Multifunctional Nanoplatform for NIR-II Imaging-Guided Synergistic Oncotherapy
Abstract
:1. Introduction
2. Photothermal Therapy Synergized with Photodynamic Therapy
2.1. Polymers
2.2. Small Molecule Probe
2.3. Metal Nanomaterials
3. Photothermal Therapy Synergistic Chemodynamic Therapy
3.1. Polymers
3.2. Metal Nanomaterials
3.3. Small Molecule Probe
4. Photothermal Therapy Synergized with Thermodynamic Therapy
Polymers
5. Photothermal Therapy Synergistic Immunotherapy
5.1. Polymers
5.2. Small Molecule Probe
6. Photodynamic Therapy Synergized Chemodynamic Therapy
6.1. Rare Earth-Doped Nanoparticles
6.2. Small Molecule Probe
6.3. Precious Metals
7. Other
7.1. Rare Earth-Doped Nanomaterials
7.2. Small Molecule Probe
8. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
·OH | hydroxyl radicals |
1O2 | singlet oxygen |
2-DG | 2-deoxy-d-glucose |
α-PD-L1 | anti-programmed death ligand 1 |
ACQ | aggregation-caused quenching |
A-D-A | acceptor-donor-acceptor |
A-DA’D-A | “receiver-donor -Acceptor’-Donor-Acceptor” |
AFD NPs | Ag2S-Fe(III)-DBZ nanoparticles |
AIE | aggregation-induced emission |
AIEgens | aggregation-induced emission luminous agents |
ATP | adenosine triphosphate |
AuNRs | Gold nanorods |
BSA | bovine serum albumin |
CAT | catalase enzyme |
CDT | chemodynamic therapy |
CPT | comedophylline |
CRT | calreticulin |
CT | computed tomography |
CTC | charge transfer complex |
CuHCF | copper hexacyanoferrate |
D-A-D | donor-acceptor-donor |
DBZ PDs | ultra-small NIR-II semiconductor polymer dots |
DC | down-conversion |
DOX | adriamycin |
EPR | enhanced permeability and retention |
FLI | fluorescence imaging |
FRET | Förster resonance energy transfer |
GSH | glutathione |
GT | gas therapy |
H2O2 | hydrogen peroxide |
HMGB1 | high-mobility-group protein 1 |
IALPs | anionic liposomes |
ICD | immunogenic cell death |
IMT | immunotherapy |
LDNPs | lanthanide-doped down-conversion nanomaterials |
LGT | nanoliposome |
MEC | molar extinction coefficient |
MOFs | metal-organic frameworks |
MPE | maximum permissible skin exposure |
MRI | magnetic resonance imaging |
NIR-I | first near-infrared window (wavelengths of 750–1000 nm) |
NIR-II | near-infrared second region |
NPs | nanoparticles |
PA | photoacoustic |
PAI | photoacoustic imaging |
PBA | phenylboronic acid |
PD-L1 | programmed death ligand |
PDT | photodynamic therapy |
PDX | patient-derived xenograft |
PEG | polyethylene glycol |
PEG2000-TPP | PEGylation |
PFC | perfluorocarbon |
PNIPAM | polyisopropylacrylamide |
POD | peroxidase enzyme |
POIs | proteins of interest |
PROTACs | PROteolysis TArgeting Chimeras |
PRR | pattern recognition receptor |
PS | polystyrene |
PSs | photosensitizers |
PTAs | photothermal agents |
PTI | photothermal imaging |
PTT | photothermal therapy |
PVP | polyvinylpyrrolidone |
QDs | quantum dots |
QY | quantum yield |
ROS | reactive oxygen species |
RRIALP-C4 | fluorescent liposome |
SBR | signal-to-background ratio |
SCCs | supramolecular coordination complexes |
SIPC | silicon phthalocyanine |
SPNs | semiconductor polymer nanoparticles |
TDT | thermodynamic therapy |
TMB | 3,3′,5,5′-Tetramethylbenzidine |
TME | tumor microenvironment |
TPE | tetraphenylethylene |
UC | upconversion |
UCL | upconversion luminescence |
UCNPs | upconversion nanoparticles |
References
- Xiao, P.; Sun, Y.; Liang, M.; Yang, S.; Li, J.; Zhang, L.; Jiang, X.; Wu, W. A Fluorophore with Dithienopyrrole Donor for beyond 1300 Nm NIR-II Fluorescence/Photoacoustic Dual-Model Imaging and Photothermal Therapy. Mater. Today Nano 2023, 24, 100404. [Google Scholar] [CrossRef]
- Su, Y.; Yu, B.; Wang, S.; Cong, H.; Shen, Y. NIR-II Bioimaging of Small Organic Molecule. Biomaterials 2021, 271, 120717. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Miao, H.; Jiang, X.; Sun, P.; Fan, Q.; Huang, W. Starlike Polymer Brush-Based Ultrasmall Nanoparticles with Simul taneously Improved NIR-II Fluorescence and Blood Circulation for Efficient Orthotopic Glioblastoma Imaging. Biomaterials 2021, 275, 120916. [Google Scholar] [CrossRef] [PubMed]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal Cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef]
- Zhou, Q.; Xu, Y.; Zhou, Y.; Wang, J. Promising Chemotherapy for Malignant Pediatric Brain Tumor in Recent Biological In sights. Molecules 2022, 27, 2685. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Qin, Y.; Wang, Z.; Wang, L.; Pang, D.; Zhao, D.; Liu, S. An Activatable and Reversible Virus-Mimicking NIR-II Nanoprobe for Monitoring the Progression of Viral Encephalitis. Angew. Chem. Int. Ed. 2022, 61, e202210285. [Google Scholar] [CrossRef]
- Yin, B.; Qin, Q.; Li, Z.; Wang, Y.; Liu, X.; Liu, Y.; Huan, S.; Zhang, X.; Song, G. Tongue Cancer Tailored Photosensitizers for NIR-II Fluorescence Imaging Guided Precise Treatment. Nano Today 2022, 45, 101550. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Shen, L.; Wang, S.; Chen, Q.; Cao, X.-Q.; Shen, S.-L.; Li, X. A New Xanthene-Based Platform for Developing NIR Fluorogenic Probes for in Vivo Bioimaging. Chem. Eng. J. 2023, 472, 145065. [Google Scholar] [CrossRef]
- Sun, L.; Shi, S.; Wu, Z.; Huang, Y.; Ji, C.; Grimes, C.A.; Feng, X.; Cai, Q. Lanthanide/Cu2–x Se Nanoparticles for Bacteria-Activated NIR-II Fluorescence Imaging of Infection. ACS Sens. 2022, 7, 2235–2242. [Google Scholar] [CrossRef]
- He, Y.; Wang, S.; Yu, P.; Yan, K.; Ming, J.; Yao, C.; He, Z.; El-Toni, A.M.; Khan, A.; Zhu, X.; et al. NIR-II Cell Endocytosis-Activated Fluorescent Probes for in Vivo High-Contrast Bioimaging Diagnostics. Chem. Sci. 2021, 12, 10474–10482. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, S.; Cao, W.; Wu, P.; Chen, Z.; Xiong, H. H2O2-Activated NIR-II Fluorescent Probe with a Large Stokes Shift for High-Contrast Imaging in Drug-Induced Liver Injury Mice. Anal. Chem. 2022, 94, 11321–11328. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Lin, X.; Feng, W.; Li, Z.; Yu, M. Multi-Organelle-Targeting pH-Dependent NIR Fluorescent Probe for Lysosomal Viscosity. Chin. Chem. Lett. 2023, 34, 107626. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, X.; Su, Y.; Shao, J.; Song, X.; Wang, W.; Zhong, L.; Gan, L.; Zhao, Y.; Dong, X. Multifunctional Nanolocks with GSH as the Key for Synergistic Ferroptosis and Anti-Chemotherapeutic Resistance. Biomaterials 2022, 288, 121704. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, R.; Yang, J.; Liu, S.; Zhou, J.; Zhao, R.; He, F.; Zhang, Y.; Yang, P.; Lin, J. A “Closed-Loop” Therapeutic Strategy Based on Mutually Reinforced Ferroptosis and Immunotherapy. Adv. Funct. Mater. 2022, 32, 2111784. [Google Scholar] [CrossRef]
- Zeng, Y.; Dou, T.; Ma, L.; Ma, J. Biomedical Photoacoustic Imaging for Molecular Detection and Disease Diagnosis: “Always-On” and “Turn-On” Probes. Adv. Sci. 2022, 9, 2202384. [Google Scholar] [CrossRef]
- Weber, J.; Beard, P.C.; Bohndiek, S.E. Contrast Agents for Molecular Photoacoustic Imaging. Nat. Methods 2016, 13, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Zhu, R.; Song, J.; Yang, H.; Chen, X. Photoacoustic Imaging: Contrast Agents and Their Biomedical Applications. Adv. Mater. 2019, 31, 1805875. [Google Scholar] [CrossRef] [PubMed]
- Van Keulen, S.; Nishio, N.; Fakurnejad, S.; Birkeland, A.; Martin, B.A.; Lu, G.; Zhou, Q.; Chirita, S.U.; Forouzanfar, T.; Colevas, A.D.; et al. The Clinical Application of Fluorescence-Guided Surgery in Head and Neck Cancer. J. Nucl. Med. 2019, 60, 758–763. [Google Scholar] [CrossRef]
- Fang, H.; Chen, Y.; Jiang, Z.; He, W.; Guo, Z. Fluorescent Probes for Biological Species and Microenvironments: From Rational Design to Bioimaging Applications. Acc. Chem. Res. 2023, 56, 258–269. [Google Scholar] [CrossRef]
- Wang, L.V.; Hu, S. Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science 2012, 335, 1458–1462. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Wen, X.; Sun, G.; Zeng, S. Activatable NIR-II Ratiometric Fluorescence Nanoprobe for in Vivo Real-Time Dynamic Imaging of GSH and Its-Associated Diseases. Nano Today 2023, 53, 102027. [Google Scholar] [CrossRef]
- Wang, M.; Chen, N. Three-dimensional Cellular Imaging in Thick Biological Tissue with Confocal Detection of One-photon Fluorescence in the Near-infrared II Window. J. Biophotonics 2019, 12, e201800459. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.R.; Gambhir, S.S. Nanomaterials for In Vivo Imaging. Chem. Rev. 2017, 117, 901–986. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gu, K.; Wang, H.; Xu, B.; Li, H.; Shi, X.; Huang, Z.; Liu, H. Degradable Holey Palladium Nanosheets with Highly Active 1D Nanoholes for Synergetic Phototherapy of Hypoxic Tumors. J. Am. Chem. Soc. 2020, 142, 5649–5656. [Google Scholar] [CrossRef]
- Shao, J.; Xie, H.; Huang, H.; Li, Z.; Sun, Z.; Xu, Y.; Xiao, Q.; Yu, X.-F.; Zhao, Y.; Zhang, H.; et al. Biodegradable Black Phosphorus-Based Nanospheres for in Vivo Photothermal Cancer Therapy. Nat. Commun. 2016, 7, 12967. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, W.; Cui, Y.; Chu, X.; Sun, B.; Zhou, N.; Shen, J. Magnetofluorescent Fe3O4/Carbon Quantum Dots Coated Single-Walled Carbon Nanotubes as Dual-Modal Targeted Imaging and Chemo/Photodynamic/Photothermal Triple-Modal Therapeutic Agents. Chem. Eng. J. 2018, 338, 526–538. [Google Scholar] [CrossRef]
- Tai, Y.-W.; Chiu, Y.-C.; Wu, P.-T.; Yu, J.; Chin, Y.-C.; Wu, S.-P.; Chuang, Y.-C.; Hsieh, H.-C.; Lai, P.-S.; Yu, H.-P.; et al. Degradable NIR-PTT Nanoagents with a Potential Cu@Cu2O@Polymer Structure. ACS Appl. Mater. Interfaces 2018, 10, 5161–5174. [Google Scholar] [CrossRef]
- Sharker, S.M.; Lee, J.E.; Kim, S.H.; Jeong, J.H.; In, I.; Lee, H.; Park, S.Y. pH Triggered in Vivo Photothermal Therapy and Fluorescence Nanoplatform of Cancer Based on Responsive Polymer-Indocyanine Green Integrated Reduced Graphene Oxide. Biomaterials 2015, 61, 229–238. [Google Scholar] [CrossRef]
- Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev. 2009, 109, 5868–5923. [Google Scholar] [CrossRef]
- Xie, C.; Zhen, X.; Lei, Q.; Ni, R.; Pu, K. Self-Assembly of Semiconducting Polymer Amphiphiles for In Vivo Photoacoustic Imaging. Adv. Funct. Mater. 2017, 27, 1605397. [Google Scholar] [CrossRef]
- Yin, C.; Zhu, H.; Xie, C.; Zhang, L.; Chen, P.; Fan, Q.; Huang, W.; Pu, K. Organic Nanoprobe Cocktails for Multilocal and Multicolor Fluorescence Imaging of Reactive Oxygen Species. Adv. Funct. Mater. 2017, 27, 1700493. [Google Scholar] [CrossRef]
- Yang, S.; Sun, B.; Liu, F.; Li, N.; Wang, M.; Wu, P.; Wu, G.; Fang, H.; He, Y.; Zhou, W.; et al. NIR-II Imaging-Guided Mitochondrial-Targeting Organic Nanoparticles for Multimodal Synergistic Tumor Therapy. Small 2023, 19, 2207995. [Google Scholar] [CrossRef]
- Tao, J.; Tu, Y.; Liu, P.; Tang, Y.; Wang, F.; Li, Z.; Li, C.; Li, Y.; Ma, Y.; Gu, Y. Detection of Colorectal Cancer Using a Small Molecular Fluorescent Probe Targeted against C-Met. Talanta 2021, 226, 122128. [Google Scholar] [CrossRef]
- Yang, K.; Long, F.; Liu, W.; Zhang, Z.; Zhao, S.; Wang, B.; Zou, Y.; Lan, M.; Yuan, J.; Song, X.; et al. A-DA′D-A Structured Organic Phototheranostics for NIR-II Fluorescence/Photoacoustic Imaging-Guided Photothermal and Photodynamic Synergistic Therapy. ACS Appl. Mater. Interfaces 2022, 14, 18043–18052. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Yu, B.; Liu, W.; Zhang, Z.; Huang, L.; Zhao, S.; Wang, B.; Yi, J.; Yuan, J.; Zou, Y.; et al. All-in-One Phototheranostics Based on BTP-4F-DMO Nanoparticles for NIR-II Fluorescence/Photoacoustic Dual-Mode Imaging and Combinational Therapy. Chin. Chem. Lett. 2023, 34, 107889. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, X.; Gui, Y.; Wang, H.; Tang, B.Z.; Wang, D. Self-Assembled Metallacage with Second Near-Infrared Aggregation-Induced Emission for Enhanced Multimodal Theranostics. J. Am. Chem. Soc. 2022, 144, 12825–12833. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Qu, B.; Li, J.; Liu, Y.; Dong, J.; Peng, X.; Zhang, R. Multifunctional MnO 2/Ag 3 SbS 3 Nanotheranostic Agent for Single-Laser-Triggered Tumor Synergistic Therapy in the NIR-II Biowindow. ACS Appl. Mater. Interfaces 2022, 14, 4980–4994. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Zhang, F.; Chen, K.; Sun, Z.; Wang, Z.; Xue, Y.; Li, M.; Fan, Q.; Shen, Q.; Zhao, Q. An Activatable Phototheranostic Nanoplatform for Tumor Specific NIR-II Fluorescence Imaging and Synergistic NIR-II Photothermal-Chemodynamic Therapy. Small 2023, 19, 2206053. [Google Scholar] [CrossRef]
- Li, Y.; Jia, R.; Lin, H.; Sun, X.; Qu, F. Synthesis of MoSe2/CoSe2 Nanosheets for NIR-Enhanced Chemodynamic Therapy via Synergistic In-Situ H 2 O 2 Production and Activation. Adv. Funct. Mater. 2021, 31, 2008420. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, C.; Qu, F.; Lin, H. NIR-II Driven Photocatalytic Hydrogen Peroxide-Supply on Metallic Copper-Nickel Selenide (Cu-Ni0.85Se) Nanoparticle for Synergistic Therapy. J. Colloid Interface Sci. 2023, 641, 113–125. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Z.; Qian, Y.; Wang, X.; Lin, Y.; Shi, X.; Lin, W.; Zhang, M.; Wang, H. Carbon-Encapsulated Magnetite Nanodoughnut as a NIR-II Responsive Nanozyme for Synergistic Chemodynamic–Photothermal Therapy. Adv. Healthc. Mater. 2023, 12, 2301926. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xue, F.; Du, W.; Deng, X.; Wu, Y.; Chen, H. Endogenous Fe2+-Activated Nanomedicine to Amplify ROS Generation and in-Situ Response NIR-II Photothermal Therapy of Tumor. Chem. Eng. J. 2023, 471, 144358. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Y.; Chen, Y.; Cui, M.; Yang, F.; Wang, P.; Ji, M. Transmissible H-Aggregated NIR-II Fluorophore to the Tumor Cell Membrane for Enhanced PTT and Synergistic Therapy of Cancer. Nano Converg. 2023, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Dai, Y.; Xu, J.; Cai, J.; Niu, X.; Zhang, L.; Chen, R.; Shen, Q.; Huang, W.; Fan, Q. All-in-One Phototheranostics: Single Laser Triggers NIR-II Fluorescence/Photoacoustic Imaging Guided Photothermal/Photodynamic/Chemo Combination Therapy. Adv. Funct. Mater. 2019, 29, 1901480. [Google Scholar] [CrossRef]
- Sun, P.; Yang, W.; He, J.; He, L.; Chen, P.; Xu, W.; Shen, Q.; Li, D.; Fan, Q. Phenylboronic Acid-Modified Near-Infrared Region II Excitation Donor–Acceptor–Donor Molecule for 2-Deoxy-d-Glucose Improved Starvation/Chemo/Photothermal Combination Therapy. Adv. Healthc. Mater. 2023, 2302099. [Google Scholar] [CrossRef]
- Zhang, L.; Chu, C.; Lin, X.; Sun, R.; Li, Z.; Chen, S.; Liu, Y.; Wu, J.; Yu, Z.; Liu, X. Tunable Nanoparticles with Aggregation-Induced Emission Heater for Precise Synergistic Photothermal and Thermodynamic Oral Cancer Therapy of Patient-Derived Tumor Xenograft. Adv. Sci. 2023, 10, 2205780. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Wang, B.; Chen, H.; Zhang, K.; Li, N.; Zhao, N.; Tang, B.Z. Efficient NIR-II Type-I AIE Photosensitizer for Mitochondria-Targeted Photodynamic Therapy through Synergistic Apoptosis–Ferroptosis. ACS Nano 2023, 17, 9110–9125. [Google Scholar] [CrossRef]
- Cui, M.; Tang, D.; Wang, B.; Zhang, H.; Liang, G.; Xiao, H. Bioorthogonal Guided Activation of Cgas-STING by Aie Photosensitizer Nanoparticles for Targeted Tumor Therapy And Imaging. Adv. Mater. 2023, 2305668. [Google Scholar] [CrossRef]
- Li, M.; Zhao, M.; Zhang, Y.; Ding, M.; Yu, N.; Peng, S.; Shi, X.; Li, J. Second Near-Infrared Light-Activated Semiconducting Polymer Nanomediators Enable Three-in-One Tumor Microenvironment Modulation for Combination Immunotherapy. Nano Today 2023, 50, 101833. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, L.; Wang, Y.; Wang, C.; Mu, Q.; Liu, X.; Yu, M.; Wang, K.; Yao, G.; Yu, Z. Dynamic Adjust of Non-Radiative and Radiative Attenuation of AIE Molecules Reinforces NIR-II Imaging Mediated Photothermal Therapy and Immunotherapy. Adv. Sci. 2022, 9, 2104793. [Google Scholar] [CrossRef]
- Pu, Y.; Wu, W.; Zhou, B.; Xiang, H.; Yu, J.; Yin, H.; Zhang, Y.; Du, D.; Chen, Y.; Xu, H. Starvation Therapy Enabled “Switch-on” NIR-II Photothermal Nanoagent for Synergistic in Situ Photothermal Immunotherapy. Nano Today 2022, 44, 101461. [Google Scholar] [CrossRef]
- Xu, M.; Xue, B.; Wang, Y.; Wang, D.; Gao, D.; Yang, S.; Zhao, Q.; Zhou, C.; Ruan, S.; Yuan, Z. Temperature-Feedback Nanoplatform for NIR-II Penta-Modal Imaging-Guided Synergistic Photothermal Therapy and CAR-NK Immunotherapy of Lung Cancer. Small 2021, 17, 2101397. [Google Scholar] [CrossRef]
- Li, C.; Ye, J.; Yang, X.; Liu, S.; Zhang, Z.; Wang, J.; Zhang, K.; Xu, J.; Fu, Y.; Yang, P. Fe/Mn Bimetal-Doped ZIF-8-Coated Luminescent Nanoparticles with Up/Downconversion Dual-Mode Emission for Tumor Self-Enhanced NIR-II Imaging and Catalytic Therapy. ACS Nano 2022, 16, 18143–18156. [Google Scholar] [CrossRef]
- Hu, Z.; Li, R.; Cui, X.; Hu, C.; Chen, Z. Tailoring Albumin-Based Theranostic PROTACs Nanoparticles for Enhanced NIR-II Bioimaging and Synergistic Cancer Chemo-Phototherapy. Chem. Eng. J. 2023, 469, 143883. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z.; Wang, Q.; Liu, Q.; Yuan, W.; Feng, W.; Li, F. An NIR-II Photothermally Triggered “Oxygen Bomb” for Hypoxic Tumor Programmed Cascade Therapy. Adv. Mater. 2022, 34, 2201978. [Google Scholar] [CrossRef]
- Wang, Q.-X.; Yang, Y.-F.; Yang, X.-F.; Pan, Y.; Sun, L.-D.; Zhang, W.-Y.; Shao, Y.; Shen, J.; Lin, J.; Li, L.; et al. Upconverted/Downshifted NaLnF4 and Metal-Organic Framework Heterostructures Boosting NIR-II Imaging-Guided Photodynamic Immunotherapy toward Tumors. Nano Today 2022, 43, 101439. [Google Scholar] [CrossRef]
- Yang, S.; Wu, G.; Li, N.; Wang, M.; Wu, P.; He, Y.; Zhou, W.; Xiao, H.; Tan, X.; Tang, L.; et al. A Mitochondria-Targeted Molecular Phototheranostic Platform for NIR-II Imaging-Guided Synergistic Photothermal/Photodynamic/Immune Therapy. J. Nanobiotechnol. 2022, 20, 475. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhao, S.; Huang, L.; Wang, Q.; Xiao, J.; Lan, M. Recent Advances and Prospects of Carbon Dots in Phototherapy. Chem. Eng. J. 2021, 408, 127245. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, J.; Fan, J.; Chao, H.; Peng, X. Recent Progress in Photosensitizers for Overcoming the Challenges of Photodynamic Therapy: From Molecular Design to Application. Chem. Soc. Rev. 2021, 50, 4185–4219. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Hong, K.-I.; Lee, H.; Jang, W.-D. Bioinspired Applications of Porphyrin Derivatives. Acc. Chem. Res. 2021, 54, 2249–2260. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fang, F.; Sun, B.; Yin, C.; Tan, J.; Wan, Y.; Zhang, J.; Sun, P.; Fan, Q.; Wang, P.; et al. Near-Infrared Small Molecule Coupled with Rigidness and Flexibility for High-Performance Multimodal Imaging-Guided Photodynamic and Photothermal Synergistic Therapy. Nanoscale Horiz. 2021, 6, 177–185. [Google Scholar] [CrossRef]
- Liu, Y.; Bhattarai, P.; Dai, Z.; Chen, X. Photothermal Therapy and Photoacoustic Imaging via Nanotheranostics in Fighting Cancer. Chem. Soc. Rev. 2019, 48, 2053–2108. [Google Scholar] [CrossRef]
- Yi, X.; Duan, Q.-Y.; Wu, F.-G. Low-Temperature Photothermal Therapy: Strategies and Applications. Research 2021, 2021, 9816594. [Google Scholar] [CrossRef]
- Jiang, R.; Dai, J.; Dong, X.; Wang, Q.; Meng, Z.; Guo, J.; Yu, Y.; Wang, S.; Xia, F.; Zhao, Z.; et al. Improving Image-Guided Surgical and Immunological Tumor Treatment Efficacy by Photothermal and Photodynamic Therapies Based on a Multifunctional NIR AIEgen. Adv. Mater. 2021, 33, 2101158. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Zhou, S.; Gu, P.; Zhu, X.; Wang, C.; Zhang, Q. Evolution of BODIPY as Triplet Photosensitizers from Homogeneous to Heterogeneous: The Strategies of Functionalization to Various Forms and Their Recent Applications. Coord. Chem. Rev. 2023, 482, 215074. [Google Scholar] [CrossRef]
- Song, W.; Song, S.-J.; Kuang, J.; Yang, H.; Yu, T.; Yang, F.; Wan, T.; Xu, Y.; Wei, S.-T.; Li, M.-X.; et al. Activating Innate Immunity by a STING Signal Amplifier for Local and Systemic Immunotherapy. ACS Nano 2022, 16, 15977–15993. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, S.; Zhang, Z.; Ji, L.; Zhang, J.; Wang, Q.; Guo, T.; Ni, S.; Cai, R.; Mu, X.; et al. Recent Progress on NIR-II Photothermal Therapy. Front. Chem. 2021, 9, 728066. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Liu, D.; Chen, B.; Ge, X.; Gao, S.; Song, J. Self-Assembled Ag2S-QD Vesicles for In Situ Responsive NIR-II Fluorescence Imaging-Guided Photothermal Cancer Therapy. Adv. Opt. Mater. 2021, 9, 2100233. [Google Scholar] [CrossRef]
- Hu, Z.; Li, R.; Cui, X.; Hu, C.; Chen, Z. A pH-Sensitive Carbonic Anhydrase Ⅸ-Targeted near-Infrared Probe for Fluorescent Sensing and Imaging of Hypoxic Osteosarcoma. Sens. Actuators B Chem. 2023, 379, 133171. [Google Scholar] [CrossRef]
- Choi, P.J.; Tomek, P.; Tercel, M.; Reynisson, J.; Park, T.I.H.; Cooper, E.A.; Denny, W.A.; Jose, J.; Leung, E. Conjugation of Palbociclib with MHI-148 Has an Increased Cytotoxic Effect for Breast Cancer Cells and an Altered Mechanism of Action. Molecules 2022, 27, 880. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Li, R.; Cui, X.; Chen, Z. Albumin-Based Cyanine Crizotinib Conjugate Nanoparticles for NIR-II Imaging-Guided Synergistic Chemophototherapy. ACS Appl. Mater. Interfaces 2023, 15, 33890–33902. [Google Scholar] [CrossRef]
- He, S.; Song, J.; Qu, J.; Cheng, Z. Crucial Breakthrough of Second Near-Infrared Biological Window Fluorophores: Design and Synthesis toward Multimodal Imaging and Theranostics. Chem. Soc. Rev. 2018, 47, 4258–4278. [Google Scholar] [CrossRef]
- Gröhl, J.; Schellenberg, M.; Dreher, K.; Maier-Hein, L. Deep Learning for Biomedical Photoacoustic Imaging: A Review. Photoacoustics 2021, 22, 100241. [Google Scholar] [CrossRef]
- Lyu, Y.; Fang, Y.; Miao, Q.; Zhen, X.; Ding, D.; Pu, K. Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranostics for in Vivo Photoacoustic Imaging and Photothermal Therapy. ACS Nano 2016, 10, 4472–4481. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Cui, D.; Fang, Y.; Zhen, X.; Upputuri, P.K.; Pramanik, M.; Ding, D.; Pu, K. Amphiphilic Semiconducting Polymer as Multifunctional Nanocarrier for Fluorescence/Photoacoustic Imaging Guided Chemo-Photothermal Therapy. Biomaterials 2017, 145, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Upputuri, P.K.; Xie, C.; Zeng, Z.; Sharma, A.; Zhen, X.; Li, J.; Huang, J.; Pramanik, M.; Pu, K. Metabolizable Semiconducting Polymer Nanoparticles for Second Near-Infrared Photoacoustic Imaging. Adv. Mater. 2019, 31, 1808166. [Google Scholar] [CrossRef] [PubMed]
- Zhen, X.; Pu, K.; Jiang, X. Photoacoustic Imaging and Photothermal Therapy of Semiconducting Polymer Nanoparticles: Signal Amplification and Second Near-Infrared Construction. Small 2021, 17, 2004723. [Google Scholar] [CrossRef]
- Li, T.; Liu, L.; Xu, P.; Yuan, P.; Tian, Y.; Cheng, Q.; Yan, L. Multifunctional Nanotheranostic Agent for NIR-II Imaging-Guided Synergetic Photothermal/Photodynamic Therapy. Adv. Ther. 2021, 4, 2000240. [Google Scholar] [CrossRef]
- Chen, L.-J.; Yang, H.-B. Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions. Acc. Chem. Res. 2018, 51, 2699–2710. [Google Scholar] [CrossRef]
- Percástegui, E.G.; Ronson, T.K.; Nitschke, J.R. Design and Applications of Water-Soluble Coordination Cages. Chem. Rev. 2020, 120, 13480–13544. [Google Scholar] [CrossRef] [PubMed]
- Purba, P.C.; Maity, M.; Bhattacharyya, S.; Mukherjee, P.S. A Self-Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene-Encapsulated Barrel. Angew. Chem. Int. Ed. 2021, 60, 14109–14116. [Google Scholar] [CrossRef]
- Cullen, W.; Misuraca, M.C.; Hunter, C.A.; Williams, N.H.; Ward, M.D. Highly Efficient Catalysis of the Kemp Elimination in the Cavity of a Cubic Coordination Cage. Nat. Chem. 2016, 8, 231–236. [Google Scholar] [CrossRef]
- Catti, L.; Narita, H.; Tanaka, Y.; Sakai, H.; Hasobe, T.; Tkachenko, N.V.; Yoshizawa, M. Supramolecular Singlet Fission of Pentacene Dimers within Polyaromatic Capsules. J. Am. Chem. Soc. 2021, 143, 9361–9367. [Google Scholar] [CrossRef]
- Lee, H.; Tessarolo, J.; Langbehn, D.; Baksi, A.; Herges, R.; Clever, G.H. Light-Powered Dissipative Assembly of Diazocine Coordination Cages. J. Am. Chem. Soc. 2022, 144, 3099–3105. [Google Scholar] [CrossRef]
- Mu, C.; Zhang, Z.; Hou, Y.; Liu, H.; Ma, L.; Li, X.; Ling, S.; He, G.; Zhang, M. Tetraphenylethylene-Based Multicomponent Emissive Metallacages as Solid-State Fluorescent Materials. Angew. Chem. Int. Ed. 2021, 60, 12293–12297. [Google Scholar] [CrossRef]
- Di, Q.; Wang, J.; Zhao, Z.; Liu, J.; Xu, M.; Liu, J.; Rong, H.; Chen, W.; Zhang, J. Near-Infrared Luminescent Ternary Ag 3 SbS 3 Quantum Dots by in Situ Conversion of Ag Nanocrystals with Sb(C9H19COOS)3. Chem. A Eur. J. 2018, 24, 18643–18647. [Google Scholar] [CrossRef]
- Li, L.; Hu, F.; Xu, D.; Shen, S.; Wang, Q. Metal Ion Redox Potential Plays an Important Role in High-Yield Synthesis of Monodisperse Silver Nanoparticles. Chem. Commun. 2012, 48, 4728. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, Y.; He, M.; Bu, W. Chemodynamic Therapy: Tumour Microenvironment-Mediated Fenton and Fenton-like Reactions. Angew. Chem. Int. Ed. 2019, 58, 946–956. [Google Scholar] [CrossRef]
- Tian, Q.; Xue, F.; Wang, Y.; Cheng, Y.; An, L.; Yang, S.; Chen, X.; Huang, G. Recent Advances in Enhanced Chemodynamic Therapy Strategies. Nano Today 2021, 39, 101162. [Google Scholar] [CrossRef]
- Zhao, P.; Tang, Z.; Chen, X.; He, Z.; He, X.; Zhang, M.; Liu, Y.; Ren, D.; Zhao, K.; Bu, W. Ferrous-Cysteine–Phosphotungstate Nanoagent with Neutral pH Fenton Reaction Activity for Enhanced Cancer Chemodynamic Therapy. Mater. Horiz. 2019, 6, 369–374. [Google Scholar] [CrossRef]
- Hwang, E.; Jung, H.S. Metal–Organic Complex-Based Chemodynamic Therapy Agents for Cancer Therapy. Chem. Commun. 2020, 56, 8332–8341. [Google Scholar] [CrossRef]
- Qian, X.; Zhang, J.; Gu, Z.; Chen, Y. Nanocatalysts-Augmented Fenton Chemical Reaction for Nanocatalytic Tumor Therapy. Biomaterials 2019, 211, 1–13. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, T.; Tian, Y.; Dang, H.; Qian, H.; Teng, C.; Xie, K.; Yan, L. NIR-II Fluorescence Imaging-Guided Photothermal Therapy with Amphiphilic Polypeptide Nanoparticles Encapsulating Organic NIR-II Dye. ACS Appl. Bio. Mater. 2020, 3, 8953–8961. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, S.; Zhang, F. Optical Multiplexed Bioassays for Improved Biomedical Diagnostics. Angew. Chem. Int. Ed. 2019, 58, 13208–13219. [Google Scholar] [CrossRef]
- Meng, X.; Zhou, K.; Qian, Y.; Liu, H.; Wang, X.; Lin, Y.; Shi, X.; Tian, Y.; Lu, Y.; Chen, Q.; et al. Hollow Cuprous Oxide@Nitrogen-Doped Carbon Nanocapsules for Cascade Chemodynamic Therapy. Small 2022, 18, 2107422. [Google Scholar] [CrossRef]
- Liu, J.; Wu, M.; Pan, Y.; Duan, Y.; Dong, Z.; Chao, Y.; Liu, Z.; Liu, B. Biodegradable Nanoscale Coordination Polymers for Targeted Tumor Combination Therapy with Oxidative Stress Amplification. Adv. Funct. Mater. 2020, 30, 1908865. [Google Scholar] [CrossRef]
- Liu, B.; Hu, F.; Zhang, J.; Wang, C.; Li, L. A Biomimetic Coordination Nanoplatform for Controlled Encapsulation and Delivery of Drug–Gene Combinations. Angew. Chem. Int. Ed. 2019, 58, 8804–8808. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, X.; Fan, J.; Du, J.; Peng, X. Boron Dipyrromethene Nano-Photosensitizers for Anticancer Phototherapies. Small 2019, 15, 1804927. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Yan, J.; Liu, Y.; Yang, R.; Pan, D.; Wang, L.; Xu, Y.; Li, X.; Yang, M. Nanoparticle Ferritin-Bound Erastin and Rapamycin: A Nanodrug Combining Autophagy and Ferroptosis for Anticancer Therapy. Biomater. Sci. 2019, 7, 3779–3787. [Google Scholar] [CrossRef]
- Deng, H.; Zhang, J.; Yang, Y.; Yang, J.; Wei, Y.; Ma, S.; Shen, Q. Chemodynamic and Photothermal Combination Therapy Based on Dual-Modified Metal–Organic Framework for Inducing Tumor Ferroptosis/Pyroptosis. ACS Appl. Mater. Interfaces 2022, 14, 24089–24101. [Google Scholar] [CrossRef]
- Sungu Akdogan, C.Z.; Gokcal, B.; Polat, M.; Hamaloglu, K.O.; Kip, C.; Tuncel, A. Porous, Oxygen Vacancy Enhanced CeO2– x Microspheres with Efficient Enzyme-Mimetic and Photothermal Properties. ACS Sustain. Chem. Eng. 2022, 10, 9492–9505. [Google Scholar] [CrossRef]
- Hosseini, P.; Wolkersdörfer, K.; Wark, M.; Redel, E.; Baumgart, H.; Wittstock, G. Morphology and Conductivity of Copper Hexacyanoferrate Films. J. Phys. Chem. C 2020, 124, 16849–16859. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, C.; Wang, S.; Yan, K.; Zhao, M.; Wu, B.; Zhang, F. Counterion-Paired Bright Heptamethine Fluorophores with NIR-II Excitation and Emission Enable Multiplexed Biomedical Imaging. Angew. Chem. Int. Ed. 2022, 61, e202117436. [Google Scholar] [CrossRef]
- Yu, H.; Ji, M. Recent Advances of Organic Near-Infrared II Fluorophores in Optical Properties and Imaging Functions. Mol. Imaging Biol. 2021, 23, 160–172. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, J.; Liu, W.; Zhang, W.; Lee, C.; Wang, P. New Xanthene Dyes with NIR-II Emission Beyond 1200 Nm for Efficient Tumor Angiography and Photothermal Therapy. Small 2022, 18, 2202078. [Google Scholar] [CrossRef]
- Spano, F.C.; Silva, C. H- and J-Aggregate Behavior in Polymeric Semiconductors. Annu. Rev. Phys. Chem. 2014, 65, 477–500. [Google Scholar] [CrossRef]
- Sun, Q.; Ren, J.; Jiang, T.; Peng, Q.; Ou, Q.; Shuai, Z. Intermolecular Charge-Transfer-Induced Strong Optical Emission from Herringbone H-Aggregates. Nano Lett. 2021, 21, 5394–5400. [Google Scholar] [CrossRef]
- Sun, C.; Li, B.; Zhao, M.; Wang, S.; Lei, Z.; Lu, L.; Zhang, H.; Feng, L.; Dou, C.; Yin, D.; et al. J -Aggregates of Cyanine Dye for NIR-II in Vivo Dynamic Vascular Imaging beyond 1500 Nm. J. Am. Chem. Soc. 2019, 141, 19221–19225. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, M.; Zhu, X.; Pei, P.; Zhang, F. One-Pot Preparation of Highly Dispersed Second Near-Infrared J-Aggregate Nanoparticles Based on FD-1080 Cyanine Dye for Bioimaging and Biosensing. CCS Chem. 2022, 4, 476–486. [Google Scholar] [CrossRef]
- Chakraborty, S.; Debnath, P.; Dey, D.; Bhattacharjee, D.; Hussain, S.A. Formation of Fluorescent H-Aggregates of a Cyanine Dye in Ultrathin Film and Its Effect on Energy Transfer. J. Photochem. Photobiol. A Chem. 2014, 293, 57–64. [Google Scholar] [CrossRef]
- Chen, P.; Qu, F.; Chen, S.; Li, J.; Shen, Q.; Sun, P.; Fan, Q. Bandgap Modulation and Lipid Intercalation Generates Ultrabright D–A–D-Based Zwitterionic Small-Molecule Nanoagent for Precise NIR-II Excitation Phototheranostic Applications. Adv. Funct. Mater. 2022, 32, 2208463. [Google Scholar] [CrossRef]
- Ong, S.Y.; Zhang, C.; Dong, X.; Yao, S.Q. Recent Advances in Polymeric Nanoparticles for Enhanced Fluorescence and Photoacoustic Imaging. Angew. Chem. Int. Ed. 2021, 60, 17797–17809. [Google Scholar] [CrossRef]
- Lyu, Y.; Li, J.; Pu, K. Second Near-Infrared Absorbing Agents for Photoacoustic Imaging and Photothermal Therapy. Small Methods 2019, 3, 1900553. [Google Scholar] [CrossRef]
- Wang, X.; Gao, F.; Zhang, X. Initiator-Loaded Gold Nanocages as a Light-Induced Free-Radical Generator for Cancer Therapy. Angew. Chem. Int. Ed. 2017, 56, 9029–9033. [Google Scholar] [CrossRef]
- Tian, H. Spectrally Distinct Near-Infrared Probes for Multiplexed Biomedical Imaging. Sci. China Chem. 2021, 64, 2057–2059. [Google Scholar] [CrossRef]
- Ye, S.; Rao, J.; Qiu, S.; Zhao, J.; He, H.; Yan, Z.; Yang, T.; Deng, Y.; Ke, H.; Yang, H.; et al. Rational Design of Conjugated Photosensitizers with Controllable Photoconversion for Dually Cooperative Phototherapy. Adv. Mater. 2018, 30, 1801216. [Google Scholar] [CrossRef]
- Jiang, Y.; Pu, K. Multimodal Biophotonics of Semiconducting Polymer Nanoparticles. Acc. Chem. Res. 2018, 51, 1840–1849. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Lee, M.M.S.; Xu, W.; Shan, G.; Zheng, X.; Kwok, R.T.K.; Lam, J.W.Y.; Hu, X.; Tang, B.Z. Boosting Non-Radiative Decay to Do Useful Work: Development of a Multi-Modality Theranostic System from an AIEgen. Angew. Chem. Int. Ed. 2019, 58, 5628–5632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lyu, X.; Zhang, L.; Wang, W.; Shen, Q.; Lu, S.; Lu, L.; Zhan, M.; Hu, X. Rationally Driven Drug Nonradiative Decay via a Label-Free Polyprodrug Strategy to Renew Tumor Cascade Photothermal-Chemotherapy. Macromol. Rapid Commun. 2022, 43, 2100918. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Wei, G.; Zhang, S.; Zheng, B.; Xu, J.; Chen, G.; Li, M.; Song, S.; Fu, W.; Xiao, Z.; et al. Albumin Tailoring Fluorescence and Photothermal Conversion Effect of Near-Infrared-II Fluorophore with Aggregation-Induced Emission Characteristics. Nat. Commun. 2019, 10, 2206. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Structural and Process Controls of AIEgens for NIR-II Theranostics. Chem. Sci. 2021, 12, 3427–3436. [Google Scholar] [CrossRef]
- Wang, D.; Lee, M.M.S.; Xu, W.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Theranostics Based on AIEgens. Theranostics 2018, 8, 4925–4956. [Google Scholar] [CrossRef]
- Li, J.; Luo, Y.; Pu, K. Electromagnetic Nanomedicines for Combinational Cancer Immunotherapy. Angew. Chem. Int. Ed. 2021, 60, 12682–12705. [Google Scholar] [CrossRef]
- Lin, M.J.; Svensson-Arvelund, J.; Lubitz, G.S.; Marabelle, A.; Melero, I.; Brown, B.D.; Brody, J.D. Cancer Vaccines: The next Immunotherapy Frontier. Nat. Cancer 2022, 3, 911–926. [Google Scholar] [CrossRef]
- Nam, J.; Son, S.; Park, K.S.; Zou, W.; Shea, L.D.; Moon, J.J. Cancer Nanomedicine for Combination Cancer Immunotherapy. Nat. Rev. Mater. 2019, 4, 398–414. [Google Scholar] [CrossRef]
- Chen, P.-M.; Pan, W.-Y.; Wu, C.-Y.; Yeh, C.-Y.; Korupalli, C.; Luo, P.-K.; Chou, C.-J.; Chia, W.-T.; Sung, H.-W. Modulation of Tumor Microenvironment Using a TLR-7/8 Agonist-Loaded Nanoparticle System That Exerts Low-Temperature Hyperthermia and Immunotherapy for in Situ Cancer Vaccination. Biomaterials 2020, 230, 119629. [Google Scholar] [CrossRef]
- Yu, N.; Ding, M.; Wang, F.; Zhou, J.; Shi, X.; Cai, R.; Li, J. Near-Infrared Photoactivatable Semiconducting Polymer Nanocomplexes with Bispecific Metabolism Interventions for Enhanced Cancer Immunotherapy. Nano Today 2022, 46, 101600. [Google Scholar] [CrossRef]
- Huang, L.; Wan, J.; Wu, H.; Chen, X.; Bian, Q.; Shi, L.; Jiang, X.; Yuan, A.; Gao, J.; Wang, H. Quantitative Self-Assembly of Photoactivatable Small Molecular Prodrug Cocktails for Safe and Potent Cancer Chemo-Photodynamic Therapy. Nano Today 2021, 36, 101030. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Q.; Li, J.; Peng, S.; Wang, X.; Cai, R. Near-Infrared Photoactivated Nanomedicines for Photothermal Synergistic Cancer Therapy. Nano Today 2021, 37, 101073. [Google Scholar] [CrossRef]
- Zhang, Q.; Kuang, G.; He, S.; Lu, H.; Cheng, Y.; Zhou, D.; Huang, Y. Photoactivatable Prodrug-Backboned Polymeric Nanoparticles for Efficient Light-Controlled Gene Delivery and Synergistic Treatment of Platinum-Resistant Ovarian Cancer. Nano Lett. 2020, 20, 3039–3049. [Google Scholar] [CrossRef]
- Ni, W.; Wu, J.; Fang, H.; Feng, Y.; Hu, Y.; Lin, L.; Chen, J.; Chen, F.; Tian, H. Photothermal-Chemotherapy Enhancing Tumor Immunotherapy by Multifunctional Metal–Organic Framework Based Drug Delivery System. Nano Lett. 2021, 21, 7796–7805. [Google Scholar] [CrossRef]
- Li, J.; Luo, Y.; Zeng, Z.; Cui, D.; Huang, J.; Xu, C.; Li, L.; Pu, K.; Zhang, R. Precision Cancer Sono-Immunotherapy Using Deep-Tissue Activatable Semiconducting Polymer Immunomodulatory Nanoparticles. Nat. Commun. 2022, 13, 4032. [Google Scholar] [CrossRef]
- Qi, J.; Jia, S.; Kang, X.; Wu, X.; Hong, Y.; Shan, K.; Kong, X.; Wang, Z.; Ding, D. Semiconducting Polymer Nanoparticles with Surface-Mimicking Protein Secondary Structure as Lysosome-Targeting Chimaeras for Self-Synergistic Cancer Immunotherapy. Adv. Mater. 2022, 34, 2203309. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Zhang, Q.; Li, J. Tumor Extracellular Matrix Modulating Strategies for Enhanced Antitumor Therapy of Nanomedicines. Mater. Today Bio 2022, 16, 100364. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, B.; Zuo, S.; Li, X.; Zhou, S.; Li, L.; Luo, C.; Liu, H.; Cheng, M.; Wang, Y.; et al. Trisulfide Bond–Mediated Doxorubicin Dimeric Prodrug Nanoassemblies with High Drug Loading, High Self-Assembly Stability, and High Tumor Selectivity. Sci. Adv. 2020, 6, eabc1725. [Google Scholar] [CrossRef]
- Xu, W.; Jiao, L.; Yan, H.; Wu, Y.; Chen, L.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. Glucose Oxidase-Integrated Metal–Organic Framework Hybrids as Biomimetic Cascade Nanozymes for Ultrasensitive Glucose Biosensing. ACS Appl. Mater. Interfaces 2019, 11, 22096–22101. [Google Scholar] [CrossRef]
- Gao, P.; Chen, Y.; Pan, W.; Li, N.; Liu, Z.; Tang, B. Antitumor Agents Based on Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2021, 60, 16763–16776. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Ohulchanskyy, T.Y.; Chen, G. Lanthanide-Doped Near-Infrared Nanoparticles for Biophotonics. Adv. Mater. 2021, 33, 2000678. [Google Scholar] [CrossRef]
- Li, X.; Kwon, N.; Guo, T.; Liu, Z.; Yoon, J. Innovative Strategies for Hypoxic-Tumor Photodynamic Therapy. Angew. Chem. Int. Ed. 2018, 57, 11522–11531. [Google Scholar] [CrossRef]
- Liang, X.; Chen, M.; Bhattarai, P.; Hameed, S.; Dai, Z. Perfluorocarbon@Porphyrin Nanoparticles for Tumor Hypoxia Relief to Enhance Photodynamic Therapy against Liver Metastasis of Colon Cancer. ACS Nano 2020, 14, 13569–13583. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, L.; Sun, T.; Zhang, Y.; Liu, Y.; Gong, M.; Xu, Z.; Du, M.; Liu, Y.; Liu, G.; et al. Activatable NIR-II Plasmonic Nanotheranostics for Efficient Photoacoustic Imaging and Photothermal Cancer Therapy. Adv. Mater. 2021, 33, 2006532. [Google Scholar] [CrossRef] [PubMed]
- Ruttala, H.B.; Ramasamy, T.; Ruttala, R.R.T.; Tran, T.H.; Jeong, J.-H.; Choi, H.-G.; Ku, S.K.; Yong, C.S.; Kim, J.O. Mitochondria-Targeting Multi-Metallic ZnCuO Nanoparticles and IR780 for Efficient Photodynamic and Photothermal Cancer Treatments. J. Mater. Sci. Technol. 2021, 86, 139–150. [Google Scholar] [CrossRef]
- Yang, Q.; Hu, Z.; Zhu, S.; Ma, R.; Ma, H.; Ma, Z.; Wan, H.; Zhu, T.; Jiang, Z.; Liu, W.; et al. Donor Engineering for NIR-II Molecular Fluorophores with Enhanced Fluorescent Performance. J. Am. Chem. Soc. 2018, 140, 1715–1724. [Google Scholar] [CrossRef] [PubMed]
Types | NPs | Laser Source | Particularities | Therapeutic Applications | Refs. |
---|---|---|---|---|---|
polymers | FE-T | 808 nm | 4T1; NIR-II FLI | PTT/PDT/IMT | [32] |
Small molecule probes | IR808 | 808 nm | colorectal cancer; NIR-II FLI | PTT/PDT | [33] |
Small molecule probes | Y16-Pr-PEG | 808 nm | 4T1; NIR-II FLI and PAI | PTT/PDT | [34] |
Small molecule probes | BTP-4F-DMO | 808 nm | 4T1; NIR-II FLI and PAI | PTT/PDT | [35] |
Metal nanomaterials | C-DTTP | 808 nm | MDA-MB; NIR-II FLI and PAI | PTT/PDT | [36] |
Metal nanomaterials | Ag3SbS3 | 1064 nm | 4T1; NIR-II PAI and MRI | CDT/PTT/PDT | [37] |
Polymers | Ag2S | 808 nm | 4T1;NIR-II FLI | PTT/CDT | [38] |
Metal nanomaterials | MoSe2/CoSe2@PEG | 808 nm | NIR-II MRI and PTI | PTT/CDT | [39] |
Metal nanomaterials | Cu-Ni0.85Se@PEG | 1064 nm | NIR-II MRI | PTT/CDT | [40] |
Metal nanomaterials | CEMNDs | 1064 nm | 4T1 | PTT/CDT | [41] |
Metal nanomaterials | CuHCF | 1064 nm | 4T1 | PTT/CDT | [42] |
Small molecule probe | IR-1061 | 1061 nm and 808 nm | NIR-II PTI and FLI | PTT/CDT | [43] |
Small molecule probe | DPP-BT | 730 nm | Hela; NIR-II PAI and FLI | PTT/PDT/CDT | [44] |
Small molecule probe | BTP/DOX/2DG | 1064 nm | 143B; NIR-II PAI and FLI | PTT/CDT | [45] |
Polymers | NMB@NPs | 808 nm | PDX; NIR-II FLI | PTT/TDT | [46] |
Polymers | TPEQM-DMA | >1000 nm | MCF-7; NIR-II FLI | PDT/ Ferroptosis | [47] |
Polymers | BODTPE | 808 nm | 4T1; NIR-II FLI | PDT/PTT/IME | [48] |
Polymers | SPNs | 1064 nm | 4T1; NIR-II FLI | PTT/IME/GT | [49] |
Small molecule probe | TST | 808 nm | 4T1; NIR-II FLI and PAI | PTT/IME/CDT | [50] |
Small molecule probe | LGT | 1064 nm | 4T1; NIR-II FLI and PAI | PTT/IME | [51] |
Small molecule probe | UCILA | 1064 nm | A549; five-mode NIR-II imaging | PTT/IME | [52] |
Rare earth-doped nanoparticles | LDNPs@Fe/Mn-ZIF-8 | 980 nm | NIR-II FLI | PDT/CDT | [53] |
Small molecule probe | PROTAC-Cy7 | 808 nm | CT26; NIR-II FLI | PTT/PDT/CDT | [54] |
Precious metals | PSPP-AU980-D | 680 and 980 nm | Orthotopic pancreatic tumor; NIR-II FLI and PAI | PTT/PDT/CDT | [55] |
Rare earth-doped nanoparticles | NaLnF4@MOF | 980 and 1530 nm | CT26; NIR-II imaging | PDT/IMT | [56] |
Small molecule probe | FEPT | 808 nm | 4T1; NIR-II FLI | PTT/PDT/IMT | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Xia, G.; Li, J.; Yuan, L.; Yu, S.; Li, D.; Yang, N.; Fan, Z.; Li, J. Multifunctional Nanoplatform for NIR-II Imaging-Guided Synergistic Oncotherapy. Int. J. Mol. Sci. 2023, 24, 16949. https://doi.org/10.3390/ijms242316949
Wang Q, Xia G, Li J, Yuan L, Yu S, Li D, Yang N, Fan Z, Li J. Multifunctional Nanoplatform for NIR-II Imaging-Guided Synergistic Oncotherapy. International Journal of Molecular Sciences. 2023; 24(23):16949. https://doi.org/10.3390/ijms242316949
Chicago/Turabian StyleWang, Qingluo, Guoyu Xia, Jianmin Li, Longlong Yuan, Shujie Yu, Dingyang Li, Nan Yang, Zhongxiong Fan, and Jinyao Li. 2023. "Multifunctional Nanoplatform for NIR-II Imaging-Guided Synergistic Oncotherapy" International Journal of Molecular Sciences 24, no. 23: 16949. https://doi.org/10.3390/ijms242316949
APA StyleWang, Q., Xia, G., Li, J., Yuan, L., Yu, S., Li, D., Yang, N., Fan, Z., & Li, J. (2023). Multifunctional Nanoplatform for NIR-II Imaging-Guided Synergistic Oncotherapy. International Journal of Molecular Sciences, 24(23), 16949. https://doi.org/10.3390/ijms242316949