Lack of Evidence for the Role of the p.(Ser96Ala) Polymorphism in Histidine-Rich Calcium Binding Protein as a Secondary Hit in Cardiomyopathies
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. HRC p.(Ser96Ala) Polymorphism in General and Cardiomyopathy Populations
2.3. Life-Threatening Ventricular Arrhythmias and HRC Polymorphism
2.4. Heart Failure and HRC Polymorphism
2.5. Composite Endpoint in PLN p.(Arg14del) Patients
3. Discussion
4. Materials and Methods
4.1. Study Design and Patient Selection
4.2. Genetic Data Extraction
4.3. Clinical Outcomes
4.4. Statistical Analysis
4.4.1. Registry Cohorts
4.4.2. UK Biobank DCM Cohort
5. Conclusions
Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McKenna, W.J.; Judge, D.P. Epidemiology of the inherited cardiomyopathies. Nat. Rev. Cardiol. 2021, 18, 22–36. [Google Scholar] [CrossRef] [PubMed]
- Semsarian, C.; Ingles, J.; Maron, M.S.; Maron, B.J. New perspectives on the prevalence of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2015, 65, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Gardin, J.M.; Flack, J.M.; Gidding, S.S.; Kurosaki, T.T.; Bild, D.E. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 1995, 92, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Hershberger, R.E.; Hedges, D.J.; Morales, A. Dilated cardiomyopathy: The complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 2013, 10, 531–547. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Basso, C.; Judge, D.P. Arrhythmogenic Cardiomyopathy. Circ. Res. 2017, 121, 784–802. [Google Scholar] [CrossRef] [PubMed]
- Brodehl, A.; Meshkov, A.; Myasnikov, R.; Kiseleva, A.; Kulikova, O.; Klauke, B.; Sotnikova, E.; Stanasiuk, C.; Divashuk, M.; Pohl, G.M.; et al. Hemi- and Homozygous Loss-of-Function Mutations in DSG2 (Desmoglein-2) Cause Recessive Arrhythmogenic Cardiomyopathy with an Early Onset. Int. J. Mol. Sci. 2021, 22, 3786. [Google Scholar] [CrossRef] [PubMed]
- Lester, G.; Femia, G.; Ayer, J.; Puranik, R. A case report: X-linked dystrophin gene mutation causing severe isolated dilated cardiomyopathy. Eur. Heart J. Case Rep. 2019, 3, ytz055. [Google Scholar] [CrossRef]
- Gerull, B.; Brodehl, A. Insights into genetics and pathophysiology of arrhythmogenic cardiomyopathy. Curr. Heart Fail. Rep. 2021, 18, 378–390. [Google Scholar] [CrossRef]
- Lopes, L.R.; Rahman, M.S.; Elliott, P.M. A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart 2013, 99, 1800–1811. [Google Scholar] [CrossRef]
- Vafiadaki, E.; Glijnis, P.C.; Doevendans, P.A.; Kranias, E.G.; Sanoudou, D. Phospholamban R14del disease: The past, the present and the future. Front. Cardiovasc. Med. 2023, 10, 1162205. [Google Scholar] [CrossRef]
- Martínez-Solé, J.; Sabater-Molina, M.; Braza-Boïls, A.; Santos-Mateo, J.J.; Molina, P.; Martínez-Dolz, L.; Gimeno, J.R.; Zorio, E. Corrigendum: Facts and Gaps in Exercise Influence on Arrhythmogenic Cardiomyopathy: New Insights from a Meta-Analysis Approach. Front. Cardiovasc. Med. 2021, 8, 816280. [Google Scholar] [CrossRef] [PubMed]
- Nagyova, E.; Hoorntje, E.T.; Te Rijdt, W.P.; Bosman, L.P.; Syrris, P.; Protonotarios, A.; Elliott, P.M.; Tsatsopoulou, A.; Mestroni, L.; Taylor, M.R.G.; et al. A Systematic Analysis of the Clinical Outcome Associated with Multiple Reclassified Desmosomal Gene Variants in Arrhythmogenic Right Ventricular Cardiomyopathy Patients. J. Cardiovasc. Transl. Res. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Piacentino, V.; Weber, C.R.; Chen, X.; Weisser-Thomas, J.; Margulies, K.B.; Bers, D.M.; Houser, S.R. Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ. Res. 2003, 92, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Arvanitis, D.A.; Vafiadaki, E.; Johnson, D.M.; Kranias, E.G.; Sanoudou, D. The Histidine-Rich Calcium Binding Protein in Regulation of Cardiac Rhythmicity. Front. Physiol. 2018, 9, 1379. [Google Scholar] [CrossRef] [PubMed]
- Arvanitis, D.A.; Vafiadaki, E.; Sanoudou, D.; Kranias, E.G. Histidine-rich calcium binding protein: The new regulator of sarcoplasmic reticulum calcium cycling. J. Mol. Cell. Cardiol. 2011, 50, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Arvanitis, D.A.; Sanoudou, D.; Kolokathis, F.; Vafiadaki, E.; Papalouka, V.; Kontrogianni-Konstantopoulos, A.; Theodorakis, G.N.; Paraskevaidis, I.A.; Adamopoulos, S.; Dorn, G.W.; et al. The Ser96Ala variant in histidine-rich calcium-binding protein is associated with life-threatening ventricular arrhythmias in idiopathic dilated cardiomyopathy. Eur. Heart J. 2008, 29, 2514–2525. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, L.; Duru, F.; Hu, S. Heart Failure in Patients with Arrhythmogenic Cardiomyopathy. J. Clin. Med. 2021, 10, 4782. [Google Scholar] [CrossRef] [PubMed]
- Kingdom, R.; Wright, C.F. Incomplete penetrance and variable expressivity: From clinical studies to population cohorts. Front. Genet. 2022, 13, 920390. [Google Scholar] [CrossRef]
- Villard, E.; Perret, C.; Gary, F.; Proust, C.; Dilanian, G.; Hengstenberg, C.; Ruppert, V.; Arbustini, E.; Wichter, T.; Germain, M.; et al. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur. Heart J. 2011, 32, 1065–1076. [Google Scholar] [CrossRef]
- Biddinger, K.J.; Jurgens, S.J.; Maamari, D.; Gaziano, L.; Choi, S.H.; Morrill, V.N.; Halford, J.L.; Khera, A.V.; Lubitz, S.A.; Ellinor, P.T.; et al. Rare and common genetic variation underlying the risk of hypertrophic cardiomyopathy in a national biobank. JAMA Cardiol. 2022, 7, 715–722. [Google Scholar] [CrossRef]
- La Vecchia, L.; Varotto, L.; Zanolla, L.; Spadaro, G.L.; Fontanelli, A. Right ventricular function predicts transplant-free survival in idiopathic dilated cardiomyopathy. J. Cardiovasc. Med. 2006, 7, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Moccia, F.; Lodola, F.; Stadiotti, I.; Pilato, C.A.; Bellin, M.; Carugo, S.; Pompilio, G.; Sommariva, E.; Maione, A.S. Calcium as a key player in arrhythmogenic cardiomyopathy: Adhesion disorder or intracellular alteration? Int. J. Mol. Sci. 2019, 20, 3986. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhou, K.; Liu, X.; Hua, Y.; Wang, H.; Li, Y. The interplay between cardiac dyads and mitochondria regulated the calcium handling in cardiomyocytes. Front. Physiol. 2022, 13, 1013817. [Google Scholar] [CrossRef]
- Bosman, L.P.; Verstraelen, T.E.; van Lint, F.H.M.; Cox, M.G.P.J.; Groeneweg, J.A.; Mast, T.P.; van der Zwaag, P.A.; Volders, P.G.A.; Evertz, R.; Wong, L.; et al. The Netherlands Arrhythmogenic Cardiomyopathy Registry: Design and status update. Neth. Heart J. 2019, 27, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Jurgens, S.J.; Choi, S.H.; Morrill, V.N.; Chaffin, M.; Pirruccello, J.P.; Halford, J.L.; Weng, L.-C.; Nauffal, V.; Roselli, C.; Hall, A.W.; et al. Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nat. Genet. 2022, 54, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat. Genet. 2014, 46, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [PubMed]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Therneau, T.M. Package for Survival Analysis in R. Available online: https://CRAN.R-project.org/package=survival (accessed on 31 May 2023).
- Kassambara, A. Survminer: Drawing Survival Curves Using “Ggplot2”. Available online: https://CRAN.R-project.org/package=survminer (accessed on 31 May 2023).
- Cross, D.S.; Ivacic, L.C.; Stefanski, E.L.; McCarty, C.A. Population based allele frequencies of disease associated polymorphisms in the Personalized Medicine Research Project. BMC Genet. 2010, 11, 51. [Google Scholar] [CrossRef]
- Amioka, M.; Nakano, Y.; Ochi, H.; Onohara, Y.; Sairaku, A.; Tokuyama, T.; Motoda, C.; Matsumura, H.; Tomomori, S.; Hironobe, N.; et al. Ser96Ala genetic variant of the human histidine-rich calcium-binding protein is a genetic predictor of recurrence after catheter ablation in patients with paroxysmal atrial fibrillation. PLoS ONE 2019, 14, e0213208. [Google Scholar] [CrossRef]
PLN p.(Arg14del) N = 848 | Wild Type (TT) (N = 302, 36%) | Heterozygous (TG) (N = 404, 48%) | Homozygous (GG) (N = 142, 16%) |
---|---|---|---|
Age (years) | 51 [37–63] | 52 [36–65] | 49 [32–62] |
Male sex | 131/302 (43%) | 182/404 (45%) | 64/142 (45%) |
Index patient | 61/302 (20%) | 78/404 (19%) | 23/142 (16%) |
Diagnosis | |||
DCM | 42/195 (22%) | 61/257 (24%) | 21/100 (21%) |
ACM | 21/184 (11%) | 27/254 (11%) | 6/96 (6%) |
ICD implantation | 90/267 (34%) | 115/356 (32%) | 43/120 (36%) |
Continuous rhythm monitoring | |||
≥500 PVCs | 61/190 (32%) | 93/250 (37%) | 28/88 (32%) |
Imaging | |||
LVEF (%) | 51 [41–56] | 52 [41–57] | 50 [43–55] |
Life-threatening arrhythmias (MVA) | 49/294 (16%) | 54/392 (14%) | 16/139 (17%) |
(Aborted) SCD | 4 (1%) | 10 (3%) | 2 (1%) |
Sustained VT | 36 (12%) | 43 (11%) | 15 (11%) |
Appropriate ICD shock | 15 (5%) | 20 (5%) | 5 (4%) |
HF-related events | 42/257 (16%) | 53/345 (15%) | 15/113 (13%) |
Hospitalization for HF | 37 (14%) | 37 (11%) | 13 (11%) |
HTx or LVAD | 18 (7%) | 28 (8%) | 7 (6%) |
HF death | 18 (7%) | 17 (4%) | 3 (3%) |
Composite of MVA and/or HF events | 67/302 (22%) | 81/404 (20%) | 24/142 (17%) |
Follow-up clinical evaluation (years) | 6 [2–10] | 5 [2–9] | 5 [2–9] |
ACM (N = 882) | Wild Type (TT) (N = 288, 33%) | Heterozygous (TG) (N = 413, 47%) | Homozygous (GG) (N = 181, 20%) |
---|---|---|---|
Age (years) | 47 [33–60] | 47 [33–57] | 48 [33–58] |
Male sex | 144/288 (50%) | 196/413 (47%) | 99/181 (55%) |
Index patient | 129/287 (45%) | 195/403 (48%) | 87/184 (47%) |
Diagnosis | |||
ACM | 178/200 (89%) | 245/272 (90%) | 108/117 (92%) |
Life-threatening arrhythmias (MVA) | 120/283 (42%) | 186/375 (50%) | 77/174 (44%) |
HF-related events | 19/142 (13%) | 14/171 (8%) | 13/92 (14%) |
HTx or LVAD | 11 (8%) | 15 (9%) | 5 (5%) |
Follow-up clinical evaluation (years) | 8 [4–15] | 8 [4–15] | 10 [3–14] |
DCM (N = 985) | Wild Type (TT) (N = 316, 32%) | Heterozygous (TG) (N = 524, 53%) | Homozygous (GG) (N = 145, 15%) |
---|---|---|---|
Enrollment age in years | 60.6 ± 7.1 | 60.5 ± 6.8 | 60.5 ± 6.6 |
Male sex | 225 (71%) | 357 (68%) | 114 (79%) |
VT | 62 (20%) | 80 (15%) | 24 (17%) |
(Aborted) SCD | 18 (6%) | 30 (6%) | 8 (6%) |
VT or SCD | 72 (23%) | 91 (17%) | 27 (19%) |
ICD implantation | 90 (28%) | 139 (27%) | 34 (23%) |
Mortality | 72 (23%) | 131 (25%) | 45 (31%) |
Biobank follow-up time in years | 10.2 ± 2.3 | 10.3 ± 2.6 | 9.8 ± 3.2 |
Frequencies HRC Polymorphism | |
---|---|
General Population | |
gnomAD, European (non-Finish) | 41.7% |
GoNL | 40.5% |
WES, UMC Utrecht | 40.3% |
UK Biobank | 42.2% |
PLN Registry | 40.9% |
ACM Registry | 43.9% |
Dutch | 43.6% |
USA | 43.0% |
Swiss | 50.9% |
DCM Cohort, UK Biobank | |
British | 41.3% |
PLN p.(Arg14del) | Odds Ratio | 95% CI | p-Value |
---|---|---|---|
Life-threatening VA event | 0.792 | 0.584–1.066 | 0.128 |
HF event | 0.858 | 0.615–1.188 | 0.360 |
Composite | 0.842 | 0.649–1.089 | 0.193 |
ACM | Odds Ratio | 95% CI | p-Value |
---|---|---|---|
Life-threatening VA event | 0.862 | 0.576–1.288 | 0.467 |
DCM | Odds Ratio | 95% CI | p-Value |
---|---|---|---|
VT | 0.848 | 0.524–1.171 | 0.210 |
SCD | 1.016 | 0.985–1.046 | 0.941 |
ICDimplantation | 0.887 | 0.652–1.121 | 0.284 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Voorn, S.M.; van Drie, E.; Proost, V.; Dimitrova, K.; Netherlands ACM/PLN Registry; Ernst, R.F.; James, C.A.; Tichnell, C.; Murray, B.; Calkins, H.; et al. Lack of Evidence for the Role of the p.(Ser96Ala) Polymorphism in Histidine-Rich Calcium Binding Protein as a Secondary Hit in Cardiomyopathies. Int. J. Mol. Sci. 2023, 24, 15931. https://doi.org/10.3390/ijms242115931
van der Voorn SM, van Drie E, Proost V, Dimitrova K, Netherlands ACM/PLN Registry, Ernst RF, James CA, Tichnell C, Murray B, Calkins H, et al. Lack of Evidence for the Role of the p.(Ser96Ala) Polymorphism in Histidine-Rich Calcium Binding Protein as a Secondary Hit in Cardiomyopathies. International Journal of Molecular Sciences. 2023; 24(21):15931. https://doi.org/10.3390/ijms242115931
Chicago/Turabian Stylevan der Voorn, Stephanie M., Esmée van Drie, Virginnio Proost, Kristina Dimitrova, Netherlands ACM/PLN Registry, Robert F. Ernst, Cynthia A. James, Crystal Tichnell, Brittney Murray, Hugh Calkins, and et al. 2023. "Lack of Evidence for the Role of the p.(Ser96Ala) Polymorphism in Histidine-Rich Calcium Binding Protein as a Secondary Hit in Cardiomyopathies" International Journal of Molecular Sciences 24, no. 21: 15931. https://doi.org/10.3390/ijms242115931
APA Stylevan der Voorn, S. M., van Drie, E., Proost, V., Dimitrova, K., Netherlands ACM/PLN Registry, Ernst, R. F., James, C. A., Tichnell, C., Murray, B., Calkins, H., Saguner, A. M., Duru, F., Ellinor, P. T., Bezzina, C. R., Jurgens, S. J., van Tintelen, J. P., & van Veen, T. A. B. (2023). Lack of Evidence for the Role of the p.(Ser96Ala) Polymorphism in Histidine-Rich Calcium Binding Protein as a Secondary Hit in Cardiomyopathies. International Journal of Molecular Sciences, 24(21), 15931. https://doi.org/10.3390/ijms242115931