Preparation and Antimicrobial Activity of a Film-Forming Polyhexamethylene Biguanide Teat Disinfectant
Abstract
:1. Introduction
2. Results
2.1. Preparation and Optimization of PHMB Teat Disinfectant
2.2. In Vitro Antibacterial Activity
2.3. Factors Influencing Disinfection Effect
2.4. Skin Disinfection Test
2.5. Teat Swabbing Procedure
3. Discussion
4. Materials and Methods
4.1. Chemicals and Materials
4.2. Bacterial Strains and Growth Conditions
4.3. Preparation of PHMB Teat Disinfectant
4.4. Stabilization Test
4.5. Quantitative Suspension Test
4.6. Factors Affecting Disinfection Effect Test
4.7. Skin Disinfection Test
4.8. Teat Swabbing Procedure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashraf, A.; Imran, M. Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Anim. Health Res. Rev. 2020, 21, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Awandkar, S.P.; Kulkarni, M.B.; Khode, N.V. Bacteria from bovine clinical mastitis showed multiple drug resistance. Vet. Res. Commun. 2022, 46, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Maalaoui, A.; Majdoub, H.; Trimeche, A.; Souissi, N.; Saidani, F.; Marnet, P.G. Prevalence of bovine mastitis and main risk factors in Tunisia. Trop. Anim. Health Prod. 2021, 53, 469. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, D.; Flynn, J.; Brien, B.O. Effect of pre-milking teat disinfection on new mastitis infection rates of dairy cows. Ir. Vet. J. 2018, 71, 11. [Google Scholar] [CrossRef] [PubMed]
- Thapa, R.K.; Diep, D.B.; Tonnesen, H.H. Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects. Acta Biomater. 2020, 103, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.R.; Varela, C.L.; Pires, A.S.; Tavares-da-Silva, E.J.; Roleira, F. Synthetic and natural guanidine derivatives as antitumor and antimicrobial agents: A review. Bioorganic Chem. 2023, 138, 106600. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Semenya, D.; Castagnolo, D. Antimicrobial drugs bearing guanidine moieties: A review. Eur. J. Med. Chem. 2021, 216, 113293. [Google Scholar] [CrossRef]
- Schwenker, J.A.; Schotte, U.; Holzel, C.S. Minimum inhibitory concentrations of chlorhexidine- and lactic acid-based teat disinfectants: An intervention trial assessing bacterial selection and susceptibility. J. Dairy Sci. 2022, 105, 734–747. [Google Scholar] [CrossRef]
- Morrill, K.M.; Scillieri, S.J.; Dann, H.M.; Gauthier, H.M.; Ballard, C.S. Evaluation of powdered 0.5% chlorhexidine acetate-based postmilking teat dip compared with a foamed 1% iodine-based postmilking teat dip under cold weather conditions in northern New York. J. Dairy Sci. 2019, 102, 2507–2514. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, L.; Yang, H.; Zhou, R.; Che, C.; Li, X.; Li, C.; Luan, S.; Yin, J.; Shi, H. Water-Insoluble polymeric guanidine derivative and application in the preparation of antibacterial coating of catheter. ACS Appl. Mater. Interfaces 2018, 10, 39257–39267. [Google Scholar] [CrossRef]
- He, X.; Dai, L.; Ye, L.; Sun, X.; Enoch, O.; Hu, R.; Zan, X.; Lin, F.; Shen, J. A vehicle-free antimicrobial polymer hybrid gold nanoparticle as synergistically therapeutic platforms for Staphylococcus aureus infected wound healing. Adv. Sci. 2022, 9, e2105223. [Google Scholar] [CrossRef] [PubMed]
- Dunster, E.; Johnson, W.L.; Wozniak, R. Antimicrobial drug-drug interactions in the treatment of infectious keratitis. Cornea 2023, 42, 1555–1561. [Google Scholar] [CrossRef]
- Welk, A.; Splieth, C.H.; Schmidt-Martens, G.; Schwahn, C.; Kocher, T.; Kramer, A.; Rosin, M. The effect of a polyhexamethylene biguanide mouthrinse compared with a triclosan rinse and a chlorhexidine rinse on bacterial counts and 4-day plaque re-growth. J. Clin. Periodontol. 2005, 32, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Gerli, S.; Rossetti, D.; Di Renzo, G.C. A new approach for the treatment of bacterial vaginosis: Use of polyhexamethylene biguanide. A prospective, randomized study. Eur. Rev. Med. Pharmacol. Sci. 2003, 7, 127–130. [Google Scholar] [PubMed]
- Napavichayanun, S.; Ampawong, S.; Harnsilpong, T.; Angspatt, A.; Aramwit, P. Inflammatory reaction, clinical efficacy, and safety of bacterial cellulose wound dressing containing silk sericin and polyhexamethylene biguanide for wound treatment. Arch. Dermatol. Res. 2018, 310, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.; Neuenschwander, R.; Brill, F.; Wurmitzer, F.; Wegner, C.; Assadian, O.; Kramer, A. Effect of antiseptic irrigation on infection rates of traumatic soft tissue wounds: A longitudinal cohort study. J. Wound Care 2017, 26, 79–87. [Google Scholar] [CrossRef]
- Llorens, E.; Calderon, S.; Del, V.L.; Puiggali, J. Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties. Mater. Sci. Eng. C-Mater. Biol. Appl. 2015, 50, 74–84. [Google Scholar] [CrossRef]
- Peng, J.; Liu, P.; Peng, W.; Sun, J.; Dong, X.; Ma, Z.; Gan, D.; Liu, P.; Shen, J. Poly(hexamethylene biguanide) (PHMB) as high-efficiency antibacterial coating for titanium substrates. J. Hazard. Mater. 2021, 411, 125110. [Google Scholar] [CrossRef]
- Ng, I.S.; Ooi, C.W.; Liu, B.L.; Peng, C.T.; Chiu, C.Y.; Chang, Y.K. Antibacterial efficacy of chitosan- and poly (hexamethylene biguanide)-immobilized nanofiber membrane. Int. J. Biol. Macromol. 2020, 154, 844–854. [Google Scholar] [CrossRef]
- Rippon, M.G.; Rogers, A.A.; Ousey, K. Polyhexamethylene biguanide and its antimicrobial role in wound healing: A narrative review. J. Wound Care 2023, 32, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Punnel, L.C.; Lunter, D.J. Film-forming systems for dermal drug delivery. Pharmaceutics 2021, 13, 932. [Google Scholar] [CrossRef] [PubMed]
- Sharun, K.; Dhama, K.; Tiwari, R.; Gugjoo, M.B.; Iqbal, Y.M.; Patel, S.K.; Pathak, M.; Karthik, K.; Khurana, S.K.; Singh, R.; et al. Advances in therapeutic and managemental approaches of bovine mastitis: A comprehensive review. Vet. Q. 2021, 41, 107–136. [Google Scholar] [CrossRef] [PubMed]
- Sowlati-Hashjin, S.; Carbone, P.; Karttunen, M. Insights into the polyhexamethylene biguanide (PHMB) mechanism of action on bacterial membrane and DNA: A Molecular Dynamics Study. J. Phys. Chem. B 2020, 124, 4487–4497. [Google Scholar] [CrossRef] [PubMed]
- Koburger, T.; Hubner, N.O.; Braun, M.; Siebert, J.; Kramer, A. Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. J. Antimicrob. Chemother. 2010, 65, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Tian, L.; Fatona, A.; Wu, X.; Zhang, H.; Liu, J.; Fefer, M.; Hosseinidoust, Z.; Pelton, R.H. Water-soluble anionic polychloramide biocides based on maleic anhydride copolymers. Colloid Surf. B.-Biointerfaces 2022, 215, 112487. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, T.; Asrafali, S.; Shanmugam, M.; Kim, S.C. Development of sustainable and antimicrobial film based on polybenzoxazine and cellulose. Int. J. Biol. Macromol. 2021, 170, 664–673. [Google Scholar] [CrossRef]
- Blignaut, D.; Thompson, P.; Petzer, I.M. Prevalence of mastitis pathogens in South African pasture-based and total mixed ration-based dairies during 2008 and 2013. Onderstepoort J. Vet. Res. 2018, 85, e1–e7. [Google Scholar] [CrossRef]
- Webster, J. Understanding the Dairy Cows, 3rd ed.; Wiley Blackwell: Oxford, UK, 2020; p. 258. [Google Scholar]
- Zigo, F.; Vasil’, M.; Ondrasovicova, S.; Vyrostkova, J.; Bujok, J.; Pecka-Kielb, E. Maintaining optimal mammary gland health and prevention of mastitis. Front. Vet. Sci. 2021, 8, 607311. [Google Scholar] [CrossRef]
- Kamaruzzaman, N.F.; Firdessa, R.; Good, L. Bactericidal effects of polyhexamethylene biguanide against intracellular Staphylococcus aureus EMRSA-15 and USA 300. J. Antimicrob. Chemother. 2016, 71, 1252–1259. [Google Scholar] [CrossRef]
- Leite, R.F.; Goncalves, J.L.; Buanz, A.; Febraro, C.; Craig, D.; Van Winden, S.; Good, L.; Santos, M.V. Antimicrobial activity of polyhexamethylene biguanide nanoparticles against mastitis-causing Staphylococcus aureus. JDS Commun. 2021, 2, 262–265. [Google Scholar] [CrossRef]
- Fidelis, C.E.; de Freitas Leite, R.; Garcia, B.L.N.; Gonçalves, J.L.; Good, L.; Dos Santos, M.V. Antimicrobial activities of polyhexamethylene biguanide against biofilm-producing Prototheca bovis causing bovine mastitis. J. Dairy Sci. 2023, 106, 1383–1393. [Google Scholar] [CrossRef] [PubMed]
- GB/T 26367-2020; Hygienic Requirements for Guanidines Disinfectants. Standardization Administration of the People’s Republic of China: Beijing, China, 2020. Available online: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=8772BE53AE186DC5A96357A7CF8EF793&ivk_sa=1024320u (accessed on 10 March 2022).
- National Health Commission of the People’s Republic of China. Disinfection Technology Standard. 2002. Available online: http://www.nhc.gov.cn/wjw/gfxwj/201304/3a0121cba422455b93307f070b099cf2.shtml (accessed on 2 March 2022).
- Alabdullatif, M.; Boujezza, I.; Mekni, M.; Taha, M.; Kumaran, D.; Yi, Q.L.; Landoulsi, A.; Ramirez-Arcos, S. Enhancing blood donor skin disinfection using natural oils. Transfusion 2017, 57, 2920–2927. [Google Scholar] [CrossRef] [PubMed]
- Verhegghe, M.; De Block, J.; Van Weyenberg, S.; Herman, L.; Heyndrickx, M.; Van Coillie, E. Effect of a pre-milking teat foam and a liner disinfectant on the presence of mesophilic and (proteolytic) psychrotrophic bacteria prior to milking. J. Dairy Res. 2019, 86, 432–435. [Google Scholar] [CrossRef] [PubMed]
Disinfectant | Normal Concentration (g/L) | Day 0 Concentration (mean ± SD, g/L) | Day 90 Concentration (Mean ± SD, g/L) | Degradation Rate a (%) |
---|---|---|---|---|
PHMB teat disinfectant | 3.00 | 2.83 ± 0.11 | 2.76 ± 0.08 | 2.47 |
Strain | Exposure Time (min) | Reduction Rate a (%) | |||
---|---|---|---|---|---|
1:3200 | 1:4000 | 1:4800 | 1:5600 | ||
E. coli (ATCC 8099) | 5 | 100 | 100 | 99.99 | <99.90 |
10 | 100 | 100 | 99.99 | <99.90 | |
15 | 100 | 100 | 100 | <99.90 | |
30 | 100 | 100 | 100 | <99.90 |
Strain | Exposure Time (min) | Reduction Rate a (%) | |||
---|---|---|---|---|---|
1:6400 | 1:8000 | 1:9600 | 1:11,000 | ||
S. aureus ATCC 6538 | 5 | 99.99 | 99.99 | <99.90 | <99.90 |
10 | 100 | 99.99 | <99.90 | <99.90 | |
15 | 100 | 99.99 | <99.90 | <99.90 | |
30 | 100 | 99.99 | <99.90 | <99.90 | |
S. agalactiae ATCC 12386 | 5 | 100 | 100 | 99.99 | <99.90 |
10 | 100 | 100 | 99.99 | <99.90 | |
15 | 100 | 100 | 100 | <99.90 | |
30 | 100 | 100 | 100 | <99.90 | |
S. dysgalactiae ATCC 35666 | 5 | 100 | 99.99 | 99.99 | 99.91 |
10 | 100 | 100 | 99.99 | <99.90 | |
15 | 100 | 100 | 100 | <99.90 | |
30 | 100 | 100 | 100 | <99.90 |
Organism | Mean log10 Reduction |
---|---|
E. coli ATCC 8099 | 5.29 |
S. aureus ATCC 6538 | 4.53 |
S. agalactiae ATCC 12386 | 4.38 |
S. dysgalactiae ATCC 35666 | 4.10 |
Cow | PHMB Disinfection (Mean log10 Reduction) | PHMB Solution (Mean log10 Reduction) | ||
---|---|---|---|---|
10 min | 12 h | 10 min | 12 h | |
1 | 1.40 | 0.43 | 1.88 | −0.10 |
2 | 2.72 | 0.38 | 2.34 | 0.08 |
3 | 3.52 | 0.27 | 1.85 | 0.10 |
4 | 2.09 | 0.56 | 2.48 | 0.01 |
5 | 1.46 | 0.45 | 1.25 | 0.10 |
6 | 2.50 | 0.33 | 2.09 | −0.16 |
7 | 1.56 | 0.56 | 3.34 | −0.02 |
8 | 1.21 | 0.57 | 1.68 | 0.18 |
9 | 1.93 | 0.57 | 1.73 | −0.07 |
10 | 0.99 | 0.66 | 2.36 | 0.09 |
11 | 1.39 | 0.68 | 1.25 | 0.17 |
12 | 1.63 | 0.50 | 1.67 | −0.03 |
Mean ± SD | 1.87 ± 0.73 | 0.50 ± 0.13 | 1.99 ± 0.58 | 0.03 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Wang, D.; Zhang, Y.; Hu, Y.; Lu, J.; Zeng, Z.; Zeng, D. Preparation and Antimicrobial Activity of a Film-Forming Polyhexamethylene Biguanide Teat Disinfectant. Int. J. Mol. Sci. 2023, 24, 17444. https://doi.org/10.3390/ijms242417444
Lu Y, Wang D, Zhang Y, Hu Y, Lu J, Zeng Z, Zeng D. Preparation and Antimicrobial Activity of a Film-Forming Polyhexamethylene Biguanide Teat Disinfectant. International Journal of Molecular Sciences. 2023; 24(24):17444. https://doi.org/10.3390/ijms242417444
Chicago/Turabian StyleLu, Yixing, Di Wang, Yongxiang Zhang, Yueying Hu, Jiaxuan Lu, Zhenling Zeng, and Dongping Zeng. 2023. "Preparation and Antimicrobial Activity of a Film-Forming Polyhexamethylene Biguanide Teat Disinfectant" International Journal of Molecular Sciences 24, no. 24: 17444. https://doi.org/10.3390/ijms242417444
APA StyleLu, Y., Wang, D., Zhang, Y., Hu, Y., Lu, J., Zeng, Z., & Zeng, D. (2023). Preparation and Antimicrobial Activity of a Film-Forming Polyhexamethylene Biguanide Teat Disinfectant. International Journal of Molecular Sciences, 24(24), 17444. https://doi.org/10.3390/ijms242417444