Screen-Printed Electrodes. Biosensors 2020, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Kadam, U.S.; Hong, J.C. Advances in Aptameric Biosensors Designed to Detect Toxic Contaminants from Food, Water, Human Fluids, and the Environment. Trends Environ. Anal. Chem. 2022, 36, e00184. [Google Scholar] [CrossRef]
- Trinh, K.H.; Kadam, U.S.; Rampogu, S.; Cho, Y.; Yang, K.-A.; Kang, C.H.; Lee, K.-W.; Lee, K.O.; Chung, W.S.; Hong, J.C. Development of Novel Fluorescence-Based and Label-Free Noncanonical G4-Quadruplex-like DNA Biosensor for Facile, Specific, and Ultrasensitive Detection of Fipronil. J. Hazard. Mater. 2022, 427, 127939. [Google Scholar] [CrossRef]
- Hong, J.C.; Lee, S.Y.; Chung, W.S.; Kim, S.H.; Kang, C.H.; Kim, S.; Kim, Y.; Lee, H.; Cho, Y.; Trinh, K.H.; et al. Engineering Novel Aptameric Fluorescent Biosensors for Analysis of the Neurotoxic Environmental Contaminant Insecticide Diazinon from Real Vegetable and Fruit Samples. Front. Biosci.-Landmark 2022, 27, 92. [Google Scholar] [CrossRef]
- Inam, A.K.M.S.; Angeli, M.A.C.; Douaki, A.; Shkodra, B.; Lugli, P.; Petti, L. An Aptasensor Based on a Flexible Screen-Printed Silver Electrode for the Rapid Detection of Chlorpyrifos. Sensors 2022, 22, 2754. [Google Scholar] [CrossRef] [PubMed]
- Saberi, Z.; Rezaei, B.; Ensafi, A.A. Fluorometric Label-Free Aptasensor for Detection of the Pesticide Acetamiprid by Using Cationic Carbon Dots Prepared with Cetrimonium Bromide. Microchim. Acta 2019, 186, 273. [Google Scholar] [CrossRef] [PubMed]
- Trinh, K.H.; Kadam, U.S.; Song, J.; Cho, Y.; Kang, C.H.; Lee, K.O.; Lim, C.O.; Chung, W.S.; Hong, J.C. Novel DNA Aptameric Sensors to Detect the Toxic Insecticide Fenitrothion. Int. J. Mol. Sci. 2021, 22, 10846. [Google Scholar] [CrossRef] [PubMed]
- Umapathi, R.; Rani, G.M.; Kim, E.; Park, S.-Y.; Cho, Y.; Huh, Y.S. Sowing Kernels for Food Safety: Importance of Rapid on-Site Detection of Pesticide Residues in Agricultural Foods. Food Front. 2022, 3, 666–676. [Google Scholar] [CrossRef]
- Rodicheva, E.K.; Vydryakova, G.A.; Medvedeva, S.E. The Ibso Catalogue of Luminous Bacteria Cultures. Available online: http://www.ibp.ru/collection/default.php (accessed on 19 May 2022).
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
Assay System | Fenvalerate | Deltamethrin | Cypermethrin | Imidacloprid | Malathion | Diazinon | Glyphosate | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AIa | AIf Sempay | AIa | AIf Delcid | AIa | AIf Briz | AIa | AIf | AIa | AIf Aliot | AIa | AIf Muravyed | AIa | AIf Liquidator | AIf Tornado Extra | ||||
Biotlin | Corado | Confidor Extra | ||||||||||||||||
Single-Enzyme Assay Systems | Trypsin | x | * | x | – | – | * | – | * | * | – | * | * | * | * | 962 | 5400 | 2400 |
ALP | x | * | x | – | – | – | – | * | * | * | * | * | * | * | 1080 | 600 | 220 | |
BChE | 120 | - | 100 | 0.76 | – | 30,930 | – | 200 | – | 80,000 | 600 | 4 | – | 20 | 35 | 1000 | 2.4 | |
LDH | 3 | 0.2 | 30 | 6.2 | 25 | 150 | – | – | 180 | 1 | 350 | 30 | – | 0.05 | – | 6000 | 52 | |
ADH | – | * | 10.4 | 16.7 | 0.2 | 100 | – | 0.17 | 0.08 | 49.9 | * | * | 14.5 | 0.2 | 5140 | 1.5 | 2.1 | |
Red | – | * | – | 146 | – | 300 | – | 0.09 | – | 14.9 | * | * | * | * | – | 9.0 | 5.0 | |
Multi-Enzyme Assay Systems | Red + Luc | 4.8 | 0.0014 | 3.7 | 39.5 | 1.8 | 5 | – | 0.003 | 0.07 | 34.4 | * | 0.1 | 2234 | 0.009 | 288 | 1.11 | 1.8 |
ADH + Red + Luc | 1.6 | 0.0006 | 1.0 | 12.7 | 0.2 | 3 | – | 0.006 | 0.04 | 47.8 | * | 0.05 | 11 | 0.01 | 3200 | 1.4 | 2.0 | |
LDH + Red + Luc | 31.7 | 0.0007 | 7.7 | 11.5 | 6.5 | 1 | – | 0.01 | 0.04 | 1.9 | * | 0.014 | 3351 | 0.005 | 935 | 1.1 | 3.3 | |
P. phosphoreum | – | * | – | * | – | * | – | 2000 | 500 | 110 | – | * | – | * | – | 400 | 400 | |
MRL RUS mg/kg [27] | 0.02–0.1 | 0.01–0.3 | 0.01–2.0 | 0.1–1.0 | 0.05–1.0 | 0.1–0.5 | 0.1–5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esimbekova, E.N.; Kalyabina, V.P.; Kopylova, K.V.; Lonshakova-Mukina, V.I.; Antashkevich, A.A.; Torgashina, I.G.; Lukyanenko, K.A.; Nemtseva, E.V.; Kratasyuk, V.A. Enzyme Inhibition-Based Assay to Estimate the Contribution of Formulants to the Effect of Commercial Pesticide Formulations. Int. J. Mol. Sci. 2023, 24, 2268. https://doi.org/10.3390/ijms24032268
Esimbekova EN, Kalyabina VP, Kopylova KV, Lonshakova-Mukina VI, Antashkevich AA, Torgashina IG, Lukyanenko KA, Nemtseva EV, Kratasyuk VA. Enzyme Inhibition-Based Assay to Estimate the Contribution of Formulants to the Effect of Commercial Pesticide Formulations. International Journal of Molecular Sciences. 2023; 24(3):2268. https://doi.org/10.3390/ijms24032268
Chicago/Turabian StyleEsimbekova, Elena N., Valeriya P. Kalyabina, Kseniya V. Kopylova, Victoria I. Lonshakova-Mukina, Anna A. Antashkevich, Irina G. Torgashina, Kirill A. Lukyanenko, Elena V. Nemtseva, and Valentina A. Kratasyuk. 2023. "Enzyme Inhibition-Based Assay to Estimate the Contribution of Formulants to the Effect of Commercial Pesticide Formulations" International Journal of Molecular Sciences 24, no. 3: 2268. https://doi.org/10.3390/ijms24032268