Incorporation of Pectin into Vaterite Microparticles Prevented Effects of Adsorbed Mucin on Neutrophil Activation
Abstract
:1. Introduction
2. Results
2.1. Antioxidant Activity of Pectin
2.2. Microparticle Characteristics
2.3. Activation of Neutrophils with Microparticles
3. Discussion
4. Materials and Methods
4.1. Reagents Used
4.2. Fabrication of Microparticles
4.3. Evaluation of Physical–Chemical Properties of Microparticles
4.4. Adsorption of Mucin
4.5. Fluorescent Microscopy
4.6. Antioxidant Activity in ABAP–Luminol System
4.7. Neutrophil Isolation
4.8. Chemiluminescent Assay of Neutrophil Activation
4.9. Treatment with NaOCl
4.10. Lactate Dehydrogenase Assay
4.11. Assay of Extracellular DNA by SYTOX Green Fluorescence
4.12. Detection of Neutrophil Extracellular Traps by Flow Cytometry
4.13. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABAP | 2,2′-azobis(2-amidinopropane)dihydrochloride |
CC | vaterite |
CC-M | vaterite treated with mucin |
CC-OCl | vaterite treated with NaOCl |
CCP | vaterite–pectin microparticles |
CCP-M | vaterite–pectin microparticles treated with mucin |
CCP-OCl | vaterite–pectin microparticles treated with NaOCl |
CL | chemiluminescence |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
LDH | lactate dehydrogenase |
Luc | lucigenin |
Lum | luminol |
MPO | myeloperoxidase |
NET | neutrophil extracellular trap |
PMA | phorbol 12-myristate 13-acetate |
RHS | reactive halogen species |
ROS | reactive oxygen species |
References
- Volodkin, D. CaCO3 templated microbeads and-capsules for bioapplications. Adv. Colloid Interface Sci. 2014, 207, 306–324. [Google Scholar] [CrossRef] [PubMed]
- Balabushevich, N.G.; Kovalenko, E.A.; Mikhalchik, E.V.; Filatova, L.Y.; Volodkin, D.; Vikulina, A.S. Mucin adsorption on vaterite CaCO3 microcrystals for the prediction of mucoadhesive properties. J. Colloid Interface Sci. 2019, 545, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Mikhalchik, E.V.; Basyreva, L.Y.; Gusev, S.A.; Panasenko, O.M.; Klinov, D.V.; Barinov, N.A.; Morozova, O.V.; Moscalets, A.P.; Maltseva, L.N.; Filatova, L.Y.; et al. Cctivation of neutrophils by mucin-vaterite microparticles. Int. J. Mol. Sci. 2022, 23, 10579. [Google Scholar] [CrossRef] [PubMed]
- Balabushevich, N.G.; Kovalenko, E.A.; Le-Deygen, I.M.; Filatova, L.Y.; Volodkin, D.; Vikulina, A.S. Hybrid CaCO3-mucin crystals: Effective approach for loading and controlled release of cationic drugs. Mater. Des. 2019, 182, 108020. [Google Scholar] [CrossRef]
- Fu, L.-H.; Qi, C.; Hua, Y.-R.; Meib, C.-G.; Ma, M.-G. Cellulose/vaterite nanocomposites: Sonochemical synthesis, characterization, and their application in protein adsorption. Mater Sci. Eng. C Mater Biol. Appl. 2019, 96, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Minzanova, S.T.; Mironov, V.F.; Arkhipova, D.M.; Khabibullina, A.V.; Mironova, L.G.; Zakirova, Y.M.; Milyukov, V.A. Biological activity and pharmacological application of pectic polysaccharides: A review. Polymers 2018, 10, 1407. [Google Scholar] [CrossRef]
- Noreen, A.; Nazli, Z.-I.-H.; Akram, J.; Rasul, I.; Mansha, A.; Yaqoob, N.; Iqbal, R.; Tabasum, S.; Zuber, M.; Zia, K.M. Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. Int. J. Biol. Macromol. 2017, 101, 254–272. [Google Scholar] [CrossRef]
- Wikiera, A.; Grabacka, M.; Byczyński, Ł.; Stodolak, B.; Mika, M. Enzymatically extracted apple pectin possesses antioxidant and antitumor activity. Molecules 2021, 26, 1434. [Google Scholar] [CrossRef]
- Gopi, D.; Kanimozhi, K.; Kavitha, L. Opuntia ficus indica peel derived pectin mediated hydroxyapatite nanoparticles: Synthesis, spectral characterization, biological and antimicrobial activities. Spectrochim. Acta Part A 2015, 141, 135–143. [Google Scholar] [CrossRef]
- Vityazev, F.V.; Fedyuneva, M.I.; Golovchenko, V.V.; Patova, O.A.; Ipatova, E.U.; Durnev, E.A.; Martinson, E.A.; Litvinets, S.G. Pectin-silica gels as matrices for controlled drug release ingastrointestinal tract. Carbohydr. Polym. 2017, 157, 9–20. [Google Scholar] [CrossRef]
- Mihai, M.; Steinbach, C.; Aflori, M.; Schwarz, S. Design of high sorbent pectin/CaCO3 composites tuned by pectin characteristics and carbonate source. Mater. Des. 2015, 86, 388–396. [Google Scholar] [CrossRef]
- Krasowska, A.; Rosiak, D.; Czkapiak, K.; Lukaszewicz, M. Chemiluminescence detection of peroxyl radicals and comparison of antioxidant activity of phenolic compounds. Curr. Top. Biophys. 2000, 24, 89–95. [Google Scholar]
- Shi, P.; Qin, J.; Hu, J.; Bai, Y.; Zan, X. Insight into the mechanism and factors on encapsulating basic model protein, lysozyme, into heparin doped CaCO3. Colloids Surf. B Biointerfaces 2019, 175, 184–194. [Google Scholar] [CrossRef]
- Balabushevich, N.G.; Kovalenko, E.A.; Maltseva, L.N.; Filatova, L.Y.; Moysenovich, A.V.; Mikhalchik, E.V.; Volodkin, D.; Vikulina, A.S. Immobilisation of antioxidant enzyme catalase on porous hybrid microparticles of vaterite with mucin. Adv. Eng. Mater. 2022, 24, 2101797. [Google Scholar] [CrossRef]
- Papayannopoulos, V.; Metzler, K.D.; Hakkim, A.; Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 2010, 191, 677–691. [Google Scholar] [CrossRef]
- Marchenko, I.; Borodina, T.; Trushina, D.; Rassokhina, I.; Volkova, Y.; Shirinian, V.; Zavarzin, I.; Gogin, A.; Bukreeva, T. Mesoporous particle-based microcontainers for intranasal delivery of imidazopyridine drugs. J. Microencapsul. 2018, 35, 657–666. [Google Scholar] [CrossRef]
- Liu, D.; Jiang, G.; Yu, W.; Li, L.; Tong, Z.; Kong, X.; Yao, J. Oral delivery of insulin using CaCO3-based composite nanocarriers with hyaluronic acid coatings. Mater. Lett. 2017, 188, 263–266. [Google Scholar] [CrossRef]
- Binevski, P.V.; Balabushevich, N.G.; Uvarova, V.I.; Vikulina, A.S.; Volodkin, D. Biofriendly encapsulation of superoxide dismutase into vaterite CaCO3 crystals. Enzyme activity, release mechanism, and perspectives for ophthalmology. Colloids Surf. B Biointerfaces 2019, 181, 437–449. [Google Scholar] [CrossRef]
- Gusliakova, O.; Atochina-Vasserman, E.N.; Sindeeva, O.; Sindeev, S.; Pinyaev, S.; Pyataev, N.; Revin, V.; Sukhorukov, G.B.; Gorin, D.; Gow, A.J. Use of submicron vaterite particles serves as an effective delivery vehicle to the respiratory portion of the lung. Front. Pharmacol. 2018, 9, 559. [Google Scholar] [CrossRef]
- Wathoni, N.; Shan, C.Y.; Shan, W.Y.; Rostinawati, T.; Indradi, R.B.; Pratiwi, R.; Muchtaridi, M. Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon 2019, 5, e02299. [Google Scholar] [CrossRef]
- Urano, H.; Fukuzaki, S. The mode of action of sodium hypochlorite in the cleaning process. Biocontrol. Sci. 2005, 10, 21–29. [Google Scholar] [CrossRef]
- Chen, C.H.; Sheu, M.T.; Chen, T.F.; Wang, Y.C.; Hou, W.C.; Liu, D.Z.; Chung, T.C.; Liang, Y.C. Suppression of endotoxin-induced proinflammatory responses by citrus pectin through blocking LPS signaling pathways. Biochem. Pharmacol. 2006, 72, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Beukema, M.; Faas, M.M.; de Vos, P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: Impact via gut microbiota and direct effects on immune cells. Exp. Mol. Med. 2020, 52, 1364–1376. [Google Scholar] [CrossRef]
- Sriamornsak, P.; Wattanakorn, N.; Takeuchi, H. Study on the mucoadhesion mechanism of pectin by atomic force microscopy and mucin-particle method. Carbohydr. Polym. 2010, 79, 54–59. [Google Scholar] [CrossRef]
- Smirnov, V.V.; Selivanov, N.Y.; Golovchenko, V.V.; Selivanova, O.G.; Vityazev, F.V.; Popov, S.V. The antioxidant properties of pectin fractions isolated from vegetables using a simulated gastric fluid. Hindawi J. Chem. 2017, 2017, 5898594. [Google Scholar] [CrossRef]
- Popov, S.V.; Markov, P.A.; Popova, G.Y.; Nikitina, I.R.; Efimova, L.; Ovodov, Y.S. Anti-inflammatory activity of low and high methoxylated citrus pectins. Biomed. Prev. Nutr. 2013, 3, 59–63. [Google Scholar] [CrossRef]
- Sahasrabudhe, N.M.; Beukema, M.; Tian, L.; Troost, B.; Scholte, J.; Bruininx, E.; Bruggeman, G.; van den Berg, M.; Scheurink, A.; Schols, H.A.; et al. Dietary fiber pectin directly blocks Toll-like receptor 2-1 and prevents doxorubicin-induced ileitis. Front. Immunol. 2018, 9, 383. [Google Scholar] [CrossRef]
- Pilsczek, F.H.; Salina, D.; Poon, K.K.; Fahey, C.; Yipp, B.G.; Sibley, C.D.; Robbins, S.M.; Green, F.H.; Surette, M.G.; Sugai, M.; et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J. Immunol. 2010, 185, 7413–7425. [Google Scholar] [CrossRef]
- Kenny, E.F.; Herzig, A.; Krüger, R.; Muth, A.; Mondal, S.; Thompson, P.R.; Brinkmann, V.; Bernuth, H.V.; Zychlinsky, A. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife 2017, 2, e24437. [Google Scholar] [CrossRef]
- Trofimov, A.D.; Ivanova, A.A.; Zyuzin, M.V.; Timin, A.S. Porous inorganic carriers based on silica, calcium carbonate and calcium phosphate for controlled/modulated drug delivery: Fresh outlook and future perspectives. Pharmaceutics 2018, 10, 167. [Google Scholar] [CrossRef]
- Trushina, D.B.; Borodina, T.N.; Belyakov, S.; Antipina, M.N. Calcium carbonate vaterite particles for drug delivery: Advances and challenges. Mater. Today Adv. 2022, 14, 100214. [Google Scholar] [CrossRef] [PubMed]
- Hadji, H.; Bouchemal, K. Advances in the treatment of inflammatory bowel disease: Focus on polysaccharide nanoparticulate drug delivery systems. Adv. Drug Deliv. Rev. 2022, 181, 114101. [Google Scholar] [CrossRef] [PubMed]
- Paliya, B.S.; Sharma, V.K.; Sharma, M.; Diwan, D.; Nguyen, Q.D.; Aminabhavi, T.M.; Rajauria, G.; Singh, B.N.; Gupta, V.K. Protein-polysaccharide nanoconjugates: Potential tools for delivery of plant-derived nutraceuticals. Food Chem. 2023, 428, 136709. [Google Scholar] [CrossRef]
- Balabushevich, N.G.; Kovalenko, E.A.; Filatova, L.Y.; Kirzhanova, E.A.; Mikhalchik, E.V.; Volodkin, D.; Vikulina, A.S. Hybrid Mucin-Vaterite Microspheres for Delivery of Proteolytic Enzyme Chymotrypsin. Macromol. Biosci. 2022, 22, 2200005. [Google Scholar] [CrossRef] [PubMed]
- Fallingborg, J.; Christensen, L.A.; Jacobsen, B.A.; Rasmussen, S.N. Very low intraluminal colonic pH in patients with active ulcerative colitis. Dig. Dis. Sci. 1993, 38, 1989–1993. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, R. Mechanisms of action of sucralfate. J. Clin. Gastroenterol. 1981, 3 (Suppl. S2), 117–127. [Google Scholar]
- Lamprecht, A.; Schafer, U.; Lehr, C.-M. Size-dependent bioadhesion of micro-and nanoparticulate carriers to the inflamed colonic mucosa. Pharm. Res. 2001, 18, 788–793. [Google Scholar] [CrossRef]
- Simmonds, N.J.; Allen, R.E.; Stevens, T.R.; Niall, R.; Van Someren, M.; Blake, D.R.; Rampton, D.S. Chemiluminescence assay of mucosal reactive oxygen metabolites in inflammatory bowel disease. Gastroenterology 1992, 103, 186–196. [Google Scholar] [CrossRef]
- Drury, B.; Hardisty, G.; Gray, R.D.; Ho, G.T. Neutrophil Extracellular Traps in Inflammatory Bowel Disease: Pathogenic Mechanisms and Clinical Translation. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 321–333. [Google Scholar] [CrossRef]
- Balabushevich, N.G.; Sholina, E.A.; Mikhalchik, E.V.; Filatova, L.Y.; Vikulina, A.S.; Volodkin, D. Self-assembled mucin-containing microcarriers via hard templating on CaCO3 crystals. Micromachines 2018, 9, 307. [Google Scholar] [CrossRef]
- Grigorieva, D.V.; Gorudko, I.V.; Grudinina, N.A.; Panasenko, O.M.; Semak, I.V.; Sokolov, A.V.; Timoshenko, A.V. Lactoferrin modified by hypohalous acids: Partial loss in activation of human neutrophils. Int. J. Biol. Macromol. 2022, 195, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Panasenko, O.M.; Ivanov, V.A.; Mikhalchik, E.V.; Gorudko, I.V.; Grigorieva, D.V.; Basyreva, L.Y.; Shmeleva, E.V.; Gusev, S.A.; Kostevich, V.A.; Gorbunov, N.P.; et al. Methylglyoxal-modified human serum albumin binds to leukocyte myeloperoxidase and inhibits its enzymatic activity. Antioxidants 2022, 11, 2263. [Google Scholar] [CrossRef] [PubMed]
Particles | Content, % | Dparticle, μm | S, m2/g | Dpore, nm | ζ-Potential, mV | Adsorption of Mucin, mg/g | |
---|---|---|---|---|---|---|---|
Vaterite to CaCO3 | Pectin by Weight | ||||||
CC | 97.5 | - | 3.9 ± 0.6 | 22 ± 3 | 18.4 | 2 ± 1 | 7 ± 2 |
CCP | 98.0 | 2–5 | 2.1 ± 0.5 | 95 ± 10 | 3.8 | −12 ± 2 | 4 ± 1 |
Samples | Sample-Stimulated CL, % | |
---|---|---|
Luminol | Lucigenin | |
CC | 21.6 ± 1.6 | 15.1 ± 1.6 |
CCP | 17.0 ± 3.9 | 20.9 ± 2.9 |
CC-M | 52.4 ± 10.9 | 41.9 ± 10.8 |
CCP-M | 6.0 ± 3.4 | 11.9 ± 6.6 |
0.15 M NaCl (control) | 2.4 ± 0.7 | 8.1 ± 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhalchik, E.V.; Maltseva, L.N.; Firova, R.K.; Murina, M.A.; Gorudko, I.V.; Grigorieva, D.V.; Ivanov, V.A.; Obraztsova, E.A.; Klinov, D.V.; Shmeleva, E.V.; et al. Incorporation of Pectin into Vaterite Microparticles Prevented Effects of Adsorbed Mucin on Neutrophil Activation. Int. J. Mol. Sci. 2023, 24, 15927. https://doi.org/10.3390/ijms242115927
Mikhalchik EV, Maltseva LN, Firova RK, Murina MA, Gorudko IV, Grigorieva DV, Ivanov VA, Obraztsova EA, Klinov DV, Shmeleva EV, et al. Incorporation of Pectin into Vaterite Microparticles Prevented Effects of Adsorbed Mucin on Neutrophil Activation. International Journal of Molecular Sciences. 2023; 24(21):15927. https://doi.org/10.3390/ijms242115927
Chicago/Turabian StyleMikhalchik, Elena V., Liliya N. Maltseva, Roxalana K. Firova, Marina A. Murina, Irina V. Gorudko, Daria V. Grigorieva, Viktor A. Ivanov, Ekaterina A. Obraztsova, Dmitry V. Klinov, Ekaterina V. Shmeleva, and et al. 2023. "Incorporation of Pectin into Vaterite Microparticles Prevented Effects of Adsorbed Mucin on Neutrophil Activation" International Journal of Molecular Sciences 24, no. 21: 15927. https://doi.org/10.3390/ijms242115927