Optimization of In Vitro Embryo Rescue and Development of a Kompetitive Allele-Specific PCR (KASP) Marker Related to Stenospermocarpic Seedlessness in Grape (Vitis vinifera L.)
Abstract
:1. Introduction
2. Results
2.1. Impact of Various Plant Growth Regulators on Developing Deformed Seedlings into Plantlets
2.2. Validation of SNP in VviAGL11 Related to Stenospermocarpic Seedlessness
2.3. Development and Validation of KASP Marker Related to Stenospermocarpy
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Embryo Rescue
4.3. Screening Medium for Deformed Seedlings into Plantlets
4.4. Seed Phenotype Assessment
4.5. Validation of SNP in VviAGL11
4.6. Development and Validation of the KASP Marker
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kandylis, P. Grapes and their derivatives in functional foods. Foods 2021, 10, 672. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Y. Advances in seedless gene researches and seedless breeding in grapevine. Acta Hortic. Sin. 2019, 46, 1711–1726. [Google Scholar] [CrossRef]
- Costantini, L.; Battilana, J.; Lamaj, F.; Fanizza, G.; Grando, M.S. Berry and phenology related traits in grapevine (Vitis vinifera L.): From quantitative trait loci to underlying genes. BMC Plant Biol. 2008, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Emershad, R.L.; Ramming, D.W.; Serpe, M.D. In ovulo embryo development and plant formation from stenospermic genotypes of Vitis vinifera. Am. J. Bot. 1989, 76, 397–402. [Google Scholar] [CrossRef]
- Ramming, D.W. Hybridization of seedless grapes. Vitis 1990, 29, 439–444. [Google Scholar]
- Ji, W.; Wang, Y. Breeding for seedless grapes using Chinese wild Vitis spp. Ⅱ. In vitro embryo rescue and plant development. J. Sci. Food Agric. 2013, 93, 3870–3875. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, K.; Yu, S.; Jia, S.; Chen, S.; Fu, Y.; Sun, F.; Luo, Q.; Wang, Y. The process of embryo abortion of stenospermocarpic grape and it develops into plantlet in vitro using embryo rescue. Plant Cell Tissue Organ Cult. 2020, 143, 389–409. [Google Scholar] [CrossRef]
- Giancaspro, A.; Mazzeo, A.; Carlomagno, A.; Gadaleta, A.; Somma, S.; Ferrara, G. Optimization of an in vitro embryo rescue protocol for breeding seedless table grapes (Vitis vinifera L.) in Italy. Horticulturae 2022, 8, 121. [Google Scholar] [CrossRef]
- Xu, T.; Guo, Y.; Wang, W.; Yuan, X.; Chu, Y.; Wang, X.; Han, Y.; Wang, Y.; Song, R.; Fang, Y.; et al. Effects of exogenous paclobutrazol and sampling time on the efficiency of in vitro embryo rescue in the breeding of new seedless grape varieties. J. Integr. Agric. 2022, 21, 1633–1644. [Google Scholar] [CrossRef]
- Li, G.; Quan, R.; Cheng, S.; Hou, X.; Cai, Z.; Hu, H. A study of abnormal seedling occurrence from rescued embryos of seed less grapes and their transformation into normal seedlings. J. Fruit Sci. 2020, 37, 819–829. [Google Scholar] [CrossRef]
- Doligez, A.; Bouquet, A.; Danglot, Y.; Lahogue, F.; Riaz, S.; Meredith, C.P.; Edwards, K.J.; This, P. Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor. Appl. Genet. 2002, 105, 780–795. [Google Scholar] [CrossRef] [PubMed]
- Mejía, N.; Soto, B.; Guerrero, M.; Casanueva, X.; Houel, C.; Miccono, M.A.; Ramos, R.; Cunff, L.L.; Boursiquot, J.M.; Hinrichsen, P.; et al. Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol. 2011, 11, 57. [Google Scholar] [CrossRef] [PubMed]
- Malabarba, J.; Buffon, V.; Mariath, J.E.A.; Gaeta, M.L.; Dornelas, M.C.; Margis-Pinheiro, M.; Pasquali, G.; Revers, L.F. The MADS-box gene Agamous-like 11 is essential for seed morphogenesis in grapevine. J. Exp. Bot. 2017, 68, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Malabarba, J.; Buffon, V.; Mariath, J.E.A.; Maraschin, F.S.; Margis-Pinheiro, M.; Pasquali, G.; Revers, L.F. Manipulation of VviAGL11 expression changes the seed content in grapevine (Vitis vinifera L.). Plant Sci. 2018, 269, 126–135. [Google Scholar] [CrossRef]
- Lahogue, F.; This, P.; Bouquet, A. Identification of a codominant SCAR marker linked to the seedlessness character in grapevine. Theor. Appl. Genet. 1998, 97, 950–959. [Google Scholar] [CrossRef]
- Wang, Y.; Lamikanra, O. Application and synthesis on the DNA probe for detecting seedless genes in grapevine. J. Northwest AF Univ. (Nat. Sci. Ed.) 2002, 30, 42–46. [Google Scholar] [CrossRef]
- Mejía, N.; Hinrichsen, P. A new, highly assertive SCAR marker potentially useful to assist selection for seedlessness in table grape breeding. Acta Hortic. 2003, 603, 559–564. [Google Scholar] [CrossRef]
- Cabezas, J.A.; Cervera, M.T.; Ruiz-García, L.; Carreño, J.; Martínez-Zapater, M.J. A genetic analysis of seed and berry weight in grapevine. Genome 2006, 49, 1572–1585. [Google Scholar] [CrossRef]
- Ma, Y.; Feng, J.; Liu, C.; Fan, X.; Sun, H.; Jiang, J.; Zhang, Y. Development and application of SSR new molecular marker for seedless traits in grape. Sci. Agric. Sin. 2018, 51, 2622–2630. [Google Scholar] [CrossRef]
- Royo, C.; Torres-Pérez, R.; Mauri, N.; Diestro, N.; Cabezas, J.A.; Marchal, C.; Lacombe, T.; Ibãñez, J.; Tornel, M.; Carreno, J.; et al. The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiol. 2018, 177, 1234–1253. [Google Scholar] [CrossRef]
- Yin, L.; Karn, A.; Cadle-Davidson, L.; Zou, C.; Londo, J.; Sun, Q.; Clark, M.D. Candidate resistance genes to foliar phylloxera identified at Rdv3 of hybrid grape. Hortic. Res. 2022, 9, 27. [Google Scholar] [CrossRef]
- Wang, F.; Fan, X.; Zhang, Y.; Sun, L.; Liu, C.; Jiang, J. Establishment and application of an SNP molecular identification system for grape cultivars. J. Integr. Agric. 2022, 21, 1044–1057. [Google Scholar] [CrossRef]
- Sun, Q.; He, L.; Sun, L.; Xu, H.; Fu, Y.; Sun, Z.; Zhu, B.; Duan, C.; Pan, Q. Identification of SNP loci and candidate genes genetically controlling norisoprenoids in grape berry based on genome-wide association study. Front. Plant Sci. 2023, 14, 1142139. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, A.B.; Vikal, Y.; Johal, G.S. Genome-wide development and validation of cost-effective KASP marker assays for genetic dissection of heat stress tolerance in maize. Int. J. Mol. Sci. 2020, 21, 7386. [Google Scholar] [CrossRef] [PubMed]
- Rosso, M.L.; Shang, C.; Song, Q.; Escamilla, D.; Gillenwater, J.; Zhang, B. Development of breeder-friendly KASP markers for low concentration of Kunitz Trypsin inhibitor in soybean seeds. Int. J. Mol. Sci. 2021, 22, 2675. [Google Scholar] [CrossRef] [PubMed]
- Eltaher, S.; Hashem, M.; Ahmed, A.A.M.; Baenziger, P.S.; Börner, A.; Sallam, A. Effectiveness of TaDreb-B1 and 1-FEH w3 KASP Markers in spring and winter wheat populations for marker-assisted selection to improve drought tolerance. Int. J. Mol. Sci. 2023, 24, 8986. [Google Scholar] [CrossRef] [PubMed]
- Ramming, D.W.; Emershad, R.L. In ovulo embryo culture of seeded and seedless Vitis vinifera. HortScience 1982, 17, 487. [Google Scholar]
- Zhu, S.; Wu, B.; Ma, Y.; Chen, J.; Zhong, G.Y. Obtaining citrus hybrids by in vitro culture of embryos from mature seeds and early identification of hybrid seedlings by allele-specific PCR. Sci. Hortic. 2013, 161, 300–305. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Wang, X.; Wang, Y. Embryo rescue technique and its applications for seedless breeding in grape. Plant Cell Tissue Organ Cult. 2015, 120, 861–880. [Google Scholar] [CrossRef]
- Yan, F.; Wang, L.; Zheng, X.; Luo, Z.; Wang, J.; Liu, M. Acquisition of triploid germplasms by controlled hybridisation between diploid and tetraploid in Chinese jujube. J Hortic. Sci. Biotech. 2019, 94, 123–129. [Google Scholar] [CrossRef]
- Ji, W.; Li, Z.; Yao, W. Abnormal seedlings emerged during embryo rescue and its remedy for seedless grape breeding. Korean J. Hortic. Sci. 2013, 31, 483–489. [Google Scholar] [CrossRef]
- Akkurt, M.; Tahmaz, H.; Veziroglu, S. Recent developments in seedless grapevine breeding. S. Afr. J. Enol. Vitic. 2019, 40, 260–265. [Google Scholar] [CrossRef]
- Emershad, R.L.; Ramming, D.W. Somatic embryogenesis and plant development from immature zygotic embryos of seedless grapes (Vitis vinifera L.). Plant Cell Rep. 1994, 14, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Tian, Y.; Liu, Q.; Ge, Q.; Zhang, J. Optimisation of embryo rescue for cold-resistant seedless grapevine. New Zeal. J. Crop Hort. 2022, 1–14. [Google Scholar] [CrossRef]
- Korpás, A.; Baránek, M.; Pidra, M.; Hradilík, J. Behaviour of two SCAR markers for seedlessness within Central European varieties of grapevine. Vitis 2009, 48, 33–42. [Google Scholar]
- Karaagac, E.; Vargas, A.M.; de Andrés, M.T.; Carreño, I.; Ibáñez, J.; Carreño, J.; Martínez-Zapater, J.M.; Cabezas, J.A. Marker assisted selection for seedlessness in table grape breeding. Tree Genet. Genomes 2012, 8, 1003–1015. [Google Scholar] [CrossRef]
- Ocarez, N.; Jimenez, N.; Nunez, R.; Perniola, R.; Marsico, A.D.; Cardone, M.F.; Bergamini, C.; Mejía, N. Unraveling the deep genetic architecture for seedlessness in grapevine and the development and validation of a new set of markers for VviAGL11-based gene-assisted selection. Genes 2020, 11, 151. [Google Scholar] [CrossRef]
- Bennici, S.; Di Guardo, M.; Distefano, G.; La Malfa, S.; Puglisi, D.; Arcidiacono, F.; Ferlito, F.; Deng, Z.N.; Gentile, A.; Nicolosi, E. Influence of the genetic background on the performance of molecular markers linked to seedlessness in table grapes. Sci. Hortic. 2019, 252, 316–323. [Google Scholar] [CrossRef]
- Bergamini, C.; Cardone, M.F.; Anaclerio, A.; Perniola, R.; Pichierri, A.; Genghi, R.; Alba, V.; Forleo, L.R.; Caputo, A.R.; Montemurro, C.; et al. Validation assay of p3_VvAGL11 marker in a wide range of genetic background for early selection of stenospermocarpy in Vitis vinifera L. Mol. Biotechnol. 2013, 54, 1021–1030. [Google Scholar] [CrossRef]
- Pou, A.; Rivacoba, L.; Portu, J.; Mairata, A.; Labarga, D.; García-Escudero, E.; Martín, I. How rootstocks impact the scion vigour and vine performance of Vitis vinifera L. cv. Tempranillo. Aust. J. Grape Wine Res. 2022, 2022, 9871347. [Google Scholar] [CrossRef]
- Fernández-Paz, J.; Cortés, A.J.; Hernández-Varela, C.A.; Mejía-de-Tafur, M.S.; Rodriguez-Medina, C.; Baligar, V.C. Rootstock-mediated genetic variance in cadmium uptake by juvenile cacao (Theobroma cacao L.) genotypes, and its effect on growth and physiology. Front. Plant Sci. 2021, 12, 777842. [Google Scholar] [CrossRef] [PubMed]
- Cañas-Gutiérrez, G.P.; Sepulveda-Ortega, S.; López-Hernández, F.; Navas-Arboleda, A.A.; Cortés, A.J. Inheritance of yield components and morphological traits in avocado cv. Hass from “criollo” “elite trees” via half-sib seedling rootstocks. Front. Plant Sci. 2022, 13, 843099. [Google Scholar] [CrossRef] [PubMed]
- Warschefsky, E.J.; Klein, L.L.; Frank, M.H.; Chitwood, D.H.; Londo, J.P.; von Wettberg, E.J.B.; Miller, A.J. Rootstocks: Diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci. 2016, 21, 418–437. [Google Scholar] [CrossRef]
- Cortés, A.J.; Restrepo-Montoya, M.; Bedoya-Canas, L.E. Modern strategies to assess and breed forest tree adaptation to changing climate. Front. Plant Sci. 2020, 11, 583323. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, S.A.E.C.; Evans, L.J.; Kirkland, L.; Rader, R. A global review of watermelon pollination biology and ecology: The increasing importance of seedless cultivars. Sci. Hortic. 2020, 271, 109493. [Google Scholar] [CrossRef]
- Vignati, E.; Lipska, M.; Dunwell, J.M.; Caccamo, M.; Simkin, A.J. Options for the generation of seedless cherry, the ultimate snacking product. Planta 2022, 256, 90. [Google Scholar] [CrossRef]
- Singh, R.; Low, E.T.L.; Ooi, L.C.; Ong-Abdullah, M.; Ting, N.C.; Nagappan, J.; Nookiah, R.; Amiruddin, M.D.; Rosli, R.; Manaf, M.A.; et al. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 2013, 500, 340–344. [Google Scholar] [CrossRef]
- Huang, B.; Hu, G.; Wang, K.; Frasse, P.; Maza, E.; Djari, A.; Deng, W.; Pirrello, J.; Burlat, V.; Pons, C.; et al. Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes. Nat. Commun. 2021, 12, 6892. [Google Scholar] [CrossRef]
- Webster, A.D. Temperate fruit tree rootstock propagation. N. Z. J. Crop Hortic. Sci. 1995, 23, 355–372. [Google Scholar] [CrossRef]
- Picolotto, L.; Fachinell, J.C.; Bianchi, V.J.; Manica-Berto, R.; Pasa, M.D.S.; Schmitz, J.D. Yield and fruit quality of peach scion by using rootstocks propagated by air layering and seed. Sci. Agric. 2010, 67, 646–650. [Google Scholar] [CrossRef]
- Li, S.; Jin, P.; Jiang, A.; Luo, J. Ovule culture to obtain triploid progeny from crosses between seedless cultivars and tetraploid grapes. Acta Agric. Shanghai 1998, 14, 13–17. [Google Scholar]
Phenotype | No. | Genotype | Cultivar | No. | Coincidence Rate (%) | ||
---|---|---|---|---|---|---|---|
Naturalpopulation | Seeded | 32 | C/C | Shine Muscat, Muscat of Alexandria, Zaoheibao, Graca, Xinya, Shennong Jinhuanghou, Guiyuan, Yan 73, Alicante Bouschet, Brazil, Ruidu Hongmei, Muscat Hamburg, Rosario Bianco, Rizamat, Tamina, Ruidu Xiangyu, Victoria, Ruidu Kemei, 3E-16-23, Manicure Finger, Jingxiangyu, Moldova, Shen’ai, G-26, SO4, Beta, 1103P, Benni Fuji, Pione, 16–32, 16–33, 13–30 | 32 | 100 | |
Seedless | Stenospermocarpy | 44 | A/C | SP275, Golerura, Centennial Seedless, RuiduWuheyi, Bronx Seedless, Black Seedless, ZhengyanWuhe, Blush Seedless, Aishen Meigui, Superior Seedless, Yuehong Seedless, Thompson Seedless, Hongyan Wuhe, Himrod, Venus Seedless, 98-38, G-8, 98-1, 98-2, 21-60, 99-212, 96-89, 20-A-2, G-18, Green Seedless-1, Green Seedless-2, Canadice, Bronx Seedless, Sovereign Coronation, Vanessa Seedless, Hendrickson Seedless, Stout Seedless, Einset Seedless, Mars, Reliance, Gervan, Remaily Seedless, III 39-1, Himrod 4×, Challenger, Lakemont, Romulus, Suffolk Red, Interlaken | 44 | 100 | |
Parthenocarpy or meiotic abnormalities in triploids | 7 | C/C | Summer Black, Zaoxiahei, Niagara Seedless, Concord Seedless, Ruifeng Seedless, Royal Seedless, Christmas A | 7 | 0 |
Phenotype | No. | Genotype | Hybrid | No. | Coincidence Rate (%) | |
---|---|---|---|---|---|---|
CS × SM | Seeded | 43 | C/C | CS1, CS3, CS4, CS8, CS12, CS15, CS16, CS17, CS18, CS21, CS22, CS23, CS24, CS27, CS30, CS31, CS32, CS36, CS37, CS41, CS44, CS49, CS53, CS54, CS56, CS58, CS59, CS61, CS63, CS64, CS65, CS67, CS69, CS70, CS75, CS79, CS80, CS84, CS85, CS86, CS87, CS89, CS90 | 43 | 100 |
Seedless | 48 | A/C | CS2, CS5, CS6, CS7, CS9, CS10, CS11, CS13, CS14, CS19, CS20, CS25, CS26, CS28, CS29, CS33, CS34, CS35, CS38, CS39, CS40, CS42, CS43, CS45, CS46, CS47, CS48, CS50, CS51, CS52, CS55, CS57, CS60, CS62, CS66, CS68, CS71, CS72, CS73, CS74, CS76, CS77, CS78, CS81, CS82, CS83, CS88, CS91 | 48 | 100 | |
CS × HM | Seeded | 10 | C | CH1, CH4, CH5, CH6, CH7, CH8, CH10, CH17, CH18, CH21 | 10 | 100 |
Seedless | 9 | A/C | CH2, CH12, CH13, CH14, CH15, CH16, CH19, CH20, CH22 | 9 | 100 | |
3 | A/A | CH3, CH9, CH11 | 3 | 100 |
Medium | Composition |
---|---|
Medium A | MS + 30 g∙L–1 sucrose + 6 g∙L–1 agar |
Medium B | MS + 2.0 mg∙L–1 6-BA + 30 g∙L–1 sucrose + 6 g∙L–1 agar |
Medium C | MS + 2.0 mg∙L–1 6-BA + 0.5 mg∙L–1 IBA + 30 g∙L–1 sucrose + 6 g∙L–1 agar |
Medium D | MS + 2.0 mg∙L–1 IBA + 30 g∙L–1 sucrose + 6 g∙L–1 agar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xi, X.; Gutierrez, B.; Zha, Q.; Yin, X.; Sun, P.; Jiang, A. Optimization of In Vitro Embryo Rescue and Development of a Kompetitive Allele-Specific PCR (KASP) Marker Related to Stenospermocarpic Seedlessness in Grape (Vitis vinifera L.). Int. J. Mol. Sci. 2023, 24, 17350. https://doi.org/10.3390/ijms242417350
Xi X, Gutierrez B, Zha Q, Yin X, Sun P, Jiang A. Optimization of In Vitro Embryo Rescue and Development of a Kompetitive Allele-Specific PCR (KASP) Marker Related to Stenospermocarpic Seedlessness in Grape (Vitis vinifera L.). International Journal of Molecular Sciences. 2023; 24(24):17350. https://doi.org/10.3390/ijms242417350
Chicago/Turabian StyleXi, Xiaojun, Benjamin Gutierrez, Qian Zha, Xiangjing Yin, Pengpeng Sun, and Aili Jiang. 2023. "Optimization of In Vitro Embryo Rescue and Development of a Kompetitive Allele-Specific PCR (KASP) Marker Related to Stenospermocarpic Seedlessness in Grape (Vitis vinifera L.)" International Journal of Molecular Sciences 24, no. 24: 17350. https://doi.org/10.3390/ijms242417350
APA StyleXi, X., Gutierrez, B., Zha, Q., Yin, X., Sun, P., & Jiang, A. (2023). Optimization of In Vitro Embryo Rescue and Development of a Kompetitive Allele-Specific PCR (KASP) Marker Related to Stenospermocarpic Seedlessness in Grape (Vitis vinifera L.). International Journal of Molecular Sciences, 24(24), 17350. https://doi.org/10.3390/ijms242417350